JPS60262064A - Sensor detection - Google Patents

Sensor detection

Info

Publication number
JPS60262064A
JPS60262064A JP11850984A JP11850984A JPS60262064A JP S60262064 A JPS60262064 A JP S60262064A JP 11850984 A JP11850984 A JP 11850984A JP 11850984 A JP11850984 A JP 11850984A JP S60262064 A JPS60262064 A JP S60262064A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
amorphous
alloy
reproducibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11850984A
Other languages
Japanese (ja)
Other versions
JPH0533339B2 (en
Inventor
Ichiro Yamashita
一郎 山下
Hiroyuki Hase
裕之 長谷
Yukihiko Ise
伊勢 悠紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11850984A priority Critical patent/JPS60262064A/en
Publication of JPS60262064A publication Critical patent/JPS60262064A/en
Publication of JPH0533339B2 publication Critical patent/JPH0533339B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To improve the reproducibility and stability with a larger output by employing two kinds of magnetic field waveforms to provide the magnetic domain structure of amorphous magnetic alloy with a aligning tendency while lessening the effect of disaccommodation (D.A). CONSTITUTION:A pressure sensor is made up of a magnetic circuit comprising an amorphous magnetic alloy 1 having a magnetic distortion and a soft magnetic ferrite 2, a coil 3 for exciting the magnetic circuit and an introduction part 6 having a through hole. Then, when a pressure is applied to the pressure sensor employing a magnetic field having a high frequency alternating current overlapping a low-frequency square wave, an AC demagnetization is done to suppress secular changes. This can removed unstability of D.A and the like thereby improving the reproducibility and stability along with a larger output.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非晶質磁性合金を用いた力学量−インダクタン
ス弯換型のセンサ検出方法に関jるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a mechanical quantity-inductance conversion type sensor detection method using an amorphous magnetic alloy.

従来例の構成とその問題点 従来非晶質磁性合金の磁歪効果を用い、各種の力や歪等
を検出するセンサがi昌されていたが、感度、再現性、
安定性において問題が残されていた。その検出方法は単
一交流磁界を用いインダクタンスを検出する方式であり
、非晶質磁性5合金を少なくとも一部に有する磁気回路
の検出方式としては有効でなかった。
Conventional configurations and their problems Conventional sensors have been developed that use the magnetostrictive effect of amorphous magnetic alloys to detect various forces, strains, etc., but the sensitivity, reproducibility, and
Problems with stability remained. The detection method is a method of detecting inductance using a single alternating current magnetic field, and is not effective as a detection method for a magnetic circuit having at least a portion of the amorphous magnetic 5 alloy.

発明の目的 本発明は、上記の様に感度、再現性、安定性において問
題の残っている非晶質磁性合金応用センサにおいて、こ
れら問題点を解決するセンサ検出方法を提供す本もので
あるア 発明の構成 。
Purpose of the Invention The present invention is an object of the present invention, which provides a sensor detection method that solves the problems in amorphous magnetic alloy applied sensors that still have problems in sensitivity, reproducibility, and stability as described above. Structure of the invention.

上記問題解決のために、本発明はセンサのインダクタン
ス値検出にあたって、少なくとも2種類の磁界波形を用
い、非晶質磁性合金の磁区構造を整列傾向をもた;、同
時にディスアコモデーション(以下り、A、と略す。)
の影響を少なくして検出するものである。
In order to solve the above problem, the present invention uses at least two types of magnetic field waveforms in detecting the inductance value of the sensor to tend to align the magnetic domain structure of the amorphous magnetic alloy. , abbreviated as).
Detection is performed by reducing the influence of

実施例の説明 第1図は非晶質磁性合金を用いた圧力センサの例を示し
たものである。1は磁歪を有する非晶質磁性合金、2は
軟磁性フェライトでこの2つで磁気回路を構成している
。3はこの磁気回路を励磁するコイルであり、全体はケ
ース4に納められている。圧力は導入部6より透孔6を
通じて非晶質磁性合金1に加えられる。圧力の印加に伴
い非晶質磁性合金に歪が発生すると、磁歪効果により非
晶質磁性合金の磁性が変化しインタツタレスilJ定回
路7により検出され、圧力がインダクタンス値の形で検
出される。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a pressure sensor using an amorphous magnetic alloy. 1 is an amorphous magnetic alloy having magnetostriction, and 2 is a soft magnetic ferrite, and these two constitute a magnetic circuit. 3 is a coil that excites this magnetic circuit, and the whole is housed in a case 4. Pressure is applied to the amorphous magnetic alloy 1 from the introduction part 6 through the through hole 6 . When strain occurs in the amorphous magnetic alloy due to the application of pressure, the magnetism of the amorphous magnetic alloy changes due to the magnetostrictive effect, which is detected by the intertwined ILJ constant circuit 7, and the pressure is detected in the form of an inductance value.

しかしながら第2図の如き通常の単一交流磁界を用いる
と、その油圧−インダクタンス値変化の出力は小さく、
また再現性も悪くヒステリシスも発生し、D、A、によ
る安定性も悪い。
However, when using a normal single alternating current magnetic field as shown in Fig. 2, the output of the hydraulic pressure-inductance value change is small;
Furthermore, the reproducibility is poor and hysteresis occurs, and the stability due to D and A is also poor.

第3図は、この第2図の様な交流磁界のみで測定した場
合の、圧力−インダクタンス値変化の出力例である。矢
印は測定の順序と示している。
FIG. 3 shows an output example of pressure-inductance value changes when measured only with an alternating magnetic field as shown in FIG. 2. Arrows indicate the order of measurements.

第4図は、この第1図油圧センサに直流磁界を重畳した
場合のインダクタンス値が、直流磁界Hdcの大きさに
より−どの様に変化するかを0気圧。
FIG. 4 shows how the inductance value when a DC magnetic field is superimposed on the oil pressure sensor shown in FIG. 1 changes depending on the magnitude of the DC magnetic field Hdc at 0 atm.

30fAE K kIh”’C,yz″L、fc 4 
cv −c h 1. IQ@1IIEIt60度1周
波数は20&である。これからも交流磁界のみで測定し
た場合は出力が小さい事が判り、通常の測定方法が不適
当である事が判る。そして直流磁界を重畳する事により
出力が増大する事が判る。
30fAE K kIh"'C,yz"L, fc 4
cv -ch h 1. IQ@1IIEIt60 degrees 1 frequency is 20&. From this it can be seen that the output is small when measured only with an alternating magnetic field, and it can be seen that the normal measurement method is inappropriate. It can be seen that the output increases by superimposing a DC magnetic field.

第・6図は本発明による検出方式のインダクタンス値検
出磁界を示している。低周波の矩形波に高周波の交流が
重畳している。この方式により出力は第4図に示される
様に改善される。さらに、この方式では直流磁界がない
ため常に交流消磁が行なわれているのと同等になり経時
変化を抑制する事もできる。
FIG. 6 shows the inductance value detection magnetic field of the detection method according to the present invention. A high-frequency alternating current is superimposed on a low-frequency rectangular wave. This method improves the output as shown in FIG. Furthermore, since there is no direct current magnetic field in this method, it is equivalent to constantly performing alternating current demagnetization, and changes over time can also be suppressed.

第6図は本発明による検出方式の他の検出磁界を示して
いる。低周波の矩形波の立上がり部分が大振中Hma工
にされその後一定値H8に収斂されている。インダクタ
ンス値の測定は、この収斂後め部分で行なう。この様な
測定波形では第7図に示す様に、非晶質磁性合金のB−
Hループの高磁界側に一度に測定点が移動し1、その結
果磁区構造が配向され、その後で測定に入るため、磁気
的に安定している。その結果1.、 D 、 A 、 
mSその他の不安定性を除去する事が可能となり、出力
も上述の )例と同じく改善される。
FIG. 6 shows another detection magnetic field of the detection method according to the invention. The rising portion of the low frequency rectangular wave is made into Hma during the large swing and then converged to a constant value H8. The inductance value is measured at this post-convergence portion. In such a measurement waveform, as shown in Fig. 7, the B-
The measurement points are moved all at once to the high magnetic field side of the H loop, 1 and as a result, the magnetic domain structure is oriented, and then the measurement begins, so it is magnetically stable. The result 1. , D, A,
It becomes possible to eliminate mS and other instabilities, and the output is also improved as in the above example.

発明の効果 以上述べた様に本発明による検出方式を用いれば、非晶
質磁性合金の磁歪を用いた力学量−インダクタンス変換
型のセンサにおいて、出力の増大が計れ、再現性及び安
定性のよ 経時変化の少ないセ/すが実現できその効果
は極めて大きい。
Effects of the Invention As described above, if the detection method according to the present invention is used, it is possible to increase the output in a mechanical quantity-inductance conversion type sensor using magnetostriction of an amorphous magnetic alloy, and improve reproducibility and stability. It is possible to create a chamber with little change over time, and the effect is extremely large.

4、図面の簡単な説明 □ 第1図は非晶質磁性合金を用た圧力センサの断面□図、
第2図は従来の検出磁界波形図、第3図は従来の検出方
法の測定結果をケオ特性図、第4図は0気圧、30気圧
印加した時の圧力センサのインダクタンス値の直流磁界
重畳依存性を示す図、第5図、第6図は本発明の検出磁
界波形図、第7図は非晶質磁性合金のB−Hループを示
す図である0 1・・・・・・非晶質磁性合金、2・・・・・・軟磁性
フェライト、3・・・・・・コイル、4・・・・・・ケ
ース、6・・・・・・導入部、代理人の氏名 弁理士 
中 尾 敏 男 ほか1名第1図 第2図
4. Brief explanation of the drawings □ Figure 1 is a cross-sectional view of a pressure sensor using an amorphous magnetic alloy.
Figure 2 is a conventional detection magnetic field waveform diagram, Figure 3 is a Keo characteristic diagram of the measurement results of the conventional detection method, and Figure 4 is the dependence of the inductance value of the pressure sensor on DC magnetic field superimposition when 0 and 30 atmospheres are applied. 01...Amorphous Highly magnetic alloy, 2... Soft magnetic ferrite, 3... Coil, 4... Case, 6... Introduction, Name of agent: Patent attorney
Toshio Nakao and one other person Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一部が磁歪を有する非晶質磁性合金で構成さ
れ、かつ前i己卯晶質i性合金に被検出物による歪が発
生する磁気回路のインダクタンス値を検出するに際し、
少なくとも2種類の磁界波形を用いる事を特徴とするセ
ンサ検出方法。
When detecting the inductance value of a magnetic circuit that is at least partially composed of an amorphous magnetic alloy having magnetostriction and in which strain is generated in the pre-isomorphic crystalline alloy by an object to be detected,
A sensor detection method characterized by using at least two types of magnetic field waveforms.
JP11850984A 1984-06-08 1984-06-08 Sensor detection Granted JPS60262064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11850984A JPS60262064A (en) 1984-06-08 1984-06-08 Sensor detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11850984A JPS60262064A (en) 1984-06-08 1984-06-08 Sensor detection

Publications (2)

Publication Number Publication Date
JPS60262064A true JPS60262064A (en) 1985-12-25
JPH0533339B2 JPH0533339B2 (en) 1993-05-19

Family

ID=14738398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11850984A Granted JPS60262064A (en) 1984-06-08 1984-06-08 Sensor detection

Country Status (1)

Country Link
JP (1) JPS60262064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204928A2 (en) * 1985-04-18 1986-12-17 Matsushita Electric Industrial Co., Ltd. Exciting of magnetic field for amorphous-alloy sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991329A (en) * 1982-11-16 1984-05-26 Matsushita Electric Ind Co Ltd Pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991329A (en) * 1982-11-16 1984-05-26 Matsushita Electric Ind Co Ltd Pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204928A2 (en) * 1985-04-18 1986-12-17 Matsushita Electric Industrial Co., Ltd. Exciting of magnetic field for amorphous-alloy sensor

Also Published As

Publication number Publication date
JPH0533339B2 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
US5465627A (en) Circularly magnetized non-contact torque sensor and method for measuring torque using same
WO2024179613A1 (en) Magnetic field measurement sensor, magnetic field measurement sensor system, and method
JP3645116B2 (en) Magneto-impedance effect micro magnetic sensor
Harada et al. A new torque transducer using stress sensitive amorphous ribbons
JP2816175B2 (en) DC current measuring device
WO2022037099A1 (en) Low-cost current sensor
JP2635714B2 (en) DC bias detection method for transformer core
JPS60262064A (en) Sensor detection
US4625562A (en) Amorphous magnetic alloy sensor
JP4253084B2 (en) Load measuring device
JPS61240132A (en) Sensor detection method
JP2001056266A (en) Method and device for determining time characteristic of shock wave in ferromagnetic body subject to impact load
JP2905561B2 (en) Non-contact torque sensor
CN111381200A (en) Magnetic sensor for differential output by using 180-degree reverse phase modulation nonlinear magnetoelectric effect
Sasada et al. A new structure of torque sensors using thin pickup head—Use of mutual coupling modulation
JPH0392782A (en) Magnetic field sensor
JPS61254828A (en) Method for driving sensor applying amorphous magnetic alloy
JPS6128830A (en) Detection method by amorphous magnetic alloy applied sensor
JPS60262034A (en) Detection of internal stress
JPH08184656A (en) Magnetic sensor
JPH03269228A (en) Magnetostriction detector
JP3645093B2 (en) Magneto-impedance effect eddy current sensor
JPS59164932A (en) Torque detector
JPS61191930A (en) Magnetostrictive type torque detector
Garshelis New types of magnetoelastic transducers for sensing force related parameters