JPS60261133A - Inspection device - Google Patents

Inspection device

Info

Publication number
JPS60261133A
JPS60261133A JP59116387A JP11638784A JPS60261133A JP S60261133 A JPS60261133 A JP S60261133A JP 59116387 A JP59116387 A JP 59116387A JP 11638784 A JP11638784 A JP 11638784A JP S60261133 A JPS60261133 A JP S60261133A
Authority
JP
Japan
Prior art keywords
pattern
image
lens
magnification
photomask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116387A
Other languages
Japanese (ja)
Inventor
Mineo Nomoto
峰生 野本
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59116387A priority Critical patent/JPS60261133A/en
Publication of JPS60261133A publication Critical patent/JPS60261133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable even inspection at a time when the size of a pattern to be inspected differs from a design data pattern by providing a means through which the magnification of image formation is varied while the optical path of an optical system image-forming a circuit forming pattern image to a sensor is kept constant. CONSTITUTION:A lens 19 is fitted to the upper section of an objective 9, and the pattern image of a photo-mask 1 image-formed by the objective 9 is image- formed to a pattern sensor 10. The lens 19 is driven by a motor 23 controlled by a magnification variable control section 25 connected to a microprocessor 15. Since data 12 in a magnetic tape and the error of magnification of the photo- mask 1 are determined previously on the manufacture of the photo-mask, the informations are inputted previously to the microprocessor 15. The magnification variable control section 25 drives the motor 23 on the basis of a command from the microprocessor 15, and moves the lens 19 up to a predetermined position.

Description

【発明の詳細な説明】 〔発明の利用°分野) 本発明は、半導体のホトマスクやウェハ、プ9ント基板
用ガラスマスクのパターン横置、外観検査等に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to horizontal pattern placement, visual inspection, etc. of semiconductor photomasks, wafers, and glass masks for printed substrates.

〔発明の背景〕[Background of the invention]

LSI外観検査装置を例にと9、従来技術を第1図に従
って説明する。第1図はiliI1m機構部を付記した
LSIホトマスク外観検食装置の斜視図である。
Taking an LSI visual inspection device as an example, the prior art will be explained with reference to FIG. FIG. 1 is a perspective view of an LSI photomask appearance inspection apparatus with an iliI1m mechanism added.

ステージペース2の上にXステージ3を介してXステー
ジ4が設置されてX、Yステージが構成され、Xステー
ジ4の上に被検査物体であるホトマスク1が載置される
。上記のXステージ3及びXステージ4はそれぞれ外部
駆動装置であるY軸部動部5及びX軸部動部6に連結さ
れていて、それぞれY方向及びX方向に移動せし−め得
る。
An X stage 4 is installed on the stage pace 2 via an X stage 3 to constitute an X, Y stage, and a photomask 1, which is an object to be inspected, is placed on the X stage 4. The X stage 3 and the X stage 4 are connected to a Y-axis moving section 5 and an X-axis moving section 6, which are external drive devices, respectively, and can be moved in the Y direction and the X direction, respectively.

上記のXステージ4、Xステージ6の移動量はX軸測長
器s、Y軸測長器7によシそれぞれ測定される。一方、
ホトマスク1のパターンを自動的に検出する手段が次の
ように構成される。
The amount of movement of the X stage 4 and the X stage 6 is measured by the X-axis length measuring device s and the Y-axis length measuring device 7, respectively. on the other hand,
The means for automatically detecting the pattern of the photomask 1 is constructed as follows.

ホトマスク1の上方に対物レンズ9が設けられ、その結
像面にパターンセンサ10が設置されている。このパタ
ーンセンf10の出力はバター7信号2値化回路11を
介して信号比較回路14に入力される。この信号比較回
路14には、ホトマスク10回路パターン設計データを
記憶せしめた磁気テープ12から読み出した信号も、パ
ターン信号2値化回路16を介して入力される。上記の
磁気テープ12の読み出しはマイクロプロセッサ150
指令によって行なわれ、信号比較回路14における比較
結果は上記のマイクロプロセッサ15に入力される。
An objective lens 9 is provided above the photomask 1, and a pattern sensor 10 is provided on its imaging plane. The output of this pattern sensor f10 is input to the signal comparison circuit 14 via the butter 7 signal binarization circuit 11. A signal read from the magnetic tape 12 on which the photomask 10 circuit pattern design data is stored is also input to the signal comparison circuit 14 via the pattern signal binarization circuit 16. The above magnetic tape 12 is read by the microprocessor 150.
The comparison result in the signal comparison circuit 14 is input to the microprocessor 15 mentioned above.

Y軸測長器7とX軸測長器8は座標測長回路16に接続
されていて、座標副長回路16はマイクロブロセ、す1
5に接続されている。マイクロプロセ、す15はXY駆
#J制御部17にも接続されておfi、XY駆動制仰部
17を通して、X軸部動部6.Y軸部動部5を制御でき
る。
The Y-axis length measuring device 7 and the X-axis length measuring device 8 are connected to a coordinate length measuring circuit 16, and the coordinate sub-length measuring circuit 16 is connected to a micro brochure.
5. The microprocessor 15 is also connected to the XY drive #J control section 17, and through the XY drive control section 17, the X-axis movement section 6. The Y-axis moving section 5 can be controlled.

上記のホトマスク検査装置では、磁気テープ12には、
ホトマスク作成時の設計データが画像信号として記憶さ
れておシ、パターン信号2値化回路15で論理レベAy
’Q″t、g1uのディジタル画像信号となる。又、ホ
トマスク1上のパターンは、対物レンズ9上のパターン
センf10によって画像信号に変換され、パターン信号
21直化回路11で論理レベルg011.t1″のディ
ジタル画像信号となる。
In the photomask inspection apparatus described above, the magnetic tape 12 includes:
The design data at the time of photomask creation is stored as an image signal, and the pattern signal binarization circuit 15 converts the logic level Ay.
The pattern on the photomask 1 is converted into an image signal by the pattern sensor f10 on the objective lens 9, and the logic level g011.t1 is converted into the pattern signal 21 by the pattern signal converting circuit 11. '' digital image signal.

磁気テープ12から読み出された設計データのデジタル
画像信号と、ホトマスク1から検出されたグジタ)V画
像信号とが信号比較回@ 14で比較された結果、相異
があればマイクログロセッヅーtsK信号が送られる。
The digital image signal of the design data read from the magnetic tape 12 and the image signal detected from the photomask 1 are compared in the signal comparison step @ 14, and if there is a difference, the microgrosses A signal is sent.

上記の信号を受けたマイクロプロセyf15はその相異
がホトマスク10回路パターン欠陥によるものであるか
否かを判定し、回路パターン欠陥であればその旨をプリ
ンタ18に伝える。この検査はホトマスク1を対物レン
ズ9に対して往復矢印へのように動かし、順次に全面を
走査して行なう。
Upon receiving the above signal, the microprocessor yf15 determines whether or not the difference is due to a defect in the circuit pattern of the photomask 10, and if so, notifies the printer 18 of this fact. This inspection is carried out by moving the photomask 1 with respect to the objective lens 9 in the direction of the reciprocating arrow and sequentially scanning the entire surface.

マイクロプロセ、f15は上記矢印Aのようにホトマス
ク1を移動させるべく、XY駆動制御s17を介して、
Y#l駆動部5.X軸部動部6を制御する。座標測長回
路16はホトマスク1の検査位置を測定しておシ、欠陥
が発見されたホトマスクの座標はマイクロプロセラ91
5を通してプリンタ18に出力される。又座標測長回路
16はホトマスク1の検査開始および終了座標な正確に
測定してマイクロプロセ、す15に出力し、マイクロプ
ロセラf15はこれに基ずいて磁気テープ12の駆動を
制御する。この装置はT、 8 Iパターンの微細化に
ともない、1μm以下の欠陥をも検出する必要が生じて
いる。このため光学系には高い解像力のレンズ、例えば
NAO19,焦点深度α3μmの高解度レンズを用いた
シ、検査ステージも走行精度はヨーイング誤差1μm以
下の高nt度なものを用いている。上記のような手本パ
ターンと比較する検査装置は、確実な検査が行なえる反
面、パターン寸法の微細化にともない、被検査マスクが
設計データに比べ、わずかに、例えば0.2μm程度細
くなったシ、太くなった凹凸があっても欠陥と判定する
問題も生じ始めている。°とくに問題となっている欠点
について説明する。
The microprocessor f15 moves the photomask 1 in the direction of arrow A through the XY drive control s17.
Y#l drive unit5. Controls the X-axis moving section 6. The coordinate measurement circuit 16 measures the inspection position of the photomask 1, and the coordinates of the photomask where a defect is found are determined by the microprocessor 91.
5 and output to the printer 18. Further, the coordinate measuring circuit 16 accurately measures the inspection start and end coordinates of the photomask 1 and outputs them to the microprocessor f15, and the microprocessor f15 controls the drive of the magnetic tape 12 based on these measurements. With the miniaturization of T and 8 I patterns, it is now necessary for this device to detect defects of 1 μm or less. For this reason, the optical system uses a high-resolution lens, such as NAO19, and a high-resolution lens with a depth of focus α3 μm, and the inspection stage also uses a high nt degree with a yaw error of 1 μm or less. Although the inspection equipment used to compare the sample pattern described above can perform reliable inspection, due to the miniaturization of pattern dimensions, the mask to be inspected has become slightly thinner, for example, by about 0.2 μm, compared to the design data. However, problems are beginning to arise in which even thicker unevenness is judged as a defect. °Explain particularly problematic shortcomings.

ホトマスク製作方法の最も一般的な方法は、設計データ
にもとすいて作成されたt2プパターンの10倍の大き
さをもつ原版(レテク/l/)を作シこれをステップ・
アンド・9ピートカメラ(ホト9ビータンを用いて、1
/1o縮少を繰シ返し感光を行なうことにより、ホトマ
スクを得ている。最近のLSIは線巾も微細となジオ小
線巾も2μm以下となってきている。この微細な線巾を
マスクからクエへに転写する際、露光条件やレジスト膜
の厚さや、均一性、エツチング等の条件によシ、2μm
程度のマスクの線巾は、そのまま転写されないことがあ
る。(例えは2μm(1) 線巾力、2.2μm+ts
μmに転写される)これに対処するため最近ではホトマ
スクの寸法をあらかじめコントロールして、ウニへ上に
正規の線巾(2μm)を得るようにしている。すなわち
ホトマスク製作時の、ホト9ピータで、VIQm小繰シ
返し感光を行なう際の感光tをコントロールして、あら
かじめホトマスクの線中寸法を10〜20%程度太くし
たり細くしたりしている。
The most common photomask manufacturing method is to create an original plate (retek/l/) that is 10 times the size of the t2 pattern created based on the design data, and then step
And 9-peat camera (using photo 9 beatan, 1
A photomask is obtained by repeatedly performing exposure with /1o reduction. In recent LSIs, the line width and minute geowire width have become less than 2 μm. When transferring this fine line width from the mask to the square, the thickness of 2 μm depends on the exposure conditions, resist film thickness, uniformity, etching, etc.
The line width of the mask may not be transferred as is. (For example, 2 μm (1) Line width force, 2.2 μm + ts
To deal with this, recently the dimensions of the photomask have been controlled in advance to obtain the regular line width (2 μm) on the surface of the sea urchin. That is, when manufacturing a photomask, the photomask is made thicker or thinner by about 10 to 20% in advance by controlling the exposure t when VIQm small repeated exposure is performed at photo9 Peter.

上記のような設計データとして作成されたパターン寸法
に比べ、細くなったシ、太くなったシしているマスタパ
ターンを正規の−tgのデータを発生ずる設計データと
比較すると、正fなバターンを欠陥と判定し易くなるの
は当然ある。
Compared to the pattern dimensions created as the design data above, if we compare the master pattern, which has become thinner and thicker, with the design data that generates normal -tg data, we can see that it is a positive f pattern. Naturally, it is easier to judge it as a defect.

最近では上記の理由からこの種の手本パターンと比較す
る検査装置の欠陥判定不良、すなわち誤判定が増大し、
検査装置の性能が著しく低下する欠点が生じている。
Recently, due to the above-mentioned reasons, the number of defect judgments by inspection equipment that compares with this type of model pattern, that is, the number of incorrect judgments, has increased.
A disadvantage has arisen that the performance of the inspection device is significantly reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ホトマスク等のパターン寸法が設計デ
ータの1法に比べ、拡大又は縮小していても、簡単な光
学系の調整で、パターン寸法を任意の寸法に変換して判
定61 heにした検査装置を提供するにある。
The purpose of the present invention is to convert the pattern size to an arbitrary size with a simple adjustment of the optical system, even if the pattern size of a photomask or the like is enlarged or reduced compared to one method of design data. The goal is to provide inspection equipment that has been tested.

〔発明の概要〕[Summary of the invention]

、本発明は上記した目的を達成するために、ホトマスク
等のパターン像を光電変換するセンチに結像す乞、光学
系の増巾の光路に、光軸方向に移動可能な手段を有した
レンズを設け、しかも−上記光学系の光路長を一定に保
つように′したものである。
In order to achieve the above-mentioned object, the present invention provides a lens having means movable in the optical axis direction in the optical path of the optical system for forming a pattern image of a photomask or the like into a centimeter for photoelectric conversion. Furthermore, the optical path length of the optical system is kept constant.

〔発明の実施例〕[Embodiments of the invention]

第2−は本発明の一実施例である。第2図が第1図に比
して違うところを説明する。対物レンズ9の上方にレン
ズ19を設ケ、対物レンズ9によシ結像したホトマスク
1のパターン像をパターンセンサに結像する。レンズ1
9は、ネジ20に係合したナラ) 21 K固定してあ
り、ネジ20の一端にはギヤ(1)22が固定しである
。ギヤ(1ン22はモータ23のギヤ(2)24と み
合っている。
The second example is an embodiment of the present invention. The differences between FIG. 2 and FIG. 1 will be explained. A lens 19 is provided above the objective lens 9, and the pattern image of the photomask 1 formed by the objective lens 9 is imaged on a pattern sensor. lens 1
Numeral 9 is fixed to a nut (21K) engaged with a screw 20, and a gear (1) 22 is fixed to one end of the screw 20. The gear (1) 22 meshes with the gear (2) 24 of the motor 23.

モータ26は倍率可変制御部25と接続されていて、倍
率り変制御部25はマイクロプロセ、f15と接続され
ている。その曲の構成と検萱装置の動作は第1図に示し
たものと同じである。磁気テ、−−プのデータ12とホ
トマスク1の倍率#4差は、ホトマスク裏作時にあらか
じめ分かっているため、この情報をマイクロブロセッ4
f15に入力しておく。倍率可変制御25はマイクロプ
ロセ、f15の指令にもとづきモータ25を駆動して、
ギヤ(2)24.ギヤ(1)22を介してナツト21に
固定しであるレンズ19を所定の位置まで移動する。
The motor 26 is connected to a variable magnification control section 25, and the variable magnification control section 25 is connected to a microprocessor f15. The structure of the song and the operation of the detector are the same as those shown in FIG. The difference between the data 12 of the magnetic tape and the magnification #4 of the photomask 1 is known in advance at the time of photomask production, so this information is transferred to the microblock 4.
Enter it in f15. The variable magnification control 25 drives the motor 25 based on the command from the microprocessor f15.
Gear (2)24. The lens 19, which is fixed to the nut 21 via the gear (1) 22, is moved to a predetermined position.

第3図は倍率合わせの説明図である。光路の概略を説明
する。ホトマスク1のパターン26を対物レンズ9で投
影し100倍の第1像を作る。ここで対物レンズ9は1
μm以下の欠陥を検出するため、03μmまで解像可げ
ヒなN、A O,9、焦点距離2、1 mの高解慮のも
のを用いた。さらに第1像の光軸方向の後方にレンズ1
9を設はパターンセン、floに結像する。ごのときの
基本結像倍率は1* 1 (’t ”=”+ )とする
。すなわちパターンセンチ10上には、マスクパターン
26の100倍の像が投影すれることになる。ここで用
いた対物レンズ9の焦点深度は±0.6.αm2図中Δ
m = 0.3 、αmである。焦点距離と倍率よシα
=2.12131s、 A=212.1鵬である。ここ
で6 +0.3μmのと18は4−3 mとな9、又α
−0,3μmのときbはJ+3鵡となる。
FIG. 3 is an explanatory diagram of magnification adjustment. An outline of the optical path will be explained. The pattern 26 of the photomask 1 is projected by the objective lens 9 to create a 100x first image. Here, the objective lens 9 is 1
In order to detect defects of less than .mu.m, we used a high-resolution lens with a poor resolution of up to 0.3 .mu.m, N, AO, 9, and a focal length of 2.1 m. Further, a lens 1 is placed behind the first image in the optical axis direction.
9 is set as a pattern sensor and imaged on flo. The basic imaging magnification in this case is 1*1 ('t''=''+). That is, an image 100 times larger than the mask pattern 26 is projected onto the pattern centimeter 10. The depth of focus of the objective lens 9 used here was ±0.6. Δ in αm2 diagram
m = 0.3, αm. Focal length and magnification α
=2.12131s, A=212.1peng. Here, 6 + 0.3 μm and 18 are 4-3 m, and α
When the value is -0.3 μm, b becomes J+3 parrot.

すなわち第1像面での焦点深度Iは、+54となり、こ
の範囲内では鮮明な像か得られる。上記第1像をレンズ
19によりパターンセンf面tl−2像として結像する
が、このレンズ19の焦点距離を100鶏とするとa 
T =: 41のとき’+ ”= 2001a 。
That is, the depth of focus I on the first image plane is +54, and a clear image can be obtained within this range. The first image is formed by the lens 19 as a pattern sensor f-plane tl-2 image.If the focal length of this lens 19 is 100 mm, then a
When T =: 41, '+'' = 2001a.

鞘=200鵡となる。第4図は、倍率と光路長の関係を
示した図でめる。横軸が倍率4′/eL1.縦軸が光路
長(cL+−Ml)を示す。この図から倍率が変ると光
路長が長くなることがわかる。しかし第6図のtX+4
1にlを加えた光路長”++4++JL−+ =403
繍の範囲では、レンズ19を光軸方向に前後に移動しで
も、第2稼の解1.4!度を悪くすることなく、約0.
8陪〜1.2倍の倍率を可変にすることが14−能であ
る。すなわち第1像での焦点深度の範囲(本例の場合3
秘)内でレンズを移動しても第2像には鮮明な像が投影
される。実際には第2塚には、レンズ19のN、Aも関
与するため、第2塚而での原点深度はさらに深くなシ、
レンズ19を10a程閲移動しても全体光路長りを一定
に保ち鮮明なパターンセンを優ることができる。
Sheath = 200 parrots. FIG. 4 is a diagram showing the relationship between magnification and optical path length. The horizontal axis is the magnification 4'/eL1. The vertical axis indicates the optical path length (cL+-Ml). It can be seen from this figure that the optical path length increases as the magnification changes. However, tX+4 in Figure 6
Optical path length of 1 plus l"++4++JL-+ =403
In the embroidery range, even if the lens 19 is moved back and forth in the optical axis direction, the second solution is 1.4! Approximately 0.
It is possible to vary the magnification from 8 times to 1.2 times. In other words, the range of the depth of focus in the first image (in this example, 3
Even if the lens is moved within the camera, a clear image will be projected on the second image. In reality, since N and A of the lens 19 are also involved in the second mound, the origin depth at the second mound is even deeper.
Even if the lens 19 is moved by about 10 a, the overall optical path length can be kept constant and a clear pattern can be obtained.

すなわちレンズ19の移動によシ0.7〜1.6倍程匿
の培率可変は0J能である。
That is, by moving the lens 19, the magnification factor can be varied by a factor of 0.7 to 1.6 times, which is 0J.

第2図は本発明の一実施例であるが、例えvfモータ2
3にはステップ角7.2°、ギヤ(1)22.ギヤ12
)24のギヤ比を2:1.ネジ20ビ、チを1錫とする
と、分解目ニ10μmで移動可能となり倍率合わせもt
ooi倍の積度で合せることが出来る3、シかも欠陥検
査の光路長は一定に保ちながら倍率可変がでよるため倍
率合わせ機構が簡単で小型化で、き装置が小型化する利
点もある。
FIG. 2 shows an embodiment of the present invention.
3 has a step angle of 7.2° and gear (1) 22. gear 12
)24 gear ratio to 2:1. If the screw is 20 mm and the screw is 1 tin, the disassembly distance can be moved by 10 μm, and the magnification can be adjusted.
Since the magnification can be varied while keeping the optical path length constant for defect inspection, the magnification adjustment mechanism is simple and compact, which also has the advantage of making the inspection equipment more compact.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の検査装置によれ・は、設計
データパターンに比べ、被検査パターンが縮小、あるい
は拡大していても、正常なパターンを欠陥とすることな
く検査でき、半導体製品の歩留シ、生産性を大巾に向上
出来る。
As described above, the inspection apparatus of the present invention has the advantage that even if the pattern to be inspected is reduced or enlarged compared to the design data pattern, it can be inspected without treating a normal pattern as a defect. Yield and productivity can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従米のLSI外叡検食装置の説明図、第2図は
不5?3明の一実施例のLSI外観検査装置の説明図、
第3図は本発明の光路説明図、第4図は、倍率と光路長
の関係巌図でめる。 1・・・ホトマスク、9・・・対物レンズ5.10・・
・パターンセンチ、19・・・レンズ、20・・・ネジ
、21・・・ナツト、22・・・ギヤ(1)、26・・
・モータ、24・・・ギヤ代理人弁理士 高 橋 明 
夫 第 j 図 第 2 図 第 3 図
Fig. 1 is an explanatory diagram of an LSI Gaei inspection device manufactured by Jubei, and Fig. 2 is an explanatory diagram of an LSI visual inspection device of an embodiment of Fu5?3 Mei.
FIG. 3 is an explanatory diagram of the optical path of the present invention, and FIG. 4 is a diagram illustrating the relationship between magnification and optical path length. 1... Photomask, 9... Objective lens 5.10...
・Pattern cm, 19...lens, 20...screw, 21...nut, 22...gear (1), 26...
・Motor, 24...Gear patent attorney Akira Takahashi
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、 半導体用ホトマスクやクエハ、プ9/ト基板の回
路形成パターンを、光学的手段を用いてセンサに結像し
て光電変換し、他の基準パターンと比較し、上記回路形
成パターンを検査する装置において、上記回路形成パタ
ーン像をセンサに結像する光学系の結像光路長を一定に
保ちながら、結庫倍率を可変にする手段を設けたことを
特徴とする検査装置。
1. The circuit formation pattern of a semiconductor photomask, wafer, or substrate is imaged on a sensor using optical means, photoelectrically converted, and compared with other reference patterns to inspect the circuit formation pattern. An inspection device characterized in that the device is provided with means for making a storage magnification variable while keeping constant an imaging optical path length of an optical system for forming an image of the circuit formation pattern on a sensor.
JP59116387A 1984-06-08 1984-06-08 Inspection device Pending JPS60261133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116387A JPS60261133A (en) 1984-06-08 1984-06-08 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116387A JPS60261133A (en) 1984-06-08 1984-06-08 Inspection device

Publications (1)

Publication Number Publication Date
JPS60261133A true JPS60261133A (en) 1985-12-24

Family

ID=14685759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116387A Pending JPS60261133A (en) 1984-06-08 1984-06-08 Inspection device

Country Status (1)

Country Link
JP (1) JPS60261133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093252A (en) * 2002-08-30 2004-03-25 Hitachi Ltd Defect inspection device and defect inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093252A (en) * 2002-08-30 2004-03-25 Hitachi Ltd Defect inspection device and defect inspection method

Similar Documents

Publication Publication Date Title
JP6499898B2 (en) Inspection method, template substrate and focus offset method
US8513625B2 (en) Track-based metrology method and apparatus
US6392229B1 (en) AFM-based lithography metrology tool
US6975384B2 (en) Exposure apparatus and method
US6654096B1 (en) Exposure apparatus, and device manufacturing method
JP2003519923A (en) A method for measuring consistency using the lattice structure of latent images
KR20180004007A (en) Focusing device, focusing method, and pattern inspection method
US5666205A (en) Measuring method and exposure apparatus
JPS62122215A (en) Projection-exposure equipment
US7158210B2 (en) Projection exposure apparatus
JPS60261133A (en) Inspection device
JP2000193596A (en) Inspecting method
JPH034895B2 (en)
US7106419B2 (en) Exposure method and apparatus
JPH03211812A (en) Exposure aligner
JP4304413B2 (en) Reticle level measurement method for semiconductor exposure apparatus
JPS6243505A (en) Method and instrument for detecting defect of pattern
JP2662236B2 (en) Projection exposure method and apparatus
JPS5858740A (en) Measuring device for warp of semiconductor wafer
JP2005303043A (en) Position detection method and device, alignment method and device, exposure method and device, and position detection program
JPH05251303A (en) Projection exposing device
KR20210083168A (en) Exposure apparatus and method of manufacturing article
JPH0145735B2 (en)
KR20230150388A (en) Data filters for scanning metrology
JPS5830714A (en) Auto-focusing device