JPS60260906A - Method for connecting polarization plane preserving optical fiber - Google Patents

Method for connecting polarization plane preserving optical fiber

Info

Publication number
JPS60260906A
JPS60260906A JP59117723A JP11772384A JPS60260906A JP S60260906 A JPS60260906 A JP S60260906A JP 59117723 A JP59117723 A JP 59117723A JP 11772384 A JP11772384 A JP 11772384A JP S60260906 A JPS60260906 A JP S60260906A
Authority
JP
Japan
Prior art keywords
polarization
optical fiber
maintaining optical
optical fibers
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59117723A
Other languages
Japanese (ja)
Other versions
JPH0470605B2 (en
Inventor
Kanze Tanigawa
谷川 侃是
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59117723A priority Critical patent/JPS60260906A/en
Publication of JPS60260906A publication Critical patent/JPS60260906A/en
Publication of JPH0470605B2 publication Critical patent/JPH0470605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2555Alignment or adjustment devices for aligning prior to splicing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Abstract

PURPOSE:To easily connect polarization plane preserving optical fibers with each other in the open air with high accuracy, by making a circularly polarized wave incident from one end of one of the optical fiber and determining the direction, in which the maximum or minimum refractive index is obtained, from the scattered light radiated from the side of the optical fiber, and then, connecting the two optical fibers by making the direction of each fiber coincident with each other. CONSTITUTION:A clockwise circularly polarized wave 2 is made incident on a polarization plane preserving optical fiber 1 and intensity of scattered light radiated from the side of the optical fiber 1 in the directions normal to the optical axis is measured. When, for example, the intensity of the scattered light radiated from the direction C at the position at a distance L from the incident point is zero, the polarized wave in the fiber 1 is a linearly polarized wave and the direction of the wave surface is C. The direction of the maximum refractive index of the fiber 1 becomes the one which is turned counterclockwise by pi/4 radian from the direction C around the optical axis, when the incident point is viewed from the advancing direction of the light. Two fibers 1 and 1' are put together, with the direction of each fiber being made coincident with each other, and fixed to a table 3 with a keeping jig 4, and then, the end faces of both fibers 1 and 1' are heated and connected with each other by a discharge electrode 9.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光通信、光センサ等で用いられる偏波面保存
光ファイバの接続方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for connecting polarization-maintaining optical fibers used in optical communications, optical sensors, and the like.

(従来技術) 近年、光通信の分野では、偏波面を保存したまま光音伝
送する、偏波面保存光ファイバが、ファイバジャイロや
光センサ等に使用される将来性の高い光伝送路として注
目されている。
(Prior art) In recent years, in the field of optical communications, polarization-maintaining optical fibers, which transmit light and sound while preserving the polarization plane, have attracted attention as a promising optical transmission path for use in fiber gyros, optical sensors, etc. ing.

このような偏波面保存光ファイバは、光軸に垂直なコア
の断面内の互に直交する二方向に偏波面をもつ二つの伝
搬光の伝搬定数が異なることによって、伝搬光の基本モ
ードの縮退が解け、偏波面の保存性が生じる。コアの断
面内で直交する二方向における光の伝搬定数が異なるよ
うにするには。
In such a polarization-maintaining optical fiber, the fundamental mode of the propagating light is degenerated because the propagation constants of the two propagating lights having polarization planes in two mutually orthogonal directions in the cross section of the core perpendicular to the optical axis are different. is solved, and the polarization plane becomes conserved. To make the propagation constants of light in two orthogonal directions different within the cross section of the core.

コアの断面全楕円にしたフ、コアに内部応力を加えたり
して、コアの断面内で直交する二方向における屈折率が
異なるようにすれば良い。
If the core has an entirely elliptical cross section, internal stress may be applied to the core so that the refractive index in two orthogonal directions within the cross section of the core differs.

偏波面保存光ファイバは、当初は主として前述のように
ファイバジャイロや光センサ等に使用されてきたが、最
近、偏波面保存性が良く、かつ低損失な偏波面保存光フ
ァイバが開発されたことによシ、長距離光ヘテロダイン
通信への応用が考えられるようになってきた。このよう
な長距離通信に使用される長尺の偏波面保存光ファイバ
は、光軸に垂直なコアの断面内で直交する二方向におけ
る異方性屈折率の内、最大屈折率の方向又は最小屈折率
の方向が、対向する偏波面保存光ファイバについて一致
するように接続することによって得られる。接続精度は
、二本の偏波面保存光ファイバの、前述した最大屈折率
の方向(以下、主軸という。)の角度ズレによって表わ
されるが、偏波面保存光ファイバの接続精度としては、
前述の角度ズレを2度以内にする必要があると言われて
いる。
Polarization-maintaining optical fibers were initially used mainly for fiber gyros and optical sensors as mentioned above, but recently polarization-maintaining optical fibers with good polarization preservation properties and low loss have been developed. However, applications to long-distance optical heterodyne communications are now being considered. Long polarization-maintaining optical fibers used for such long-distance communications have an anisotropic refractive index in two orthogonal directions in the cross section of the core perpendicular to the optical axis, and the direction of the maximum refractive index or the minimum This is obtained by connecting opposing polarization-maintaining optical fibers so that the directions of their refractive indices match. The splicing accuracy is expressed by the angular deviation in the direction of the maximum refractive index (hereinafter referred to as the principal axis) of the two polarization-maintaining optical fibers, but the splicing accuracy of the polarization-maintaining optical fibers is
It is said that it is necessary to keep the above-mentioned angular deviation within 2 degrees.

従来、採用されてきた偏波面保存光ファイバの接続方法
は、接続しようとする偏波面保存光ファイバの端面にお
ける楕円形のコアや、コアに異方性歪を加える応力印加
層上レンズ等によフ拡大して、楕円の長軸方向をめ、そ
の後融着接続する方法(以下、拡大法という。)や、第
一の偏波面保存光ファイバの光軸方向に直線偏波を入射
し。
Conventionally, the method of connecting polarization-maintaining optical fibers has been to use an elliptical core at the end face of the polarization-maintaining optical fiber to be connected, or a lens on a stress-applying layer that applies anisotropic strain to the core. There is a method of enlarging the ellipse, aligning the major axis of the ellipse, and then fusion splicing (hereinafter referred to as the enlarging method), or inputting a linearly polarized wave in the optical axis direction of the first polarization-maintaining optical fiber.

光ファイバ金光軸の同役に回転しながら出射光も直線偏
波となるように調整し、さらに前記第一の偏波面保存光
ファイバの出射光を、第二の偏波面保存光ファイバの光
軸方向に入射し、前記第二の偏波面保存光ファイバを光
軸の回りに回転しなから、前記第二の偏波面保存光ファ
イバの出射光も直線偏波となるように調整し、その後融
着接続する方法(以下、主軸調整法という。)等が採用
されてきた。 1:1′ しかし、従来の方法において、拡大法では、光ファイバ
端面ftLンズ等で拡大して楕円の長軸方向を決めるだ
けであるから、操作は簡単であるが。
While rotating in the same direction as the optical axis of the optical fiber, the output light is also adjusted to be linearly polarized, and the output light of the first polarization-maintaining optical fiber is aligned with the optical axis of the second polarization-maintaining optical fiber. The second polarization-maintaining optical fiber is rotated around the optical axis, and the output light of the second polarization-maintaining optical fiber is adjusted so that it also becomes linearly polarized. A method of attaching and connecting (hereinafter referred to as the spindle adjustment method) has been adopted. 1:1' However, in the conventional enlarging method, the operation is simple because the only thing that is required is to enlarge the optical fiber end surface using an ftL lens or the like to determine the major axis direction of the ellipse.

接続精度は低く、前述の様に二本の偏波面保存光ファイ
バの主軸のズレ會2度以内にすることは困難であった。
The connection accuracy is low, and as mentioned above, it is difficult to keep the misalignment of the principal axes of the two polarization-maintaining optical fibers within 2 degrees.

一方、主軸調整法では、前述のように第二の偏波面保存
光ファイバの出射光が@翻偏光になるように調整するの
で、接続精度Iは高かったが、操作が繁雑になったり、
装置が複雑になったりする。という欠点があり、特にマ
ンホール同等、屋外で接続する際には1通常は光ファイ
バの入射端と出射端とが遠く離れているので、主軸調整
法のように、光ファイバの入射端を回転しながら出射光
が直線偏追となるように調整することは、非常に困難で
あった。
On the other hand, in the main axis adjustment method, as described above, the output light of the second polarization-maintaining optical fiber is adjusted so that it becomes @unpolarized light, so the connection accuracy I was high, but the operation became complicated,
The device may become complicated. Especially when connecting outdoors, such as through a manhole, the input end and output end of the optical fiber are usually far apart, so it is necessary to rotate the input end of the optical fiber as in the main axis adjustment method. However, it was extremely difficult to adjust the emitted light so that it was linearly polarized.

(発明の目的) 本発明の目的は、前述の欠点を除去し、接続精度が高く
、かつ屋外でも簡単に操作できる、偏波面保存光ファイ
バの接続方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a method for connecting polarization-maintaining optical fibers that eliminates the above-mentioned drawbacks, has high connection accuracy, and can be easily operated outdoors.

(発明の構成) 本発明の偏波面保存光ファイバの接続方法は。(Structure of the invention) A method for connecting polarization-maintaining optical fibers according to the present invention is as follows.

コアとなるガラス層に異方性歪を加えかつコアと同一中
心ケもつガラス層全含み、前記コアとなるガラス層と同
一中心の円形外径を有する二本の偏波面保存光ファイバ
金融看接続する偏波面保存光ファイバの接続方法におい
て、前記二本の偏波面保存光ファイバの端面から円偏波
を入射する工程と、前記偏波面保存光ファイバの側面か
ら散乱光強度を観測する工程と、前記散乱光強度が最大
になる方向又は零になる方向を観測する工程と、前記散
乱光強度が最大になる方向又は零になる方向から前記偏
波面保存光ファイバのコア断面内において前記偏波面保
存光ファイバの光軸に垂直な方向の@線偏波に対する屈
折率が最大又は最小になる方向全求める工程と、前記二
本の偏波面保存光ファイバの前記屈折率の最大又は最小
の方向を一致させる工程と、その後前記二本の偏波面保
存光ファイバの端面間隔て縮めながら加熱して融着接続
する工程と葡含むことから構成される。
A financial connection of two polarization-maintaining optical fibers having a circular outer diameter with the same center as the core glass layer, with an anisotropic strain added to the core glass layer and having the same center as the core. In the method for connecting polarization-maintaining optical fibers, the steps include: inputting circularly polarized waves from end faces of the two polarization-maintaining optical fibers; and observing scattered light intensity from a side surface of the polarization-maintaining optical fibers; observing the direction in which the intensity of the scattered light becomes maximum or zero; and the step of observing the direction in which the intensity of the scattered light becomes maximum or the direction in which the intensity of the scattered light becomes zero within the core cross section of the polarization maintaining optical fiber. A step of determining all the directions in which the refractive index for @-line polarized waves in the direction perpendicular to the optical axis of the optical fiber is maximum or minimum, and the direction of the maximum or minimum refractive index of the two polarization-maintaining optical fibers is matched. and then heating and fusion splicing the two polarization-maintaining optical fibers while reducing the distance between their end faces.

(発明の原理1作用) 本発明による偏波面保存光ファイバの接続方法の中で、
特に、偏波面保存光ファイバの一端から円偏波金入射し
、そのとき偏波面保存光ファイバの側面から放射する散
乱光によって、偏波面保存光ファイバの最大屈折率の方
向又は最小屈折率の方向全決定する方法について説明す
る。第1図(a)。
(Principle of the Invention 1 Effect) In the method for connecting polarization maintaining optical fibers according to the present invention,
In particular, circularly polarized light enters from one end of a polarization-maintaining optical fiber, and the scattered light emitted from the side surface of the polarization-maintaining optical fiber determines the direction of the maximum refractive index or the minimum refractive index of the polarization-maintaining optical fiber. We will explain how to make all decisions. Figure 1(a).

(b)はその方法全説明する原理図である。(b) is a principle diagram illustrating the entire method.

第1図(a)において、1は偏波面保存光ファイバで、
2は偏波面保存光ファイバーに入射する円偏波で、この
円偏波1は、右旋円偏波であるとする。
In FIG. 1(a), 1 is a polarization-maintaining optical fiber,
It is assumed that 2 is a circularly polarized wave incident on a polarization-maintaining optical fiber, and that this circularly polarized wave 1 is a right-handed circularly polarized wave.

光の進行方向fz軸とし、偏波面保存光ファイバ1のコ
ア断面内における最大屈折率の方向fx軸。
The traveling direction of light is the fz axis, and the direction of the maximum refractive index within the core cross section of the polarization maintaining optical fiber 1 is the fx axis.

最大屈折率方向に垂直な方向(最小屈折率の方向になる
。)kY軸とし、XyZ系は第1図(a)の様に右手系
をなすとする。このとき、入射した右旋−円偏波2は、
偏波面保存光ファイバーの中で、偏波状態を周期的に変
化しながら伝搬する。一般に入射点と同じ偏波状態にな
るまでの距WI全ビート離LBがビート長である。また
、入射点よJ −LBの距離では、左旅円偏波に、−L
Bの距離では。
It is assumed that the direction perpendicular to the direction of the maximum refractive index (the direction of the minimum refractive index) is the kY axis, and the XyZ system forms a right-handed system as shown in FIG. 1(a). At this time, the incident right-handed circularly polarized wave 2 is
It propagates in a polarization-maintaining optical fiber while periodically changing its polarization state. Generally, the distance WI and the total beat distance LB until the polarization state is the same as that of the incident point is the beat length. Also, at a distance of J -LB from the incident point, the left-handed circularly polarized wave has -L
At distance B.

X軸の正方向から、(z軸の正方向から見て)時計持つ
直線偏波、 −L の距離では、X軸の正方向 B から、(z軸の正方向から見て)反時計回シにづラジア
ン(45度)の方向に偏波面金持つ直線偏波となる。円
偏波の入射点からの距離が上述の値以外の位置では、楕
円偏波となる。
From the positive direction of the X-axis, (as seen from the positive direction of the z-axis) the clock has a linearly polarized wave, and at a distance of -L, from the positive direction of the It becomes a linearly polarized wave with a polarization plane in the direction of radians (45 degrees). At a position where the distance from the point of incidence of the circularly polarized wave is other than the above-mentioned value, the wave becomes elliptically polarized.

一般に、真空でない光の媒質中を光が通過するとき、光
の進行方、向に垂直な方向に散乱光を発する現象は、チ
ンダル効果としてよく知られているが、この散乱光強度
は、電界ベクトルと垂直な方向では最大となフ、電界ベ
クトルの方向では零となる。この現象を第1図(a)に
適用すると1円偏波の入射点から−L の位置では、A
の方向(光の B 進行方向から見てX軸の正方向から反時計回りに1πラ
ジアン(45[)の方向で、偏波面に垂直な方向)の散
乱光強度は最大となし、Bの方向(光の進行方向から見
てX軸の正方向から時計回りに1πラジアン(45度)
の方向で、偏波面方向)の散乱光強度は零となる。次に
1円偏波の入射点から−L の位iをでは、入方向の散
乱強度は零で、 B B方向の散乱光強度が最大になる。また1円偏波の入射
点から−LLの位置では、光ファイバ2B、B 内の偏波状態は円偏波となるので、散乱光強度はz軸に
垂直な方向ならば、どの方向から見ても。
Generally, when light passes through a non-vacuum optical medium, scattered light is emitted in a direction perpendicular to the traveling direction of the light, which is well known as the Tyndall effect. It is maximum in the direction perpendicular to the vector, and zero in the direction of the electric field vector. Applying this phenomenon to Figure 1(a), at a position -L from the point of incidence of one circularly polarized wave, A
The scattered light intensity in the direction of (1π radian (45) counterclockwise from the positive direction of the X axis as seen from the direction of light B traveling, direction perpendicular to the plane of polarization) is assumed to be maximum, and the direction of B is (1π radian (45 degrees) clockwise from the positive direction of the X-axis when viewed from the direction of light travel)
In the direction of , the intensity of scattered light in the polarization plane direction becomes zero. Next, at position i of -L from the point of incidence of the 1 circularly polarized wave, the scattered light intensity in the incident direction is zero, and the scattered light intensity in the B direction becomes maximum. Furthermore, at the position -LL from the point of incidence of the circularly polarized wave, the polarization state in the optical fibers 2B and B becomes circularly polarized, so the intensity of the scattered light can be seen from any direction as long as it is perpendicular to the z-axis. Even though.

前述の最大強度の−となる。又、偏波状態が楕円偏波と
なる位置では、散乱光強度は、零でもなく又、最大値で
もない値をとる。
It becomes - of the maximum strength mentioned above. Furthermore, at a position where the polarization state is elliptically polarized, the scattered light intensity takes a value that is neither zero nor the maximum value.

今までは、入射光を右旋円偏波としたが、もし入射光盆
左旌円偏波とすると1円偏波の入射点から1L の位置
では第1図CalのAで示した方向に B 偏波面をもつ直線偏波となって、入方向の散乱光が零、
B方向の散乱光が最大とな91円偏波の入射点から−I
L の位置では右旋円偏波で、散乱光 B 強度は、光軸に垂直などの方向から見ても等しく。
Up until now, the incident light has been assumed to be a right-handed circularly polarized wave, but if the incident light beam is a left-handed circularly polarized wave, at a position 1L from the incident point of 1 circularly polarized wave, it will move in the direction shown by A in Figure 1 Cal. B It becomes a linearly polarized wave with a polarization plane, and the scattered light in the incoming direction is zero,
-I from the incident point of the 91 circularly polarized wave where the scattered light in the B direction is maximum
At position L, the light is right-handed circularly polarized, and the intensity of the scattered light B is the same even when viewed from a direction perpendicular to the optical axis.

前記の最大強反の−とな91円偏波の入射点から−L 
の位置では第1図ta+のBで示した方向に偏 B 波面をもつ直線偏波となって、Bの方向の散乱光が零、
Aの方向の散乱光が最大となる。
-L from the incident point of the -91 circularly polarized wave of the maximum strong reaction
At the position, the wave becomes a linearly polarized wave with a polarized B wavefront in the direction indicated by B in Figure 1 ta+, and the scattered light in the direction of B becomes zero.
Scattered light in the direction of A is maximum.

円偏波の入射点からLBヲ越える位置では、前述した、
円偏波の入射点からり、までの間で生じる現象全周期的
に繰り返す。
At the position beyond LB from the incident point of the circularly polarized wave, as mentioned above,
The phenomenon that occurs between the point of incidence of the circularly polarized wave and the point of incidence repeats throughout the period.

次に、前述の現象を利用して、偏波面保存光ファイバの
最大屈折率の方向が決まることを、第1図(blを用い
て説明する。第1図(b)で示したように。
Next, it will be explained using FIG. 1 (bl) that the direction of the maximum refractive index of the polarization-maintaining optical fiber is determined by utilizing the above-mentioned phenomenon. As shown in FIG. 1 (b).

右旋円偏波2を、偏波面保存光ファイバ1に入射したと
する。偏波面保存光ファイバ1から、その光軸に垂直な
方向に出射する散乱光強度を測定して、第1図(b)で
示した様に1円偏波の入射点からLの位置で、Cの方向
から出射する散乱光強度が零であったとする。このとき
、偏波面保存光ファイバ1の内部での偏波状態は直線偏
波で、偏波面の方向は、Cの方向である。前述の現象か
ら、偏波面保存光ファイバ1の最大屈折率の方向X軸は
Assume that a right-handed circularly polarized wave 2 is incident on the polarization-maintaining optical fiber 1. The intensity of scattered light emitted from the polarization-maintaining optical fiber 1 in a direction perpendicular to its optical axis is measured, and as shown in FIG. Assume that the intensity of scattered light emitted from the direction C is zero. At this time, the polarization state inside the polarization-maintaining optical fiber 1 is linear polarization, and the direction of the polarization plane is the C direction. From the above-mentioned phenomenon, the direction of the maximum refractive index of the polarization-maintaining optical fiber 1 is the X-axis.

光の進行方向から入射点方向を見たとき、光軸を中心に
してCの方向から反時計回シに7フゾアン(45度)回
転した方向となる。
When looking at the direction of the incident point from the direction in which the light travels, it is a direction rotated by 7 degrees (45 degrees) counterclockwise from the direction C around the optical axis.

このようにして、偏波面保存光ファイバの最大屈折率の
方向をめることができる。
In this way, the direction of the maximum refractive index of the polarization maintaining optical fiber can be determined.

(実施例) 以下1本発明の実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第2図ta)〜(f)は1本発明による一実施例を説明
する図で、1.1’はそれぞれ第11第2の偏波面保存
光ファイバである。両ファイバの中心軸は同−直線上に
あシ、ファイバ外径は共に125μmである。3は偏波
面保存光ファイバ1.1”i載せる台で、4の押え治具
で偏波面保存光ファイバ1、l’i押えることにより、
偏波面保存光ファイバ1.1’ 1台3に固定すること
が可能である。
FIGS. 2(a) to 2(f) are diagrams illustrating an embodiment of the present invention, in which 1.1' are 11th and 2nd polarization-maintaining optical fibers, respectively. The central axes of both fibers are on the same straight line, and the outer diameters of both fibers are 125 μm. 3 is a stand on which the polarization-maintaining optical fiber 1.1"i is placed, and by holding the polarization-maintaining optical fiber 1,1'i with the holding jig 4,
It is possible to fix the polarization maintaining optical fiber 1.1' to one unit 3.

又、偏波面保存光ファイバ1,1′は光軸の回シに回転
が可能で、かつ台3に固定した状態で、偏波面保存光フ
ァイバの中心軸方向に移動することができる。5は直線
偏波を出射するHe−N、レーザと1/4波長板を組み
合わせて得た円偏波を出射する光源で1円偏波光は、偏
波面保存光ファイバ1,1′の端面から光軸方向に入射
される。なお、6は偏波面保存光ファイバII 1′の
側面から光軸に垂直な方向に出射する散乱光を受光する
光検出器で、偏波面保存光ファイバ1,1′の光軸の回
υに回転可能かつ光軸方向に移動可能である。7は直線
偏波の偏波面方向を示す矢印、8は偏波面保存光ファイ
バ1又は1′の、光軸に垂直なコア断面内の最大屈折率
の方向を示す破線、9は融着接続用の放電電極である。
Further, the polarization-maintaining optical fibers 1 and 1' can be rotated about the optical axis, and can be moved in the direction of the central axis of the polarization-maintaining optical fiber while being fixed to the table 3. 5 is a light source that emits a He-N linearly polarized wave, a circularly polarized wave obtained by combining a laser and a quarter-wave plate, and the 1 circularly polarized light is emitted from the end face of the polarization-maintaining optical fibers 1 and 1'. The light is incident in the optical axis direction. Reference numeral 6 denotes a photodetector that receives scattered light emitted from the side surface of the polarization-maintaining optical fiber II 1' in a direction perpendicular to the optical axis. It is rotatable and movable in the optical axis direction. 7 is an arrow indicating the direction of the polarization plane of linearly polarized waves, 8 is a broken line indicating the direction of the maximum refractive index in the core cross section perpendicular to the optical axis of polarization maintaining optical fiber 1 or 1', and 9 is for fusion splicing. This is a discharge electrode.

まず、第2図(a)のように、偏波面保存光7アイバ1
に、右旋円偏波2ft入射し、光検出器6を偏波面保存
光ファイバ1の光軸方向に移動した勺光軸の回漫に回転
しタシすることにより、偏波面保存光ファイバ1の側面
からの散乱光が、最初に0となる位置(光の入射点を基
準とする。)と、方向(水平方向を基準とする。)とを
めた。
First, as shown in FIG. 2(a), polarization preserving light 7 eyeglass 1
2 ft of right-handed circularly polarized waves are incident on the polarization-maintaining optical fiber 1, and the photodetector 6 is rotated in the circular direction of the optical axis of the polarization-maintaining optical fiber 1. The position (based on the light incident point) and direction (based on the horizontal direction) where the scattered light from the side surface first becomes 0 was determined.

前述の原理の説明によシ、このときの光検出器6の位置
で、偏波面保存光ファイバ1円の偏波状態は直線偏波と
な勺、かつ偏波面の方向は、第211(a)(D“Ty
s< −jtM K・31“6(D7jUh’l−z”
C+、 。
According to the above explanation of the principle, at this position of the photodetector 6, the polarization state of one circular polarization-maintaining optical fiber is linearly polarized, and the direction of the polarization plane is 211 (a). ) (D“Ty
s< -jtM K・31"6(D7jUh'l-z"
C+, .

いる。再び前述の原理の説明によれば、偏波面保存光フ
ァイバ1の最大屈折率の方向は、第2図(a)の8で示
す様に、光の進行方向から見て、偏波面の方向7から光
軸の回りに−ラジアン(45度)だけ反時計方向に回転
した方向である。
There is. Again, according to the above explanation of the principle, the direction of the maximum refractive index of the polarization-maintaining optical fiber 1 is the direction 7 of the polarization plane when viewed from the direction of light propagation, as shown by 8 in FIG. 2(a). This is the direction rotated counterclockwise by -radians (45 degrees) around the optical axis.

次に、この偏波面保存光ファイバー及び光検出器6を、
偏波面保存光ファイバーの側面からの散乱光強度が零で
あることを確認しながら、光軸の回りに、第2図18)
に示すような矢印10の向きに回転し、第2図tb>に
示す様に偏波面保存光ファイバーの前述した最大屈折率
の方向が、水平になるようにし、押え治具4を用いて1
台3に固定した。
Next, this polarization maintaining optical fiber and photodetector 6 are
While confirming that the intensity of scattered light from the side of the polarization-maintaining optical fiber is zero, rotate around the optical axis (Fig. 2 18).
Rotate it in the direction of the arrow 10 as shown in FIG.
Fixed to stand 3.

次に、光源5を逆向きにして、第2図fc)のように偏
波面保存光ファイバ1′に、布施円偏波を入射し、光検
出器6により、偏波面保存光ファイバ1′の側面からの
散乱光が最初に零になる位置(光の入射点を基準とする
。)と。方向(水平方向を基準とする。)とをめた。こ
のとき、第2図fc)で示す光検出器6の位置で、偏波
面保存光ファイバl′の偏波状態は直線偏波となシ、か
つ偏波面の方向は、第2図(clの7で示す様な光検出
器6の方向となる。又、偏波面保存光ファイバ1′の最
大屈折率の方向は、第2図(C)の8で示す様に、光の
進行方向がら見て、偏波面の方向7から、光軸の回フに
ニラジアン(451i)だけ反時計方向に回転した方向
となる。
Next, the light source 5 is turned in the opposite direction, and the circularly polarized wave is incident on the polarization-maintaining optical fiber 1' as shown in Fig. 2 fc). The position where the scattered light from the side first becomes zero (based on the point of incidence of the light). direction (based on the horizontal direction). At this time, at the position of the photodetector 6 shown in Fig. 2 (fc), the polarization state of the polarization-maintaining optical fiber l' is not linearly polarized, and the direction of the polarization plane is at the position shown in Fig. 2 (cl). The direction of the photodetector 6 is as shown by 7. Also, the direction of the maximum refractive index of the polarization-maintaining optical fiber 1' is determined from the direction of propagation of the light, as shown by 8 in FIG. 2(C). Therefore, it is a direction rotated counterclockwise from the direction 7 of the polarization plane by nirad (451i) around the rotation of the optical axis.

次に、偏波面保存光ファイバ1′及び光検出器6を、偏
波面保存光ファイバ1′の側面からの散乱光強度が零で
あることを確認しながら、光軸の回〃に、第2図fc)
に示す様な矢印10の向きに回転し、第2図fd)に示
す様に、偏波面保存光ファイバ1′の、前述した最大屈
折率の方向が水平になるようにし、押え治具4全用いて
台3に固定した。
Next, the polarization-maintaining optical fiber 1' and the photodetector 6 are connected to the second polarization-maintaining optical fiber 1' around the optical axis while making sure that the intensity of scattered light from the side surface of the polarization-maintaining optical fiber 1' is zero. Figure fc)
Rotate in the direction of the arrow 10 as shown in FIG. It was fixed to the stand 3 using the

次に、偏波面保存光ファイバ1.1”t−、第2図(e
)の矢印11で示す方向に、光軸に対して平行移動して
、偏波面保存光ファイバー、1′の端面の間隔を縮めな
がら放電電極9によυ、前記端面の加熱全行い、第2図
ff)の様に接続した。第2図(e)の121ハ放電時
のアークでめる。なお、接続後。
Next, a polarization-maintaining optical fiber 1.1”t-, Fig. 2 (e
), move parallel to the optical axis in the direction shown by the arrow 11, reduce the distance between the end faces of the polarization preserving optical fiber 1', and heat the end faces of the polarization preserving optical fiber 1' with the discharge electrode 9, as shown in Fig. 2. ff). 121C in Fig. 2(e) is determined by the arc during discharge. In addition, after connection.

偏波面保存光ファイバ1.1′の最大屈折率の方向8は
、第2図(flに示した様に一致した。また、接続後、
偏波面保存光ファイバーに、最大屈折率方向に偏波面を
もつ直線偏波を入射し、偏波面保存光ファイバ1′の出
射光によシ、接続による消光比劣化量を測定したところ
、約3dBであったので、前述の、二つの偏波面保存光
ファイバ1゜1′の最大屈折率方向の角度ズレを、2度
以内にすることができた。
The directions 8 of the maximum refractive index of the polarization-maintaining optical fiber 1.1' coincided as shown in Fig. 2 (fl).
When a linearly polarized wave with a plane of polarization in the maximum refractive index direction was input to a polarization-maintaining optical fiber, and the amount of extinction ratio deterioration due to the connection was measured by the output light of the polarization-maintaining optical fiber 1', it was found to be about 3 dB. Therefore, the angular deviation in the direction of the maximum refractive index of the two polarization-maintaining optical fibers 1°1' could be kept within 2 degrees.

本実施例では、入射円偏波を右旋偏波としたが。In this embodiment, the incident circularly polarized wave is right-handedly polarized wave.

左旋偏波でもかまわない。また1本実施例では。Left-handed polarization is also acceptable. Also, in one embodiment.

偏波面保存光ファイバの側面からの散乱光強度が零にな
る位置と方向とをめたが、最大になる位置と方向とをめ
てもかまわない。また1本実施例では、光源としてHe
−Neレーザを用いたが。
Although the position and direction where the intensity of scattered light from the side surface of the polarization-maintaining optical fiber becomes zero is determined, the position and direction where it is maximum may be determined. In addition, in this embodiment, He is used as a light source.
-Ne laser was used.

光源の種類には限定されず、例えば、適切な光検出器全
使用すれば、赤外光源でもかまわない。さらに本実施例
では、偏波面保存光ファイバの外径を125μmとした
が、これ以外の外径の偏波面保存光ファイバでもかまわ
ない。また1本実施例では、アーク放電により偏波面保
存光ファイバの端面を融着したが、他の方法1例えば、
C02レーザを用いた加熱方式でもかよりない。また1
本実施例では、偏波面保存光ファイバの最大屈折率の方
向をめたが、それと直交する最小屈折率の方向をめる方
式でもかまわない。また、偏波面保存光ファイバのコア
に異方性歪t 7JOえるガラス層の形状も任意である
The type of light source is not limited; for example, an infrared light source may be used as long as all appropriate photodetectors are used. Further, in this embodiment, the outer diameter of the polarization-maintaining optical fiber is 125 μm, but a polarization-maintaining optical fiber having an outer diameter other than this may be used. In addition, in this example, the end face of the polarization maintaining optical fiber was fused by arc discharge, but other methods 1, for example,
A heating method using a C02 laser may also be used. Also 1
In this embodiment, the direction of the maximum refractive index of the polarization maintaining optical fiber is determined, but a method of determining the direction of the minimum refractive index orthogonal thereto may also be used. Further, the shape of the glass layer that causes anisotropic strain t 7JO in the core of the polarization maintaining optical fiber is also arbitrary.

(発明の効果) 以上、詳細説明したとおり1本発明によれば。(Effect of the invention) According to the present invention, as described above in detail.

上記の構成により、接続精度が高い、接続端で偏波面保
存光ファイバの最大屈折率又は最小屈折率の方向を設定
できるので屋外での接続が可能で、従って偏波面保存光
ファイバの入射端と出射端とが遠く離れていても簡単に
接続できる等の効果を有する偏波面保存光ファイバの接
続方法が得られる。
With the above configuration, connection accuracy is high, and the direction of the maximum refractive index or minimum refractive index of the polarization-maintaining optical fiber can be set at the connection end, making it possible to connect outdoors. A method for connecting polarization-maintaining optical fibers can be obtained, which has effects such as easy connection even if the output end is far away.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(a)、 (b)本発明に用いる偏波面保存光
ファイバの最大屈折率の方向をめる方法を説明する原理
図、第2図(al〜げ)は1本発明の一実施例を説明す
る図である。 1.1′・・・・・・偏波面保存光ファイバ、2・・・
・・・布施円偏波、3・・・台、4・・・・・・押え治
具、5・・・・・円偏波を出射する光源、6・・・・・
・光検出器、7・・・・・偏波面方向を示す矢印、8・
・・・・・偏波面保存光ファイバの最大屈折率の方向、
9・・・・・・放電電極、10・・・・・・偏波面光フ
ァイバの回転方向を示す矢印、11向。 (0,) θ 第7図 第2図 手続補正書(自発) 2、発明の名称 偏波面保存光ファイバの接続方法3、
補正をする者 事件との関係 出 願 人 東京都港区芝五丁1」33番1 yi (423) 日本電気株式会社 代表者 関本忠弘 4、代理人 〒108 東京都港区芝五丁目37番8号 住友三11
1ビル日本電気株式会社内 5、補正の対象 (1)明細書の「特許請求の範囲」の欄(2)明細書の
「発明の詳細な説明」の欄(3)明細書の「図面の簡単
な説明」の欄(4)図面 6、補正の内容 (1)特許請求の範囲の欄を別紙の様に補正する。 (2)明細書第3頁、第19行目「いう。)の角度ズレ
」を「いう。)、又は最小屈折率の方向の角度ズレ」に
補正する。 (3)明細書第6頁、第17行目から第18行目[端面
間隔を縮めながら加熱して融着接続」を「端面同志を接
触させ、端面で互に他のファイバを押して圧力を加えな
がら加熱することにより融着接続」K補正する。 (4)明細書第8頁、第9行目「真空でない光の媒質中
」を1光フアイバ中」に補正する。 (5)明細書第8頁、第11行目「チンダル効果」を[
チンダル(Tyndall )散乱効果」に補正する。 (6)明細書第10頁、第9行目「散乱光強度を測定」
を「散乱光強度を、光検出器を前記偏波面保存光ファイ
バ1の光軸の回りに回転したり光軸方向に移動したりし
ながら測定」に補正する。 (7)明細書第10頁、第11行目から第12行目[C
の方向から出射する散乱光強度が零であったとする。」
を1前述の散乱光強度がはじめて零になったとし、しか
もそのとき散乱光強度が零になる方向が、Cの方向であ
ったとする。」に補正する。 (8)明細書第11頁、第8行目「である。3は」を[
である。又両ファイバの端面は鏡面状態にしである。3
は」に補正する。 (9)明細書第13頁、第16行目から第17行目「フ
ァイバ1′の偏波状態は」を「ファイバ1′内の偏波状
態は」に補正する。 00)明細書第14頁、第13行目から第14行目「端
面の間隔を縮めながら放電電極9」を[端面同志を接触
し、端面で互に他のファイバを押して圧力を加えながら
放電電極9」に補正する。 01)明細書第14頁、第14行目から第15行目「端
面の加熱」を「端面及び端面付近の加熱」に補正する。 (12) 明細書第16頁、第15行目「第1図は(a
)。 (b)」を「第1図(a) 、 (b)は」に補正する
。 (J3)明細書第17頁、第5行目「偏波面光ファイバ
」を「偏波面保存光ファイバ」K補正する。 04)第2図(e)を別紙図面の様に補正する。 2 添付書類 別紙(訂正後の特許請求の範囲) 1過励紙図面(第2
図(e) ) 1通 訂正彼の特許請求の範囲 「コアとなるガラス層に異方性歪を加え、かつコアと同
一中心金もつガラス層を含み前記コアとなるガラス層と
同一中心の円形外径を有する二本の偏波面保存光ファイ
バの端面を融着接続する偏波面保存光ファイバの接続方
法において、前記二本の偏波面保存光ファイバの端面か
ら円偏波を入射する工程と、前記偏波面保存光ファイバ
の側面から散乱光強度を観測する工程と、前記散乱光強
度が最大になる方向又は零になる方向を観測する工程と
、前記散乱光強度が最大になる方向又は零になる方向か
ら前記偏波面保存光ファイバのコア断面内において前記
偏波面保存光ファイバの光軸に垂直な方向の直線偏波に
対する屈折率が最大又は最小になる方向をめる工程と、
前記二本の偏波面保存光ファイバの前記屈折率の最大又
は最小の方向を一致させる工程と、その後前記二本の偏
波面保存光ファイバの端面用 接 させ 端面で互に他
のファイバを押して圧力を加えながら加−怒jコロj&
Kjり融着接続する工程とを含むことを特徴とする偏波
面保存光ファイバの接続方法。」り (C) 第 2 ml 手続補正書(自発) 60.6.27 昭和 年 月 日 1、事件の表示 昭和59年特 許願第117723号
2、発明の名称 偏波面保存光ファイバの接続方法3、
補正をする者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 4、代理人 〒108 東京都港区芝五丁目37番8号 住人三田ビ
ル5、補正の対象 (1)明細書の「発明の詳細な説明」の欄(2) F!
A細書の「図面の簡単な説明」の欄(3)図面 6、補正の内容 (1) ’J細書第7頁第6行目「(b)社」をr (
b) 、 (C)は」に補正する。 (2)明細書第10頁第6行目[(b)を用いて説明す
る。第1図(b)で」を[(b)及び(C)を用いて説
明する。まず第1図(b)で」に補正する。 (3) 明細書第10頁第18行目の後に次の文を挿入
する。 「一方入射光な左旋円偏波とした場合には、右旋円偏波
を入射した場合と同じような方法を用いて、偏波面保存
光ファイバ1から、その光軸に垂直な方向に出射する散
乱光強度を測定し、IA I @ (c) K 7J″
す1″・Fl(#[17)、&M、!5−bL 、、、
、・の位置で散乱光強度がLしめて零になったとし、し
かもそのとき散乱光強度が0になる方向がCの方向であ
ったとする。この場合には、前述の説明から明らかなよ
うに、偏波面保存光ファイバ1の最大屈折率の方向xs
ti、光の進行方向から入射点方向を見たとき、光軸を
中心にしてCの方向から時計回ルにπ/4ラジアン(4
5度)回転した方向となる。なお入射光を右旋円偏波に
するか左旋円偏波にするかは、直線偏波光と4分の1波
長板とを用いることによシ容易に決めることができる。 」 (4)明細書第16頁第15行目「第1図は(a) 、
 (b)・・・・・・に用いる」を[第1図(a) 、
 (b) 、 (C)II′i本発明に用いる」に補正
する。 (5)別紙図面(第1図(C)】を追加する。 7、添付書類 別紙図面(第1図(C) ) 1通 (C) 磐1 図
Figures 1 (a) and (b) are principle diagrams explaining the method for determining the direction of the maximum refractive index of the polarization-maintaining optical fiber used in the present invention, and Figures 2 (al to ge) are diagrams showing one aspect of the present invention. It is a figure explaining an example. 1.1'...Polarization maintaining optical fiber, 2...
...Fuse circularly polarized wave, 3...stand, 4...pressing jig, 5...light source that emits circularly polarized wave, 6...
・Photodetector, 7...Arrow indicating polarization plane direction, 8.
・・・・・・Direction of maximum refractive index of polarization maintaining optical fiber,
9...Discharge electrode, 10...Arrow indicating the rotation direction of the polarized optical fiber, direction 11. (0,) θ Figure 7 Figure 2 Procedural amendment (voluntary) 2. Title of invention Connection method for polarization maintaining optical fiber 3.
Relationship with the case of the person making the amendment Applicant: 33-1 yi, Shiba 5-chome 1, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4, Agent: 37 Shiba 5-chome, Minato-ku, Tokyo 108 No. 8 Sumitomo 311
1 Building NEC Co., Ltd. 5, Subject of amendment (1) "Claims" column of the specification (2) "Detailed description of the invention" column (3) "Drawings" column of the specification "Brief Description" column (4) Drawing 6, contents of amendment (1) Claims column should be amended as shown in the attached sheet. (2) On page 3, line 19 of the specification, "the angular deviation in .)" is corrected to ``the angular deviation in the direction of the minimum refractive index.'' (3) On page 6 of the specification, lines 17 to 18, [Fusion splicing by heating while reducing the distance between the end faces] is replaced by ‘bringing the end faces into contact and applying pressure by pushing the other fiber with the end faces. Correct the fusion splice by heating while adding ``K''. (4) On page 8, line 9 of the specification, "in a non-vacuum light medium" is corrected to "in an optical fiber." (5) “Tyndall effect” on page 8, line 11 of the specification [
Tyndall scattering effect. (6) Page 10 of the specification, line 9 “Measure scattered light intensity”
is corrected to "measure the scattered light intensity while rotating the photodetector around the optical axis of the polarization-maintaining optical fiber 1 or moving it in the optical axis direction." (7) Page 10 of the specification, lines 11 to 12 [C
Suppose that the intensity of scattered light emitted from the direction is zero. ”
1. Assume that the above-mentioned scattered light intensity becomes zero for the first time, and that the direction in which the scattered light intensity becomes zero at that time is direction C. ”. (8) On page 11 of the specification, line 8, change “desu. 3 wa” to [
It is. Also, the end faces of both fibers are mirror-finished. 3
is corrected to ``. (9) On page 13 of the specification, from line 16 to line 17, "What is the polarization state of fiber 1'?" is corrected to "What is the polarization state of fiber 1'?" 00) Page 14 of the specification, lines 13 to 14 "Discharging electrode 9 while reducing the distance between the end faces" [The end faces are brought into contact with each other, and the end faces are pressed against each other to discharge while applying pressure. Correct to "electrode 9". 01) On page 14 of the specification, from the 14th line to the 15th line, "Heating of the end surface" is corrected to "Heating of the end surface and the vicinity of the end surface." (12) Page 16 of the specification, line 15: “Figure 1 is (a
). (b)” should be corrected to “Figure 1 (a) and (b) are”. (J3) On page 17 of the specification, line 5, "polarization plane optical fiber" is corrected to "polarization plane maintaining optical fiber" K. 04) Correct Figure 2(e) as shown in the attached drawing. 2 Attachment of attached documents (corrected scope of patent claims) 1 Overexcited paper drawing (second
Figure (e)) One copy corrected His patent claims: ``A glass layer that is anisotropically strained to a core glass layer, and includes a glass layer that has a gold co-centered with the core, and has a circular shape that is co-centered with the core glass layer. In a method for splicing polarization-maintaining optical fibers by fusion splicing end faces of two polarization-maintaining optical fibers having an outer diameter, the step of injecting circularly polarized waves from the end faces of the two polarization-maintaining optical fibers; a step of observing the scattered light intensity from a side surface of the polarization-maintaining optical fiber; a step of observing the direction in which the scattered light intensity becomes maximum or zero; and a step of observing the direction in which the scattered light intensity becomes maximum or zero. determining a direction in which the refractive index for linearly polarized waves in a direction perpendicular to the optical axis of the polarization-maintaining optical fiber is maximum or minimum within the core cross section of the polarization-maintaining optical fiber;
A step of aligning the directions of the maximum or minimum refractive index of the two polarization-maintaining optical fibers, and then applying pressure by pressing the end faces of the two polarization-maintaining optical fibers against each other. While adding
A method for splicing polarization maintaining optical fibers, the method comprising the step of fusion splicing. (C) No. 2 ml Procedural amendment (voluntary) 60.6.27 Showa year, month, day 1, case description 1982 patent application No. 117723 2, title of invention Connection method of polarization-maintaining optical fiber 3 ,
Person making the amendment Relationship to the case Applicant: 5-33-1-4 Shiba, Minato-ku, Tokyo, Agent: 5-37-8 Shiba, Minato-ku, Tokyo, 108 Resident, Mita Building 5, Subject of amendment (1) “Detailed description of the invention” column (2) of the specification F!
Column ``Brief explanation of drawings'' in A specification (3) Drawing 6, contents of amendment (1) 'J specification, page 7, line 6, ``Company (b)'' is r
b) and (C) shall be amended to ``. (2) Page 10, line 6 of the specification [Explain using (b). 1(b)" will be explained using FIG. 1(b) and (C). First, in FIG. 1(b), it is corrected to ``. (3) Insert the following sentence after page 10, line 18 of the specification. On the other hand, when the incident light is left-handed circularly polarized light, it is output from the polarization-preserving optical fiber 1 in a direction perpendicular to its optical axis using the same method as when right-handed circularly polarized light is input. Measure the scattered light intensity and calculate IA I @ (c) K 7J''
1″・Fl(#[17), &M,!5-bL ,,
Assume that the scattered light intensity decreases L to zero at positions , and, and that the direction in which the scattered light intensity becomes 0 at that time is the direction C. In this case, as is clear from the above description, the direction xs of the maximum refractive index of the polarization maintaining optical fiber 1 is
ti, when looking from the direction of light propagation to the direction of incidence, π/4 radians (4
5 degrees) rotated direction. Note that whether the incident light is right-handed circularly polarized or left-handed circularly polarized can be easily determined by using linearly polarized light and a quarter-wave plate. ” (4) Page 16, line 15 of the specification “Figure 1 is (a),
(b) Used for...'' in Figure 1 (a),
(b), (C)II'i amended to "Used in the present invention". (5) Add attached drawings (Figure 1 (C)). 7. Attached documents attached drawings (Figure 1 (C)) 1 copy (C) Iwa 1 Figure

Claims (1)

【特許請求の範囲】[Claims] コアとなるガラス層に異方性歪金加え、かつコアと同一
中心をもつガラス層を含み前記コアとなるガラス層と同
一中心の円形外径含有する二本の偏波面保存光ファイバ
の端面を融看接暁する偏波面保存光ファイバの接続方法
において、前記二本の偏波面保存光ファイバの端面から
円偏波を入射する工程と、前記偏波面保存光ファイバの
側面から散乱l光強度を観測する工程と、前記散乱光強
度が量大になる方向又は零になる方向を観測する工程と
、前記散乱光強度が最大になる方向又は零になる方向か
ら前記偏波面保存光ファイバのコア断面内において前記
偏波面保存光ファイバの光軸に垂直な方向の直線偏波に
対する屈折率が最大又は最小になる方向をめる工゛程と
、前記二本の偏波面保存光ファイバの前記屈折率の最大
又は最小の方向全一致させる工程と、その後前記二本の
偏波面保存光ファイバの端面間隔を縮rti)ながら加
熱して融着接続する工程とを含むことを特徴とする偏波
面保存光ファイバの接続方法。
The end faces of two polarization-maintaining optical fibers are made by adding anisotropically strained metal to the glass layer serving as the core, and including a glass layer having the same center as the core, and having a circular outer diameter having the same center as the glass layer serving as the core. A method for connecting polarization-maintaining optical fibers, which is becoming more and more evolving, includes a step of injecting circularly polarized waves from the end faces of the two polarization-maintaining optical fibers, and a step of inputting the scattered light intensity from the side surfaces of the polarization-maintaining optical fibers. a step of observing the direction in which the scattered light intensity increases or becomes zero; and a step of observing the core cross section of the polarization-maintaining optical fiber from the direction in which the scattered light intensity becomes maximum or zero. determining a direction in which the refractive index for linearly polarized waves in a direction perpendicular to the optical axis of the polarization-maintaining optical fiber is maximized or minimized; and the refractive index of the two polarization-maintaining optical fibers. A polarization-preserving optical fiber characterized by comprising the steps of aligning the maximum or minimum directions of the two polarization-preserving optical fibers, and then heating and fusion splicing the two polarization-preserving optical fibers while reducing the distance between the end faces of the two polarization-preserving optical fibers. How to connect fibers.
JP59117723A 1984-06-08 1984-06-08 Method for connecting polarization plane preserving optical fiber Granted JPS60260906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117723A JPS60260906A (en) 1984-06-08 1984-06-08 Method for connecting polarization plane preserving optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117723A JPS60260906A (en) 1984-06-08 1984-06-08 Method for connecting polarization plane preserving optical fiber

Publications (2)

Publication Number Publication Date
JPS60260906A true JPS60260906A (en) 1985-12-24
JPH0470605B2 JPH0470605B2 (en) 1992-11-11

Family

ID=14718689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117723A Granted JPS60260906A (en) 1984-06-08 1984-06-08 Method for connecting polarization plane preserving optical fiber

Country Status (1)

Country Link
JP (1) JPS60260906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319041A2 (en) * 1987-12-04 1989-06-07 Fujikura Ltd. Method and apparatus for fusion-splicing polarization maintaining optical fibers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949511A (en) * 1982-09-14 1984-03-22 Hitachi Cable Ltd Connection method of optical fiber for retaining plane of polarization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949511A (en) * 1982-09-14 1984-03-22 Hitachi Cable Ltd Connection method of optical fiber for retaining plane of polarization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0319041A2 (en) * 1987-12-04 1989-06-07 Fujikura Ltd. Method and apparatus for fusion-splicing polarization maintaining optical fibers
US5013345A (en) * 1987-12-04 1991-05-07 Fujikura Ltd. Method of fusion-splicing polarization maintaining optical fibers

Also Published As

Publication number Publication date
JPH0470605B2 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
US4712880A (en) Polarization rotation compensator and optical isolator using the same
JPS60220038A (en) Catheter leading type hemomanometer using polarization surface preserved optical fiber
CN100371750C (en) Depolarizer
CN104216050A (en) Polarization beam splitting and combining device
JPS6385313A (en) Sagnack ring rotaion sensor and method of forming sagnack ring rotation sensor
CN108628013A (en) A kind of optical phase conjugation lens device
JPS60260906A (en) Method for connecting polarization plane preserving optical fiber
JPS6230602B2 (en)
Zhang et al. Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips
Lin et al. Optical measurement in a curved optical medium with optical birefringence and anisotropic absorption
JPH08233583A (en) Optical fiber coil
CN108803062A (en) Single axial birefringence crystal polarization laser bundling device
JPS59152412A (en) Connecting method of polarization plane maintaining optical fiber
JPS59174808A (en) Optical fiber connecting method
JP3077554B2 (en) Optical isolator
Han et al. Simultaneous sensing of strain and temperature based on the inline-MZI embedded point-shaped taper structure with low crosstalk
Regelskis et al. Polarization-dependent four-port fiber optical circulator based on the Sagnac effect
JPS6045206A (en) Installing method of connector for connecting polarization plane maintaining optical fiber
JPS5950313A (en) Optical fiber rotary sensor
CN117233893A (en) Polarization maintaining fiber alignment method and system based on fiber optic ring
JP4888780B2 (en) Optical fiber coupler
JPS5993417A (en) Optical directional coupler
JPS6148715A (en) Optical fiber gyro
Chenchen et al. Asymmetric Mach-Zehnder prism interferometer coupler-based combined fiber ring resonator system for a Brillouin gyroscope
US9823417B2 (en) Waveguide polarizing optical device