JPS60261920A - Vortex chamber type diesel engine - Google Patents

Vortex chamber type diesel engine

Info

Publication number
JPS60261920A
JPS60261920A JP59117289A JP11728984A JPS60261920A JP S60261920 A JPS60261920 A JP S60261920A JP 59117289 A JP59117289 A JP 59117289A JP 11728984 A JP11728984 A JP 11728984A JP S60261920 A JPS60261920 A JP S60261920A
Authority
JP
Japan
Prior art keywords
injection port
fuel
nozzle
cross
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117289A
Other languages
Japanese (ja)
Inventor
Toshiaki Tanaka
利明 田中
Kunihiko Sugihara
杉原 邦彦
Yukihiro Eto
江藤 幸寛
Yoshihisa Kawamura
川村 桂久
Giichi Shioyama
塩山 議一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59117289A priority Critical patent/JPS60261920A/en
Priority to DE19853519835 priority patent/DE3519835A1/en
Priority to US06/741,631 priority patent/US4676209A/en
Priority to GB08514296A priority patent/GB2159879B/en
Publication of JPS60261920A publication Critical patent/JPS60261920A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To prevent atomized fuel from adhering to the inner wall of a counter injection port and to reform fuel to reduce the amount of generated smoke, by forming the cross-section of the counter injection port in a substantially circular shape, and by setting a specific relationship between the cross-sectional area and length of the counter injection port. CONSTITUTION:Atomized fuel injected from a fuel injection valve 7 is led by a vortex stream and impinges upon a glow plug 11 so that it drops in a substantially vertical direction along the direction of the vortex stream. However due to a delay in ignition it passes through a counter injection port 10 in an atomized condition. In this arrangement, the cross-sectioned shape of the counter injection port 10 is formed to be substantially circular to facilitate the passage of atomized fuel therethrough, and the relationship between the cross-sectional area S and length L of the counter injection port is set such as, S/L>0.5 to reduce the amount of generated smoke. That is, the relationship of S/L>0.5 allows the passage length to be short with respect to the passage cross-sectional area so that fuel is directly fed into a main chamber without adhering to the inner wall 10A of the counter injection port. Therefore, fuel adhered to the inner wall 10A of the counter injection port 10 is prevented from being burnt with some delay so that the counter injection port 10 may attain its inherent purpose, and therefore, combustion may be carried out within the main chamber to reduce the amount of generated smoke.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は渦流室式ディーゼルエンジンの改良に関し、詳
しくは渦流室と主室とを連通する噴口を複数個設けた渦
流室式ディーゼルエンジンの改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an improvement of a swirl chamber type diesel engine, and more specifically, an improvement of a swirl chamber type diesel engine having a plurality of nozzles communicating between a swirl chamber and a main chamber. Regarding.

(従来の技術) 高速ディーゼルエンジンに適した燃焼室の形式として渦
流室式が知られているが、その燃焼性状をさらに改善す
る目的で、渦流室と主室とを連通する噴口を複数個設け
たものが提案されている(例えば特開昭57−1721
23号参照)。
(Prior art) The swirl chamber type is known as a combustion chamber type suitable for high-speed diesel engines, but in order to further improve its combustion properties, multiple nozzles are provided to communicate the swirl chamber and the main chamber. (For example, Japanese Patent Application Laid-Open No. 57-1721
(See No. 23).

、これを第5図で説明すると、渦流室1はエンジンシリ
ンダへラド2とその下面から嵌合した口金3との間に形
成されており、主噴口4と、比較的小径の副噴口5を介
して主室6に連通している。
To explain this with reference to FIG. 5, the vortex chamber 1 is formed between the engine cylinder Rad 2 and the mouthpiece 3 fitted from the bottom surface thereof, and has a main nozzle 4 and a relatively small diameter auxiliary nozzle 5. It communicates with the main room 6 via the main room 6.

主噴口4は、その渦流室1側の開口部が渦流室1の接線
方向に、他方主室6側の開口部がややシリンダ中心寄り
に各々開口しており、燃焼時の渦流室1からの〃ス噴流
が主室6の中央方向に噴出するようにしている。これに
対して、小径の副噴口5は、渦流室1に面した燃料噴射
弁7の噴射方向に沿って開口し、着火遅れの間に噴射燃
料の一部が主室6へと流出するようにしでいる。
The main nozzle 4 has an opening on the swirl chamber 1 side opening in the tangential direction of the swirl chamber 1, and an opening on the main chamber 6 side opening slightly toward the center of the cylinder. The gas jet is ejected toward the center of the main chamber 6. On the other hand, the small-diameter sub-nozzle 5 opens along the injection direction of the fuel injection valve 7 facing the swirl chamber 1, so that a part of the injected fuel flows into the main chamber 6 during the ignition delay. I'm here.

このような燃焼室によれば、渦流室1だけでなく、副噴
口5を介してガス流動の穏や□かな主室6にも燃料が供
給され、双方で燃焼が進むので、噴射燃料の全量を渦流
室1゛のみに供給しで燃焼させた場合に比べて最高燃焼
温度が抑えられ、この結果有害物質であるNOxの発生
量が減少することが知られている。
According to such a combustion chamber, fuel is supplied not only to the swirl chamber 1 but also to the main chamber 6 where the gas flow is moderate through the sub-nozzle 5, and combustion progresses in both, so that the total amount of injected fuel is It is known that the maximum combustion temperature is suppressed compared to the case where fuel is supplied to only one swirl chamber and combusted, and as a result, the amount of NOx, which is a harmful substance, generated is reduced.

(発明が解決しようとする問題点) ところで、主室1への適切な燃料供給量は少量でよく、
副噴口5を介しての噴射燃料の供給量は副噴口5の断面
積で決定されることがら副噴口断面積はそれ程大きく設
定することができない。
(Problem to be solved by the invention) By the way, the appropriate amount of fuel to be supplied to the main chamber 1 may be small;
Since the amount of fuel injected through the sub-nozzle 5 is determined by the cross-sectional area of the sub-nozzle 5, the cross-sectional area of the sub-nozzle cannot be set so large.

このため、通過断面積の狭い副噴口5では、特に燃料噴
射量の増大する高負荷域において、噴霧燃料がその内壁
5Aに付着する傾向にあり、また、通過断面積に対して
通過長さが長いと付着傾向を助長することになる。
For this reason, in the sub-nozzle 5 having a narrow passage cross-sectional area, the sprayed fuel tends to adhere to the inner wall 5A, especially in a high load region where the fuel injection amount increases, and the passage length is smaller than the passage cross-sectional area. If it is long, it will encourage the tendency to stick.

こうして内壁5Aに付着した燃料が後添えすると、酸素
が十分でないことから燃焼状態が悪化してスモーク発生
量を増大することが考えられる。
If the fuel adheres to the inner wall 5A in this way, it is conceivable that the combustion condition will worsen and the amount of smoke generated will increase because there is not enough oxygen.

本発明は、副噴口を噴n燃料が通過l、やすい形1 状
にして副噴口内壁への燃料付着を防止するディーゼルエ
ンジンを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a diesel engine in which a sub-nozzle is shaped so that fuel can easily pass through the sub-nozzle to prevent fuel from adhering to the inner wall of the sub-nozzle.

(問題点を解決するための手段) 本発明は、エンジンシリングヘッドに燃料噴射弁を臨ま
せた渦流室を設け、この渦流室と主室とを、主噴1コに
加えて燃料噴射弁の噴射方向に開口する副噴口を介して
連通させた渦流室式ディーゼルエンジンを前提とする。
(Means for Solving the Problems) The present invention provides a swirl chamber facing the fuel injection valve in the engine shilling head, and combines the swirl chamber and the main chamber with one main injection valve and the fuel injection valve. The present invention is based on a swirl chamber type diesel engine that communicates through a sub-nozzle opening in the injection direction.

本発明は、副噴口断面を概ね円状に形成し、がつ、R(
1噴口断面積Sと副噴口長さLとの比S/Lが0.5よ
りも大きくなるように設定する。
In the present invention, the cross section of the sub-nozzle is formed into a generally circular shape,
The ratio S/L of the cross-sectional area S of one nozzle to the length L of the sub-nozzle is set to be greater than 0.5.

(作用) このように設定すれば、通過断面積が小さくとも通過長
さが短くなることから、噴霧燃料が副噴口を通過しやす
くなり、高負荷域においても噴霧燃料がrAす噴口内壁
に付着することなく、主室へと供給されることになる。
(Function) With this setting, even if the passage cross-sectional area is small, the passage length becomes short, making it easier for the sprayed fuel to pass through the auxiliary nozzle, and even in a high load range, the sprayed fuel adheres to the inner wall of the nozzle. It will be supplied to the main room without doing anything.

(実施例) tjS1図は本発明の一実施例の渦流室を示す縦断面図
である。
(Example) Figure tjS1 is a longitudinal sectional view showing a swirl chamber according to an example of the present invention.

″″0実施例は・渦流室υ渦流0方向性を高め )るた
め、渦流室を偏平円筒状に形成したものに適用したもの
である。
The ``0'' embodiment is applied to a device in which the vortex chamber is formed into a flat cylindrical shape in order to increase the directionality of the vortex chamber υ.

すなわち、渦流室1は、主噴i]4が開口した直円筒面
IAと、この直円筒面IAの中心軸と直交する互いにほ
ぼ平行な2つの側方平面(図示せず)とで形成されてい
る。
That is, the swirl chamber 1 is formed by a right cylindrical surface IA in which the main jet i]4 is opened, and two side planes (not shown) that are orthogonal to the central axis of this right cylindrical surface IA and are substantially parallel to each other. ing.

主噴口4は渦流室1に対し接線方向に形成され、これに
対して、小径の副噴口10は渦流室1に面した燃料噴射
弁7の噴射中心軸と略一致させて形成される。
The main nozzle 4 is formed tangentially to the swirl chamber 1 , whereas the small-diameter auxiliary nozzle 10 is formed to substantially coincide with the central injection axis of the fuel injection valve 7 facing the swirl chamber 1 .

二〇副噴口10の断面を、面積に対する周囲長さの比が
小さい円状に形成する。
20 The cross section of the sub-nozzle 10 is formed into a circular shape with a small ratio of circumferential length to area.

さらに、副噴口断面積Sと副噴口長さLとの比S/Lが
0.5より大きくなるJ:′うに設定する。
Further, the ratio S/L of the sub-nozzle cross-sectional area S to the sub-nozzle length L is set to J:' such that it is larger than 0.5.

なお、2はシリングヘッド、3け口金、1゜Aは副噴口
内壁、11はグロープラグである。
In addition, 2 is a sill head, 3 is a mouthpiece, 1°A is an inner wall of a sub-nozzle, and 11 is a glow plug.

以上の構成による作用を説明すると、圧縮工程時に主噴
口4を介して渦流室1に流入する押し込み流は、直円筒
面IAに接線方向から流入して渦流を形成するが、午の
渦流は、その旋回中心に対してほぼ直角な側方平面に案
内されて強い方向性を維持するため、副噴口1oがらの
対抗流の影響を受けても十分な渦流状態を保つ。すなわ
ち、燃料噴射弁7がら噴射された噴霧燃料は、この渦流
によりグロープラグ10に当たり、渦流方向に沿って慨
ね垂直方向に落ちるが、着火遅れがあるため、噴霧の状
態で副噴口10を通過する。
To explain the effect of the above configuration, the forced flow that flows into the swirl chamber 1 through the main nozzle 4 during the compression process flows into the right cylindrical surface IA from the tangential direction to form a swirl, but the vortex flow is Since it is guided by a lateral plane substantially perpendicular to the center of rotation and maintains strong directionality, a sufficient vortex state is maintained even under the influence of counterflow from the sub-nozzle 1o. That is, the atomized fuel injected from the fuel injection valve 7 hits the glow plug 10 due to this vortex and falls generally vertically along the direction of the vortex, but because of the ignition delay, it passes through the sub-nozzle 10 in a spray state. do.

この場合、副噴口10を介しての噴霧燃料の通過のしや
すさは、副噴口10の形状ならびにS/L1こ関係する
In this case, the ease with which the sprayed fuel passes through the sub-nozzle 10 is related to the shape of the sub-nozzle 10 and S/L1.

例えば、通過しやすい断面形状は円状がよく、J、た、
S/I−については、S/Lを変化させたときの排気特
性を第3図、第4図に示す。
For example, the cross-sectional shape that is easy to pass through is circular, and J, ta,
Regarding S/I-, exhaust characteristics when changing S/L are shown in FIGS. 3 and 4.

なお、これらの図は、第2図において、Sを一定どして
Lを変化させたときの実測値に基づき作成したものであ
る。
Note that these figures were created based on actual measurements when S was kept constant and L was varied in FIG. 2.

第3図より、高負荷域において、スモーク発生量はS/
I、が大きくなると減少するので、S/Lを0.5より
大きくすれば、高負荷域にかかわらず、スモーク発生量
を低減できることがわかる。
From Figure 3, in the high load range, the amount of smoke generated is S/
As I increases, it decreases, so it can be seen that by making S/L larger than 0.5, the amount of smoke generated can be reduced regardless of the high load range.

なお、こうした副噴口1oの形成により他の排気成分で
あるNOx@出量に影響を及ぼすものではない(115
4図参照)。また、S / T−、の設定値は排気規制
値に応じて設定してもよい。
Note that the formation of the sub-nozzle 1o does not affect the amount of NOx, which is another exhaust component (115).
(See Figure 4). Further, the set values of S/T- may be set according to exhaust regulation values.

すなわち、S/Lが0.5より大きいと、通過断面積に
対して通過長さが短くなり、噴霧燃料は副噴口内壁10
Aに付着することなく主室−・ど供給されるのである。
That is, when S/L is larger than 0.5, the passage length becomes shorter than the passage cross-sectional area, and the atomized fuel reaches the inner wall 10 of the sub-nozzle.
It is supplied to the main room without adhering to A.

このため、副噴口内壁10Aに付χ(した燃料が後添え
をするということがなく 、1i(i噴口10は本末の
役目を果たして主室での燃焼が行なわれることとなり、
スモークを減少する、:とができるのである。
Therefore, the fuel attached to the inner wall 10A of the auxiliary nozzle 10A does not become an afterthought, and the 1i (i nozzle 10 plays the final role and combustion takes place in the main chamber.
It can reduce smoke.

(発明の効果) 本発明は、副噴口断面を概ね円状に形状し、がつ、副噴
口断面積Sと副噴口長さI、との間にS/L>0.5と
なる関係を設定することにより、噴霧燃料が副噴口内壁
に何着することを防止したので、燃焼改善によるスモー
ク発生量の低減を達成することができる。
(Effects of the Invention) The present invention has a sub-nozzle cross section approximately circular in shape, and has a relationship between the sub-nozzle cross-sectional area S and the sub-nozzle length I such that S/L>0.5. By setting this, it is possible to prevent the sprayed fuel from landing on the inner wall of the sub-nozzle, thereby achieving a reduction in the amount of smoke generated due to improved combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

#S1図は本発明の一実施例の燃焼室の縦断面図、第2
図は複数の噴口部分の縦断面図である。 第3図、第4図はそれぞれスモーク、NOxの排気特性
図である。 第5図は従来例の燃焼室の縦断面図である。 1・・・渦流室、2・・・シリンダヘッド、3・・・口
金、4・・・主噴口、5.10・・・副噴口、5A、I
OA・・・副噴11内壁、7・・・燃料噴射弁。 特許出願人 日産自動車株式会社 代理人弁理士 復原 政審 會
#S1 is a vertical sectional view of the combustion chamber of one embodiment of the present invention,
The figure is a longitudinal sectional view of a plurality of nozzle ports. FIGS. 3 and 4 are smoke and NOx exhaust characteristic diagrams, respectively. FIG. 5 is a longitudinal sectional view of a conventional combustion chamber. 1... Vortex chamber, 2... Cylinder head, 3... Mouthpiece, 4... Main nozzle port, 5.10... Sub-nozzle port, 5A, I
OA...Sub-injection 11 inner wall, 7...Fuel injection valve. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Restoration Political Council

Claims (1)

【特許請求の範囲】[Claims] エンノンシリンダヘッドに燃料噴射弁を臨ませた渦流室
を設け、この渦流室と主室とを、主噴口に加えて燃料噴
射弁の噴射方向に開口する副噴口を介して連通させた渦
流室式ディーゼルエンジンにおいて、副噴口断面を概ね
円状に形成し、がっ、副噴口断面積Sと副噴口長さLと
の間にS/L>0.5となるrIRvkを設定したこと
を特徴とする渦流室式ディーゼルエンジン。
A vortex chamber in which a vortex chamber facing a fuel injection valve is provided in the ennon cylinder head, and the vortex chamber and the main chamber are communicated via a sub-nozzle opening in the injection direction of the fuel injection valve in addition to the main nozzle. In the type diesel engine, the cross-section of the sub-nozzle is approximately circular, and rIRvk is set between the cross-sectional area S of the sub-nozzle and the length L of the sub-nozzle such that S/L>0.5. Swirl chamber diesel engine.
JP59117289A 1984-06-07 1984-06-07 Vortex chamber type diesel engine Pending JPS60261920A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59117289A JPS60261920A (en) 1984-06-07 1984-06-07 Vortex chamber type diesel engine
DE19853519835 DE3519835A1 (en) 1984-06-07 1985-06-03 COMBUSTION ENGINE
US06/741,631 US4676209A (en) 1984-06-07 1985-06-05 Transfer passage arrangement for diesel engine having swirl chamber
GB08514296A GB2159879B (en) 1984-06-07 1985-06-06 Transfer passage arrangement for diesel engine having swirl chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117289A JPS60261920A (en) 1984-06-07 1984-06-07 Vortex chamber type diesel engine

Publications (1)

Publication Number Publication Date
JPS60261920A true JPS60261920A (en) 1985-12-25

Family

ID=14708059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117289A Pending JPS60261920A (en) 1984-06-07 1984-06-07 Vortex chamber type diesel engine

Country Status (1)

Country Link
JP (1) JPS60261920A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117314A (en) * 1981-12-28 1983-07-12 Nissan Motor Co Ltd Spiral vortex chamber type diesel engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117314A (en) * 1981-12-28 1983-07-12 Nissan Motor Co Ltd Spiral vortex chamber type diesel engine

Similar Documents

Publication Publication Date Title
JPH07133727A (en) Air intake device of internal combustion engine
EP0142708B1 (en) Diesel engine
KR20030012931A (en) Fuel injection system
US4541375A (en) Diesel engine swirl chamber having improved multiple transfer passage arrangement
JPS60261920A (en) Vortex chamber type diesel engine
US4884538A (en) Diesel engine swirl chamber
GB2274877A (en) Fuel injected i.c. engine.
US4733641A (en) Direct injection type diesel engine
JPS5851215A (en) Combustion chamber for vortex chamber type diesel engine
JPH0694218A (en) Fuel injection valve
JPS60219454A (en) Fuel injector for engine
US6045054A (en) Air shroud for air assist fuel injector
JPS61247865A (en) Fuel injection type engine
JP2629745B2 (en) Spark assist diesel engine
JPH06249109A (en) Fuel injection device for engine
JPH06241147A (en) Fuel feeding device for internal combustion engine
JPS6118184Y2 (en)
JPS6118182Y2 (en)
RU2078245C1 (en) Injector nozzle
JPH0480231B2 (en)
JPH0134656Y2 (en)
JPH0248673Y2 (en)
JPH0583732B2 (en)
JPS6014911B2 (en) Fuel injection valve for engine
JPS6113087B2 (en)