JPS6026164A - Trouble diagnoser for fuel injection pump - Google Patents

Trouble diagnoser for fuel injection pump

Info

Publication number
JPS6026164A
JPS6026164A JP13426383A JP13426383A JPS6026164A JP S6026164 A JPS6026164 A JP S6026164A JP 13426383 A JP13426383 A JP 13426383A JP 13426383 A JP13426383 A JP 13426383A JP S6026164 A JPS6026164 A JP S6026164A
Authority
JP
Japan
Prior art keywords
injection pump
signal
fuel injection
vibrations
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13426383A
Other languages
Japanese (ja)
Other versions
JPH0219301B2 (en
Inventor
Ryuji Takabayashi
高林 隆二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP13426383A priority Critical patent/JPS6026164A/en
Publication of JPS6026164A publication Critical patent/JPS6026164A/en
Publication of JPH0219301B2 publication Critical patent/JPH0219301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0007Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using electrical feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To quantitatively and easily find out the degree of drop in the function of a fuel injection pump, by providing a calculator which computes the ratios of the central voltages of respective electric signals corresponding to the vibrations of constituent parts, to the central valve of a reference electricity signal. CONSTITUTION:An accelerometer 3 is secured on the case of a fuel injection pump 1 by an adhesive to detect the vibrations of constituent parts in terms of electric signals corresponding to the vibrations. The electric signals are extracted through filters 7a-7d. A reference electricity signal is extracted through another filter 7h. A calculator 10 determines the ratios of the central values of the electric signals to the reference electricity signal. The ratios are shown on an indicator 12. As a result, the degree of drop in the function of the injection pump 1 can be quantitatively and easily found out.

Description

【発明の詳細な説明】 本発明は、ディーゼルエンジンの燃料噴射ポンプの故障
診断装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a failure diagnosis device for a fuel injection pump of a diesel engine.

ディーゼルエンジンの燃料噴射ポンプ(以下噴射ポンプ
と略す)は、燃料油を高圧化し、設定された時に必要量
送り出す機能をもっている。この機能を果すため、噴射
ポンプは、主に、回転運動するカムシャフト、往復運動
するタペット、回転・往復運動するプランジャ、吐出油
量を制御する歯車とコントロールラック、そのほか、プ
ランジャシート、スプリング、スプリングシート、ヘア
リング、デリベリバルブなどの部品から構成されている
。これらの構成部品は、摩耗、折損など機械的劣化が経
時過程で起きる0部品が劣化した場合、エンジンの燃料
系不調となシ、エンジンの始動性悪化、ノッキング、出
力不足、出力不安定、最大回転速度が得られないかまた
は高過ぎ、アイドリング回転速度が不安定、排気色の異
常などの現象が現われる。
A diesel engine fuel injection pump (hereinafter abbreviated as injection pump) has the function of increasing the pressure of fuel oil and delivering the required amount at a set time. To perform this function, an injection pump mainly consists of a rotating camshaft, a reciprocating tappet, a rotating and reciprocating plunger, gears and control racks that control the amount of oil discharged, and a plunger seat, spring, and spring. It consists of parts such as seats, hair rings, and delivery valves. These components undergo mechanical deterioration over time, such as wear and breakage.If these parts deteriorate, the engine's fuel system may malfunction, engine startability deteriorates, knocking, insufficient output, unstable output, maximum output, etc. Phenomena such as the rotational speed not being obtained or too high, the idling rotational speed being unstable, and abnormal exhaust color appear.

複数の気筒歇を持つエンジンの場合、その気筒数分のタ
ペット、プランジャ、スプリングなどの部品があり、あ
る気筒のみ機械的な劣化が起きてもエンジン全体として
、はぼ正常な作動(運動)をすることがある。
In the case of an engine with multiple cylinders, there are tappets, plungers, springs, and other parts for each cylinder, so even if mechanical deterioration occurs in one cylinder, the engine as a whole will continue to operate normally. There are things to do.

エンジン全体の機能低下(定格出力が得られない状態)
の場合、どこの系統に起因しているか、また、その系統
の中のどの部分に起因しているのか、そしてその部分の
どの部品がどの程度機能低下の要因として影響している
のかを調べる必要があった。
Deterioration of overall engine function (state where rated output cannot be obtained)
In this case, it is necessary to investigate which system the problem is caused by, which part of that system it is caused by, and to what extent which parts of that part are contributing to the decline in function. was there.

従来、この噴射ポンプの機能検査は、サービス員の経験
により、ディーゼルエンジンの始動性、出力程度、アイ
ドリンクの調子、ディーゼルノック音、などから判定す
ることによシ行っている。
Conventionally, the function inspection of this injection pump has been carried out by service personnel who judge based on the experience of the diesel engine based on the startability of the diesel engine, the level of output, the condition of the idle link, the diesel knocking noise, etc.

しかし、この経験による判定によれば、各判断要素に噴
射ポンプ以外からの不調現象が含まれるため、噴射ポン
プ正味の判定が困難であり、また、サービス員の経験に
より、主観が含まれてしまい誤差を生じ、さらに、複数
の気前数(4気筒、6気筒など)の場合、噴射ポンプの
ポンプ部分が複数あり、そのうち、どのポンプが機能低
下しているか見極わめるのに困難であるなど、噴射ポン
プの何番目に相当するポンプがどの程度機能低下してい
るかが定量的に判断できないという欠点がある。また、
機能低下程度を正確に知るには、エンジン本体よシ一時
噴射ポンプを取りはずし、ペンチテスト装置で調査しな
ければならないため、検査に長い時間を要するという欠
点もあった。
However, according to this judgment based on experience, each judgment factor includes malfunction phenomena from sources other than the injection pump, so it is difficult to judge the injection pump net, and it also includes subjectivity based on the experience of service personnel. In addition, in the case of multiple cylinders (4 cylinders, 6 cylinders, etc.), there are multiple pump parts of the injection pump, and it is difficult to determine which pump is malfunctioning. There is a drawback that it is not possible to quantitatively determine the extent to which the function of the pump corresponding to the number of injection pumps has deteriorated. Also,
In order to accurately determine the degree of functional decline, it is necessary to remove the temporary injection pump from the engine and examine it using a pliers test device, which also has the disadvantage of requiring a long period of time for inspection.

本発明は、上記の点に鑑み、噴射ポンプの機能低下程度
を定量的に簡便に判断できる装置を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to provide a device that can quantitatively and easily determine the degree of functional decline of an injection pump.

この目的を達成するため、本発明の装置は、噴射ポンプ
のケースに加速度i(を接着固定して振動を電気信号と
して検出し、該電気信号から各構成部品により発生する
振動に対応した個別電気信号と、噴射ポンプの経時変化
による影響を受けない基準電気信号とをそれぞれP波器
により抽出し、これらの電気信号からそれぞれ代表電圧
値を決定して前記各個別電気信号の代表電圧値と前記基
準電気信号の代表電気値との比を演算装置によ請求め、
その比を表示装置に表示するようにしたものである。
In order to achieve this object, the device of the present invention detects the vibration as an electric signal by gluing and fixing the acceleration i to the case of the injection pump. The signal and a reference electric signal that is not affected by aging of the injection pump are each extracted by a P-wave device, representative voltage values are determined from these electric signals, and the representative voltage value of each individual electric signal and the reference electric signal are determined. Requesting the ratio of the reference electrical signal to the representative electrical value from the arithmetic device;
The ratio is displayed on a display device.

以下本発明の詳細を図面に示す実施例により説明する。The details of the present invention will be explained below with reference to embodiments shown in the drawings.

第1図において、1は噴射ポンプ、2は故障診断装置で
あり、該装置2は、噴射ポンプ構成部品の機械的劣化程
度を定量評価することによ・す、故障を診断するもので
ある。すなわち、噴射ポンプ作動中は、カムシャフトが
回転し、タペットおよびプランジャが往復運動しており
、それらの部品はたたきあったシ、摺動してその時の作
動に伴う波動(音、振動など)が発生し、噴射ポンプ内
部部品の機械的劣化が起こるとその波動は変化する。そ
こで本発明はその波動の変化の度合を検出することによ
って劣化の度合を表示し、また、波動の周波数は各部品
によって異なっているだめ、各部品対応の周波数の波動
を原波器によって検出し、各部品毎の劣化の度合が評価
できるようにしたものである。
In FIG. 1, 1 is an injection pump, and 2 is a failure diagnosis device. The device 2 diagnoses failures by quantitatively evaluating the degree of mechanical deterioration of components of the injection pump. In other words, when the injection pump is operating, the camshaft rotates and the tappet and plunger reciprocate, and these parts strike and slide against each other, creating waves (sound, vibration, etc.) associated with the operation. The wave motion changes as mechanical deterioration of the internal parts of the injection pump occurs. Therefore, the present invention displays the degree of deterioration by detecting the degree of change in the wave, and since the frequency of the wave varies depending on each component, the wave at the frequency corresponding to each component is detected by a wave generator. , the degree of deterioration of each component can be evaluated.

該故障診断装置2は、噴射ポンプ1のケースに瞬間接着
剤等にょシ接着固定される加速度計3と、該加速度計3
と信号線4を介して接続される本体部5とからなる。加
速度計3は噴射ポンプ1の作動中の振動を電気信号に変
換するものであり、せん新形式の加速度計で、周波数範
囲が数Hzから20 K Ilzで、感度が20〜40
 mV /G (2,0〜4゜0 mV /’m52)
で、直線性を有するものを使用した。
The failure diagnosis device 2 includes an accelerometer 3 fixed to the case of the injection pump 1 with instant adhesive or the like, and the accelerometer 3.
and a main body 5 connected via a signal line 4. The accelerometer 3 converts vibrations during operation of the injection pump 1 into electrical signals, and is a new type of accelerometer with a frequency range of several Hz to 20K Ilz and a sensitivity of 20 to 40K.
mV/G (2,0~4゜0 mV/'m52)
I used one with linearity.

本体部5において、6は加速度計3の検出電圧信号が微
小電圧であるために、後述の信号処理部で処理するに好
適なレベルにまで増幅する増幅器であシ、利得が約20
〜40 dBのものを用いた。
In the main body 5, 6 is an amplifier that amplifies the detected voltage signal of the accelerometer 3 to a level suitable for processing in a signal processing section, which will be described later, since the voltage signal is a minute voltage, and has a gain of about 20.
~40 dB was used.

7a〜7dは増幅器6の出力信号から部品対応の特定範
囲の周波数の信号を抽出するp波器であり、7Lは全信
号の中から噴射ポンプ内部部品が機械的劣化を起こして
も、正常時と変わらない周波数帯域の信号(この信号は
、噴射ポンプの固有振動成分の影響を受けず、噴射ポン
プ作動の経時過程で信号の電位変化量がほとんど変化し
ない特性を示す信号であり、この信号を以下基準電気信
号Aと称す)を抽出する帯域通過ν波器である。
7a to 7d are p wave generators that extract signals in a specific range of frequencies corresponding to components from the output signal of the amplifier 6, and 7L is a p-wave generator that extracts signals in a specific range of frequencies corresponding to components from the output signal of the amplifier 6. (This signal is unaffected by the natural vibration component of the injection pump, and exhibits the characteristic that the amount of change in potential of the signal hardly changes over time during the operation of the injection pump.) This is a bandpass ν wave generator that extracts a reference electrical signal (hereinafter referred to as reference electrical signal A).

前記各P波器7a〜7dによって抽出される信号は下記
の表に示すような部品から発生する振動に対応した信号
である。
The signals extracted by each of the P-wave devices 7a to 7d are signals corresponding to vibrations generated from parts as shown in the table below.

上記の表に記載された各信号B−Eについて以下に説明
する。
Each signal BE listed in the above table will be explained below.

信号Bは、カムシャフトのカム部とタペットのローラ部
との間隙によるたたきあう現象等にょシ発生するもので
、ガタッキ、圧こん、摩耗、焼付により振動が大となり
、その信号の抽出にある設定周波数以上の信号を通過さ
せる高域通過ろ波器を使用する。。
Signal B is caused by the phenomenon of knocking together due to the gap between the cam part of the camshaft and the roller part of the tappet, and the vibration becomes large due to backlash, dents, wear, and seizure, and the settings for extracting the signal are necessary. Use a high-pass filter that passes signals above the frequency. .

信号Cは、カムシャフトのベアリング部の公転、自転に
伴なう信号により発生し、機械的劣化、摩耗、電食、焼
付、フレーキング、割れ、圧こんなどの劣化現象により
振動が増大し、その信号抽出には、外輪、転動体、内輪
ともにある設定周波数以下の信号を通過させる低域通過
P波器を使用する。
Signal C is generated by a signal accompanying the revolution and rotation of the bearing part of the camshaft, and vibration increases due to deterioration phenomena such as mechanical deterioration, wear, electrolytic corrosion, seizure, flaking, cracking, and compaction. For signal extraction, a low-pass P-wave device is used that allows signals below a certain set frequency to pass through the outer ring, rolling elements, and inner ring.

また、信号りについて述べると、タペットとプランジャ
シートとプランジャは、押しスプリングによって一方向
に押されており、プランジャシートに機械的劣化、圧こ
ん、割れ、タペットに同じく圧こん、割れ、プランジャ
に摩耗、圧こん、割れなどの現象が発生し、押しスプリ
ングの自由長が変化する。また、押しスプリング自体も
、へたり、折れなど塑性変形を起こす。タペットとプラ
ンジャシートとプランジャは、押しスプリングによって
押されておシ、噴射ポンプが作動することにより、各部
品がたたきあい、スプリングの自由長の変化、圧こん、
割れなどの劣化現象によってその振動が増大し、その信
号抽出には、ある設定周波数帯域を通過させる帯域戸波
器7Cを使用する。
Also, regarding the signal, the tappet, plunger seat, and plunger are pushed in one direction by a push spring, and the plunger seat may suffer mechanical deterioration, dents, or cracks, the tappet may have dents, cracks, or the plunger may be worn out. Phenomena such as dents, cracks, etc. occur, and the free length of the push spring changes. In addition, the push spring itself undergoes plastic deformation such as fatigue or breakage. The tappet, plunger seat, and plunger are pushed by a push spring, and when the injection pump operates, each part hits each other, causing a change in the free length of the spring, and an indentation.
The vibration increases due to deterioration phenomena such as cracks, and a band door filter 7C that passes a certain set frequency band is used to extract the signal.

デリベリバルブにより発生する信号Eは、ピストン部の
損傷、焼付き、押しスプリングの自由長変化などの劣化
現象により増大し、この信号抽出には帯域通過泥波器3
dを使用する。
The signal E generated by the delivery valve increases due to deterioration phenomena such as damage to the piston, seizure, and change in the free length of the push spring.
Use d.

デリベリバルブとタペット、プランジャシート、プラン
ジャの振動検出に用いるP波器は、帯域P波器であって
同形式であるが、お互いの質量、寸法(大きさ)が異な
るため、固有振動数が異なるので、両者の判別は周波数
帯域を変えることにより可能である。
Delivery valves, tappets, plunger seats, and P-wave devices used to detect vibrations of plungers are band P-wave devices and have the same type, but their masses and dimensions (sizes) are different, so their natural frequencies are different. , it is possible to distinguish between the two by changing the frequency band.

8は第2図ないし第5図に示すような戸波器7a〜7L
の出力信号からそれぞれ第6図ないし第8図に示すよう
ななだらかな整流信号包絡信号を得る信号整形器であり
、どのP波器の出力を整形するかは、制御装置11によ
って選択される。またこの入力回路には、前記増幅器6
の出力信号を直接入力させる回路15を有する。この回
路15は、後述のような表示器等によって波形観測を行
う場合に原信号を通すためのものである。
8 is a door wave device 7a to 7L as shown in FIGS. 2 to 5.
These are signal shapers that obtain smooth rectified signal envelope signals as shown in FIGS. 6 to 8 from the output signals of the P-wave generators, respectively, and the control device 11 selects which P-wave generator's output is to be shaped. This input circuit also includes the amplifier 6
It has a circuit 15 that directly inputs the output signal of. This circuit 15 is for passing an original signal when waveform observation is performed using a display device or the like as described later.

9は信号整形器8の出力信号である電圧のピーク電圧を
ディジタル値に変換する信号変換器である。
Reference numeral 9 denotes a signal converter that converts the peak voltage of the voltage that is the output signal of the signal shaper 8 into a digital value.

10は該ディジタル化されたピーク電圧のサンプリング
により代表値を決定し、前記基準電気信号の代表値と、
前記個別電気信号の代表値との比をめる演算装置である
。12は演算装置10による演算結果を記録させる磁気
媒体や紙テープなどの再生可能な記録装置である。13
は演算結果を数値で表示したり記録紙に表記したりする
機能を有し、必要な場合は機能限度をランプで表示した
り警報音を発生させたりする機能を有するものである。
10 determines a representative value by sampling the digitized peak voltage, and determines a representative value of the reference electric signal;
This is an arithmetic device that calculates a ratio between the individual electric signal and a representative value. Reference numeral 12 denotes a reproducible recording device such as a magnetic medium or paper tape for recording the calculation results of the calculation device 10. 13
It has the function of displaying the calculation result numerically or writing it on a recording paper, and has the function of displaying the functional limit with a lamp or generating an alarm sound if necessary.

14は該故障診断装置の電源として設けられる電池であ
る。
14 is a battery provided as a power source for the failure diagnosis device.

次にこの装置の動作を、信号名称Bで示したカムシャフ
ト、タペットの振動を検出する場合について説明する。
Next, the operation of this device will be described for the case where vibrations of the camshaft and tappet indicated by signal name B are detected.

カムシャフトとタペットのたたき合う衝撃振動は、正常
作動の場合、加速度計3および増幅器6から得られる電
気信号は第2図のようになり、カムシャフトとタペット
がたたきあう衝撃振動が一次減衰の形で現われる。一方
、ガタッキ、圧こん、摩耗などの劣化現象が起きると、
第3図のようなランダム波形となる。
In normal operation, the electrical signals obtained from the accelerometer 3 and amplifier 6 are as shown in Figure 2, and the shock vibration caused by the camshaft and tappet hitting each other is in the form of primary damping. appears in On the other hand, if deterioration phenomena such as looseness, dents, and wear occur,
The result is a random waveform as shown in FIG.

噴射ポンプの経時変化の影響を受けない基準電気信号A
は第4図のような波形となる。
Reference electrical signal A that is not affected by aging of the injection pump
has a waveform as shown in FIG.

前記信号B、AはそれぞれP波器7a、74で抽出され
信号整形器8に入力される。信号整形器8は、各ろ波器
7a、7b・・・7JLの順で各戸波器の出力信号をな
だらかにすると共に、整流して第5図ないし第7図に示
すような信号を得る。
The signals B and A are extracted by P wave generators 7a and 74, respectively, and input to the signal shaper 8. The signal shaper 8 smoothes and rectifies the output signal of each filter in the order of the filters 7a, 7b, . . . , 7JL to obtain signals as shown in FIGS. 5 to 7.

信号変換器9は、第5図に示したピーク電圧&。The signal converter 9 has a peak voltage & as shown in FIG.

B2・・・13s (または第6図に示したピーク電圧
B4 、 B2’・・・B、/) と、第7図に示した
ピーク電圧AI 、ん・・・Anとをディジタル値に変
換して演算装置10に入力する。制御装置11は、信号
整形器8、信号変換器9および演算装置10の動作や信
号授受が同期して各信号ごとに行えるように制御する。
Convert the peak voltages B2...13s (or the peak voltages B4, B2'...B, / shown in Fig. 6) and the peak voltages AI, h...An shown in Fig. 7 into digital values. and input it to the arithmetic unit 10. The control device 11 controls the signal shaper 8, the signal converter 9, and the arithmetic device 10 so that their operations and signal exchange can be performed synchronously for each signal.

演算装置は、次のようなピーク電圧値の処理を行う0 1、信号変換器9でη個のピーク電圧のサンプルを一時
格納する。
The arithmetic unit temporarily stores η peak voltage samples in the signal converter 9, which processes the peak voltage values as follows.

2、格納されたピーク電圧から電圧−サンプル数の頻度
分布をめる。第8図ないし第10図にそれぞれ第5図な
いし第7図のピーク電圧の頻度分布の例を示す。
2. Calculate the frequency distribution of voltage vs. number of samples from the stored peak voltage. FIGS. 8 to 10 show examples of frequency distributions of the peak voltages shown in FIGS. 5 to 7, respectively.

3、頻度分布の中からA、B信号の代表電圧をめる0 代表電圧は、頻度盆布の最大サンプル数の電圧を代表電
圧Af、Bffとする。また、頻度分布の最大電圧を1
00%とした場合、95チに相当する電圧を代表電圧A
JL、 BJ とする。BP は電圧の実効値成分、B
Jは電圧のピーク値成分であシ、例えば+1.414か
ら−1,414の間で正弦波状に変化する電圧の場合は
、B、9は1.0vXBJLは1.414X0.95V
とナル。
3. Find the representative voltages of the A and B signals from the frequency distribution 0 The representative voltages are the voltages of the maximum number of samples of the frequency distribution as the representative voltages Af and Bff. Also, the maximum voltage of the frequency distribution is 1
00%, the voltage corresponding to 95chi is the representative voltage A
JL, BJ. BP is the effective value component of the voltage, B
J is the peak value component of the voltage. For example, in the case of a voltage that changes sinusoidally between +1.414 and -1,414, B, 9 is 1.0vXBJL is 1.414X0.95V
said Naru.

4、代表電圧から次の演算をおこなう。4. Perform the following calculation from the representative voltage.

f ただし、Cは、電圧信号の中から無効信号(ノイズ)の
影響を少なくするための比例係数を示す。
f However, C indicates a proportionality coefficient for reducing the influence of invalid signals (noise) from the voltage signal.

5、あらかじめめておいだ、Rp、 R1’ と機械的
劣化との相関線図(第11図)より診断を実施したB信
号の劣化程度をめる。
5. Determine the degree of deterioration of the B signal for which diagnosis was performed from the correlation diagram (Fig. 11) between Rp, R1' and mechanical deterioration, which was determined in advance.

そして、機械的劣化内容により、電圧比率のRgまたは
RJ を区別する。
Then, the voltage ratio Rg or RJ is distinguished depending on the content of mechanical deterioration.

ガタッキ、圧こん、摩耗、へたり、折れの場合は、電圧
比率Rtによシ判断を行い、焼付、損傷の場合は、電圧
比率RA、によシ判断を行う。
In the case of rattling, denting, wear, deterioration, or bending, the determination is made based on the voltage ratio Rt, and in the case of seizure or damage, the determination is made based on the voltage ratio RA.

このように、BJ、131 をめてRy、 RL の判
断を行うのは次の理由による。
The reason why Ry and RL are judged based on BJ and 131 is as follows.

噴射ポンプが作動中に発生する振動電圧で、故障の徴候
が現われはじめると故障の内容によってBfが変化(増
加)したり、BJのみが変化したり両者共に変 たりす
る。
This is the oscillating voltage that occurs when the injection pump is in operation, and when signs of failure begin to appear, Bf may change (increase), BJ alone, or both may change depending on the nature of the failure.

通常の経時過程における性能低下(すなわち、前記ガク
ツキ、圧こん等による噴射ポンプ劣化)は、B2が先に
増加する0 また、噴射ポンプ内部々品の一部に異常(前記焼付等の
突発性の徴候)が発生した場合は、BJが急増加する。
Performance deterioration during the normal aging process (i.e., the deterioration of the injection pump due to the above-mentioned jerkiness, pressure condensation, etc.) occurs when B2 increases first.0 In addition, abnormalities in some of the internal parts of the injection pump (such as sudden seizures, etc.) If symptoms) occur, BJ will increase rapidly.

したがって、Bp、BJ の両者をめて限界電圧比率R
yS、EuSに至っているかいないかを調べるのである
Therefore, combining both Bp and BJ, the limit voltage ratio R
It is checked whether yS and EuS have been reached or not.

6、診断を実施したB信号の定量的な劣化程度の結果を
信号として表示装置]2に出力する。また、機械的劣化
がすすみ、機能を失う手前の限度電圧比率RJS、 R
’Sに診断を実施した結果が該当した場合も表示装置に
信号を出力する。
6. Output the results of the quantitative deterioration degree of the B signal subjected to the diagnosis to the display device 2 as a signal. In addition, the limit voltage ratio RJS, R before mechanical deterioration progresses and the function is lost.
A signal is also output to the display device when the result of the diagnosis is applicable to 'S.

同様な方法で、前記衣のC,D、E信号についても行い
、定量的な劣化と、機能限度の評価をおこない、故障診
断を行う。
A similar method is applied to the C, D, and E signals of the clothing to quantitatively evaluate deterioration and functional limits, and perform failure diagnosis.

演算装置10の出力を表示装置12が受けて、診断結果
を数値で表示したり記録紙に表記し、機能限度の場合、
ランプ点灯、警報音発φなどの表示を行う。
The display device 12 receives the output of the arithmetic device 10 and displays the diagnosis result numerically or on a recording paper, and in the case of a functional limit,
Indications such as lamp lighting and alarm sound φ are performed.

また、演算装置10による演算結果は、磁気媒体、紙テ
ープ女ど再現可能な記憶機能を持っている記録装置13
に格納される。
Further, the calculation results by the calculation device 10 are stored in a recording device 13 having a reproducible storage function such as a magnetic medium or a paper tape.
is stored in

次に、多気筒数のエンジンの場合、その数だけ噴射ポン
プのポンプ部があるが、どのポンプ部かを見極めるのは
、加速度計を取付ける位置によって判断できる。すなわ
ち、診断するポンプ部に最も近位置に加速度計を取付け
ることによシ、振動の伝達関数、機械インピーダンスが
異なるため判断できる。
Next, in the case of an engine with multiple cylinders, there are as many injection pump parts as there are, and which pump part is determined can be determined by the position where the accelerometer is installed. In other words, by installing an accelerometer closest to the pump part to be diagnosed, diagnosis can be made because the vibration transfer function and mechanical impedance are different.

以上述べたように、本発明によれば、噴射ポンプの各部
の劣化程度を前記電圧比として定量的に知ることができ
、経験のないものであっても、故障を容易にかつ短時間
に判断することができる。
As described above, according to the present invention, the degree of deterioration of each part of the injection pump can be quantitatively known as the voltage ratio, and even a person without experience can easily and quickly determine a failure. can do.

また、噴射ポンプのポンプ部分が複数ある場合、加速度
計を複数設けることによシ、どのポンプが故障している
かを容易に判断することができる。
Furthermore, if the injection pump has a plurality of pump parts, by providing a plurality of accelerometers, it is possible to easily determine which pump is malfunctioning.

また、本発明の故障診断装置を常時使用する(車両系で
あれば車載する)ようにすれば、故障の予防保全に役立
ち、かつ損失を極少にすることができる。
Further, if the failure diagnosis device of the present invention is constantly used (if it is a vehicle system, it is mounted on the vehicle), it is useful for preventive maintenance against failures and losses can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による故障診断装置の一実施例を示すブ
ロック図、第2図ないし第7図は該実施例の信号処理過
程における波形の一例を示す波形図、第8図ないし第1
1図は該実施例の演算装置の信号処理内容を説明する図
である。 1・・・噴射ポンプ、3・・・加速度計、7a〜7I−
・・・ろ波器、10・・・演算装置、12・・・表示装
置。 特許出願人 日立建機株式会社 代理人 弁理士 秋 本 正 実 代理人 弁理士 若 1)勝 − 第2図 第51 (Sec) ゛す“ンフ)しく欠 第10図 第11図 ろ1t−π皮
FIG. 1 is a block diagram showing an embodiment of the failure diagnosis device according to the present invention, FIGS. 2 to 7 are waveform diagrams showing examples of waveforms in the signal processing process of the embodiment, and FIGS.
FIG. 1 is a diagram illustrating the signal processing contents of the arithmetic device of this embodiment. 1... Injection pump, 3... Accelerometer, 7a-7I-
... Filter, 10 ... Arithmetic device, 12 ... Display device. Patent Application Hitachi Construction Machinery Co., Ltd. Agency Agency Lenth attorney Akimoto Affairs Agency Lenth attorney 1) Win -Fig. leather

Claims (1)

【特許請求の範囲】[Claims] ディーゼルエンジンの燃料噴射ポンプの機能を検査する
ことにより故障を診断する装置において、燃料噴射ポン
プのケースに接着固定されて振動を検出する嗜速度計と
、該加速度側から得られる電気信号から燃料噴射ポンプ
の各部構成部品により゛発生する振動に対応した個別電
気信号をそれぞれ抽出する複数個のF波器と、前記電気
信号から燃料噴射ポンプの経時変化による影響を受けな
い基準電気信号を抽出するろ波器と、これらの各P波器
の出力信号をサンプリングしてそれぞれ代表電圧値を決
定すると共に、前記個別電気信号の代表電圧値と前記基
準電気信号9代表電圧値との比をめる演算装置と、その
演算結果を表示する表示装置とからなることを特徴とす
る燃料噴射ポンプの故障診断装置。
A device for diagnosing failures by inspecting the function of a fuel injection pump in a diesel engine, which includes an gagometer that is adhesively fixed to the case of the fuel injection pump to detect vibrations, and an electric signal obtained from the acceleration side to detect fuel injection. A plurality of F-wave devices extract individual electrical signals corresponding to vibrations generated by each component of the pump, and a reference electrical signal that is not affected by aging of the fuel injection pump is extracted from the electrical signals. sampling the output signals of the P-wave device and each of these P-wave devices to determine a representative voltage value for each, and calculating a ratio between the representative voltage value of the individual electrical signal and the representative voltage value of the reference electrical signal 9; 1. A failure diagnosis device for a fuel injection pump, comprising a device and a display device that displays the calculation results.
JP13426383A 1983-07-25 1983-07-25 Trouble diagnoser for fuel injection pump Granted JPS6026164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13426383A JPS6026164A (en) 1983-07-25 1983-07-25 Trouble diagnoser for fuel injection pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13426383A JPS6026164A (en) 1983-07-25 1983-07-25 Trouble diagnoser for fuel injection pump

Publications (2)

Publication Number Publication Date
JPS6026164A true JPS6026164A (en) 1985-02-09
JPH0219301B2 JPH0219301B2 (en) 1990-05-01

Family

ID=15124206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13426383A Granted JPS6026164A (en) 1983-07-25 1983-07-25 Trouble diagnoser for fuel injection pump

Country Status (1)

Country Link
JP (1) JPS6026164A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501415A (en) * 1986-01-23 1989-05-18 ザ スタンレー ワークス Inclinometer and tilt sensor
WO1997012136A1 (en) * 1995-09-28 1997-04-03 Robert Bosch Gmbh Process and device for monitoring a fuel metering system
EP0785349A2 (en) * 1996-01-19 1997-07-23 C.R.F. Società Consortile per Azioni Method and unit for diagnosing malfunctioning of the injectors of an internal combustion engine high-pressure injection system
EP0838583A1 (en) * 1996-10-28 1998-04-29 Automobiles Peugeot Apparatus for monitoring the operations of an engine, in particular the engine of a vehicle
KR100413304B1 (en) * 1995-09-28 2004-05-06 로베르트 보쉬 게엠베하 Monitoring method and monitoring device of fuel supply device
JP2016142225A (en) * 2015-02-04 2016-08-08 株式会社デンソー Fuel supply pump control device
GB2568089A (en) * 2017-11-06 2019-05-08 Delphi Tech Ip Ltd Fuel pump with accelerometer
GB2572751A (en) * 2018-04-03 2019-10-16 Delphi Tech Ip Ltd Method of detecting engine valve timing by accelerometers on fuel injectors

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501415A (en) * 1986-01-23 1989-05-18 ザ スタンレー ワークス Inclinometer and tilt sensor
WO1997012136A1 (en) * 1995-09-28 1997-04-03 Robert Bosch Gmbh Process and device for monitoring a fuel metering system
US5945596A (en) * 1995-09-28 1999-08-31 Robert Bosch Gmbh Method and device for monitoring a fuel-metering system
KR100413304B1 (en) * 1995-09-28 2004-05-06 로베르트 보쉬 게엠베하 Monitoring method and monitoring device of fuel supply device
DE19548279B4 (en) * 1995-09-28 2006-12-14 Robert Bosch Gmbh Method and device for monitoring a fuel metering system
EP0785349A2 (en) * 1996-01-19 1997-07-23 C.R.F. Società Consortile per Azioni Method and unit for diagnosing malfunctioning of the injectors of an internal combustion engine high-pressure injection system
EP0785349A3 (en) * 1996-01-19 1997-12-17 C.R.F. Società Consortile per Azioni Method and unit for diagnosing malfunctioning of the injectors of an internal combustion engine high-pressure injection system
EP0838583A1 (en) * 1996-10-28 1998-04-29 Automobiles Peugeot Apparatus for monitoring the operations of an engine, in particular the engine of a vehicle
FR2755185A1 (en) * 1996-10-28 1998-04-30 Peugeot DEVICE FOR CONTROLLING THE OPERATION OF A DIESEL ENGINE IN PARTICULAR OF A MOTOR VEHICLE
JP2016142225A (en) * 2015-02-04 2016-08-08 株式会社デンソー Fuel supply pump control device
GB2568089A (en) * 2017-11-06 2019-05-08 Delphi Tech Ip Ltd Fuel pump with accelerometer
GB2572751A (en) * 2018-04-03 2019-10-16 Delphi Tech Ip Ltd Method of detecting engine valve timing by accelerometers on fuel injectors

Also Published As

Publication number Publication date
JPH0219301B2 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
CA1191953A (en) Frequency domain engine defect signal analysis
Delvecchio et al. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques
US6006155A (en) Real-time misfire detection for automobile engines with medium data rate crankshaft sampling
Randall State of the art in monitoring rotating machinery-part 1
CN102803918B (en) Preprocessing of the vibro-sensor signals for the diagnosis of engine
EP1586880B1 (en) Knock detecting apparatus and method for internal combustion engine
EP1288644A3 (en) Diagnostic method and system for turbine engines
US5804711A (en) Pattern recognition method and system for determining a misfire condition in a reciprocating engine
US6314802B1 (en) Optimal engine speed compensation method used in misfire detection
CN101782464B (en) Method and instrument thereof for acoustic diagnosis of automobile engine
JPH0362210B2 (en)
CN111693291B (en) Quantitative diagnosis method for combustion fault variable working condition of diesel engine based on vibration signal
JPH09113416A (en) Method for diagnosing damage of rolling bearing
JPS6026164A (en) Trouble diagnoser for fuel injection pump
Buzzoni et al. A CWT-based methodology for piston slap experimental characterization
WO1984000417A1 (en) Frequency domain engine defect signal analysis
Abadi et al. Single and multiple misfire detection in internal combustion engines using vold-kalman filter order-tracking
Freestone et al. The diagnosis of cylinder power faults in diesel engines by flywheel speed measurement
CN112304617B (en) Method and device for detecting valve mechanism of engine
CN108287074B (en) V-shaped machine combustion condition online monitoring and diagnosis method
EP4269775A1 (en) Method and device for detecting misfiring cylinder of reciprocating internal-combustion engine by using torsional vibration signal
Somashekar et al. Vibration signature analysis of ic engine
KR102053321B1 (en) An engine misfire diagnosis system and method using down sampling and Discrete Fourier Transform
US6305352B1 (en) Method for detecting an abnormal disturbance of an internal combustion engine torque
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults