JPS6026075B2 - Production method of β-SiC-Si↓3N↓4-based composite ceramics - Google Patents

Production method of β-SiC-Si↓3N↓4-based composite ceramics

Info

Publication number
JPS6026075B2
JPS6026075B2 JP55032046A JP3204680A JPS6026075B2 JP S6026075 B2 JPS6026075 B2 JP S6026075B2 JP 55032046 A JP55032046 A JP 55032046A JP 3204680 A JP3204680 A JP 3204680A JP S6026075 B2 JPS6026075 B2 JP S6026075B2
Authority
JP
Japan
Prior art keywords
sic
powder
infusible
silicon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55032046A
Other languages
Japanese (ja)
Other versions
JPS56129668A (en
Inventor
治幸 上野
篤明 八田
裕氏 桂
和茂 福田
裕 久保田
尚 浜松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP55032046A priority Critical patent/JPS6026075B2/en
Publication of JPS56129668A publication Critical patent/JPS56129668A/en
Publication of JPS6026075B2 publication Critical patent/JPS6026075B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はSICの結合構造と、Si3N4の結合構造の
複合組織体中に繊維状8−SICか、または薄膜リボン
状8一SICがSi3N4の粒間に分布し、相互に断続
的にからみ合って存在する紬織のセラミックスの製造方
法に関するもので、その目的は耐熱衝撃性、熱疲労破壊
抵抗性に優れた高強度、高温材料のセラミックスを提供
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a composite structure of a bonded structure of SIC and a bonded structure of Si3N4, in which fibrous 8-SIC or thin film ribbon-shaped 8-SIC is distributed between Si3N4 grains and mutually bonded. The present invention relates to a method for manufacturing ceramics of pongee weave, which exists intermittently intertwined with each other, and its purpose is to provide ceramics that are high-strength, high-temperature materials with excellent thermal shock resistance and thermal fatigue fracture resistance.

高強度高温材料としてセラミックスが特に注目され開発
されるに至ったのは、高温ガスタービン用材料、セラミ
ックス自動車エンジン、特殊な高温構造材料として従釆
の金属材料では使用不可能といえる苛酷な条件下で使用
できるものが強く求められてきているからである。
Ceramics have attracted particular attention and have been developed as high-strength, high-temperature materials because they can be used as materials for high-temperature gas turbines, ceramic automobile engines, and as special high-temperature structural materials under harsh conditions where traditional metal materials cannot be used. This is because there is a strong demand for products that can be used in

セラミックスは−般に高温での使用に耐え、また耐摩耗
性にも優れているが、脆いということが金属材料と比較
した場合大きな欠点であり、熱疲労抵抗材料としては不
適当とされてきたが、最近の急速な研究開発の結果、か
なりの応力に耐えられるものが登場することになった。
Ceramics can generally withstand use at high temperatures and have excellent wear resistance, but their brittleness is a major drawback when compared to metal materials, making them unsuitable as thermal fatigue resistant materials. However, as a result of recent rapid research and development, products that can withstand considerable stress have appeared.

高強度高温材料としては、SIC,WC,TIC等の炭
化物およびSi3N4,AIN,BN等の窒化物および
Si一N−○−N等が特に研究開発されているが、その
中でも、とりわけ、SICやSi3N4といった珪素化
合物に関する研究が多く、高温強度、耐熱衝撃性、耐摩
耗性、耐蝕性等に優れていることから現在までのところ
各方面で試作試用がなされ、定常的に使用に供されてい
るものである。これら、SIC,Si3N4は圧粉体の
加熱処理により製造されるが、高密度化することで高温
強度、耐熱衝撃性、耐摩耗性、耐蝕性等の向上を図って
きた。
As high-strength, high-temperature materials, carbides such as SIC, WC, and TIC, nitrides such as Si3N4, AIN, and BN, and Si-N-○-N have been particularly researched and developed. There has been a lot of research on silicon compounds such as Si3N4, which have excellent high-temperature strength, thermal shock resistance, abrasion resistance, corrosion resistance, etc., and so far, prototypes have been made and used regularly in various fields. It is something. These SIC and Si3N4 are manufactured by heat treatment of green compacts, and attempts have been made to improve high-temperature strength, thermal shock resistance, abrasion resistance, corrosion resistance, etc. by increasing the density.

しかしながら、SIC,Si3N4は自己孫絹性がほと
んどなく、高密度化を図るには各種の添加剤(粘給剤)
を添加しなくてはならない。
However, SIC and Si3N4 have almost no self-refining properties, and various additives (viscous agents) are required to achieve high density.
must be added.

ところが添加剤を使用すると、高密度化は達成できるが
、主としてガラス質相を形成する為に高温で軟化し、高
温での強度が低下する欠点がある。たとえば、SIC成
形体の製造の場合は、A’,Fe,B,Y203等を添
加し、常圧プレスあるいはホットプレスにより高密度成
形体を得ている。またSi3N4成形体の場合は、Mg
0,AI203,山203−Y203等を添加し、主に
1700〜1900℃でのホットプレスにより高密度化
しているが、高温で何れの場合もガラス質相を形成し、
高温での強度はこのガラス質相の軟化により低下する欠
点を有している。
However, when additives are used, although high density can be achieved, the disadvantage is that they soften at high temperatures due to the formation of a glassy phase, resulting in a decrease in strength at high temperatures. For example, in the case of producing a SIC molded body, A', Fe, B, Y203, etc. are added and a high-density molded body is obtained by normal pressure pressing or hot pressing. In addition, in the case of a Si3N4 molded body, Mg
0, AI203, Yama203-Y203, etc. are added and densified mainly by hot pressing at 1700 to 1900°C, but in both cases a glassy phase is formed at high temperatures,
It has the disadvantage that the strength at high temperatures decreases due to the softening of this glassy phase.

このうちAI203−Y夕3,Y203は高温で形成す
るガラス質相、Si02−Y203−N203,Si0
2一Y203のガラス転移温度が高い為に、Mg○,N
203を添加した場合に比べ高温での強度劣下は少し、
が、1000oo前後での強度の低下という欠点を克服
することはできない。以上述べた方法は、いわゆる常圧
競結およびホットプレス法であり、これ以外に反応暁結
法がまず考えられ、SIC成形体の場合には、Si02
とCの混合粉末の高温焼成過程でSi蒸気を反応させ、
残留Cとの間で、固一気反応生成物3一SICを生成し
、高密度化させたものがあるが、Siが未反応状態で残
ることが避けられず酸化性雰囲気中の高温での使用によ
り容易にSi02となり、異常膨張の一因となり強度の
著しい低下を招きやすい。
Among these, AI203-Y3, Y203 is a glassy phase that forms at high temperature, Si02-Y203-N203, Si0
Because the glass transition temperature of 2-Y203 is high, Mg○,N
Compared to the case where 203 is added, there is a slight decrease in strength at high temperatures.
However, it is not possible to overcome the drawback that the strength decreases at around 1000 oo. The methods described above are the so-called normal pressure compaction and hot press methods, and in addition to these methods, the reaction compaction method is first considered, and in the case of SIC molded bodies, Si02
In the high temperature firing process of mixed powder of and C, Si vapor is reacted,
There is a product that produces a solid vapor reaction product 3-SIC with residual C and is highly densified, but it is unavoidable that Si remains in an unreacted state, making it difficult to use at high temperatures in an oxidizing atmosphere. This easily becomes Si02, which causes abnormal expansion and tends to cause a significant decrease in strength.

次に、反応暁結構i3N4成形体の場合は、Si粉末の
成形体を窒素雰囲気中で焼成して得られるが、粘結剤を
使用した場合に比べて気孔率がはるかに大きく、強度も
弱い性質を持つ。気孔率が大きいにもかかわらず、組織
的にSj3N4の均一組織体であるため、応力に対する
緩和機能は有しておらず、高温で長時間使用する場合に
は熱応力の蓄積による疲労破壊現,象が生じる。以上述
べたように、従釆のSICおよびSi3N4高密度成形
体は格闘での強度は非常に大きいが、高温での長時間使
用中に強度の低下が激しく、また熱応力による疲労現象
を避けられないという欠点を有している。
Next, in the case of a reaction structure i3N4 compact, it is obtained by firing a compact of Si powder in a nitrogen atmosphere, but the porosity is much larger and the strength is weaker than when a binder is used. have a property. Despite its high porosity, it has a uniform structure of Sj3N4, so it does not have the ability to relax stress, and when used at high temperatures for long periods of time, it may cause fatigue failure due to the accumulation of thermal stress. An elephant arises. As mentioned above, the conventional SIC and Si3N4 high-density molded bodies have very high strength in combat, but their strength decreases sharply during long-term use at high temperatures, and fatigue phenomena due to thermal stress cannot be avoided. It has the disadvantage that it is not.

本発明は従釆のSIC成形体、Si3N4成形体のもつ
欠点を克服するために、まず禾反応Siを残さず、かつ
不必要な粘結剤を使用せずに、熱応力を緩和するような
機構をもつような組織体をつくることを主たる目的とし
ている。
In order to overcome the drawbacks of conventional SIC molded bodies and Si3N4 molded bodies, the present invention first aims to reduce thermal stress without leaving reactive Si and without using unnecessary binders. The main purpose is to create an organization with a mechanism.

そのため本発明者等はSICとSi3N4が化学結合を
持たないことに着目し、Si3N総粒子間にSICの繊
維および/又は薄膜IJボン状のものが介在し、かつ物
理的にSICとSi3N4間にからみ合いによる結合構
造ができることを予想し、更にSICの繊維および薄膜
リボン状の物理的性質により、熱応力による歪を、SI
Cの繊維部および薄膜リボン状部が吸収することにより
、耐熱衝撃性に優れた、柔軟性のある組織体をつくり出
せると考えるに至った。更に加うるに、SICの適度な
連続結合部とSi3N4の適度な連続結合部が交錯した
組織体が加味されれば更に強度と耐熱衝撃性が向上する
ものと考えた。ここで言う有機珪素高分子化合物(以下
単に有機珪素ポリマーと呼ぶ)は東北大学金属材料研究
所矢島聖便教授らによって発明され、主として珪素と炭
素を骨格成分とする有機珪素高分子化合物である。
Therefore, the present inventors focused on the fact that SIC and Si3N4 do not have a chemical bond, and found that SIC fibers and/or thin film IJ-bonds are interposed between the total Si3N particles, and physically between SIC and Si3N4. We predicted that a bonded structure would be formed by entanglement, and furthermore, due to the physical properties of SIC fibers and thin film ribbons, the strain caused by thermal stress could be reduced by SI.
We have come to believe that a flexible tissue with excellent thermal shock resistance can be created by absorption by the fiber portions and thin film ribbon-like portions of C. In addition, it was thought that the strength and thermal shock resistance would be further improved if a structure in which moderately continuous bonded portions of SIC and moderately continuous bonded portions of Si3N4 were intertwined was added. The organosilicon polymer compound referred to here (hereinafter simply referred to as organosilicon polymer) was invented by Professor Seibin Yajima and his colleagues at Tohoku University Institute for Materials Research, and is an organosilicon polymer compound whose skeleton components are mainly silicon and carbon.

周知の如くこれら有機珪素ポリマーを利用したSIC繊
維は矢島聖便教授らの発明で世界的なものであり、多く
の報文や特許により報告されている。その他SIC繊維
と金属あるいは非金属材料との複合材料の発明、有機珪
素ポリマ−を金属あるいは非金属材料粉末の結合材に利
用することの発明、あるいはSIC焼成体の原料として
利用することの発明等無機繊維、高強度材料、耐熱材料
等の分野にエポックをもたらせた新分野である。本発明
は上記有機珪素ポリマーと珪素粉末を使用して製造した
熱衝撃抵抗性、熱疲労破壊抵抗性及び酸化抵抗性に優れ
た特殊耐熱セラミック材料を提供することを主たる目的
とする。本発明に使用する有機珪素ポリマーは基本的に
は次の(i)一(V)の基本構造を有する。但し式中、
R,,R2,R3及びR4については、R,は−C比で
R2,R3及びR4は水素、アルキル基、ァリール基、
(C&)2CH−,(C64)2SiH−及び(CH3
)3Si−のうち1種又は2種以上のいずれかの組み合
わせをとるものである。
As is well known, SIC fibers using these organosilicon polymers are world-famous inventions by Professor Seibin Yajima and others, and have been reported in many papers and patents. Other inventions include composite materials of SIC fibers and metal or non-metallic materials, inventions of using organosilicon polymers as binders for metal or non-metal material powders, or inventions of using organic silicon polymers as raw materials for SIC fired bodies, etc. This is a new field that has brought about an epoch in the fields of inorganic fibers, high-strength materials, and heat-resistant materials. The main object of the present invention is to provide a special heat-resistant ceramic material having excellent thermal shock resistance, thermal fatigue fracture resistance, and oxidation resistance, manufactured using the above-mentioned organic silicon polymer and silicon powder. The organosilicon polymer used in the present invention basically has the following basic structures (i) and (V). However, during the ceremony,
Regarding R,, R2, R3 and R4, R is a -C ratio and R2, R3 and R4 are hydrogen, an alkyl group, an aryl group,
(C&)2CH-, (C64)2SiH- and (CH3
) 3Si-, or a combination of two or more thereof.

また、k,1,m,nは( )及び〔 〕の構造の平均
繰り返し回数を示し、k=1〜80,1:15〜350
,m=1〜80及びn=15〜350である。なお平均
分子量は800〜20000である。更に(iii)中
のMはSi,B,Ti,Fe,山,Zr,・・・等の金
属もしくは非金属元素で剛を合成する際に出発原料に含
まれる元素または触媒使用のとき混入して主骨格に含ま
れた元素を示し、R5,R6,R7及びR8は水素、ア
ルキル基、アリール基、(C比)2CH−,(C6日5
)2SiH−及び(C瓜)3Si−のうち1種又は2種
以上のいずれかの組み合わせをとるが、Mの価数及び構
造によりR5,R6,R7及びR8のいずれかが欠除す
る場合がある。,Qの 前記(i)〜『Wの骨格成分が
鎖状及び3次元構造のいずれか1つの部分構造として含
む化合物、あるいはそれらの混合物。
In addition, k, 1, m, n indicate the average number of repetitions of the structure ( ) and [ ], k = 1 to 80, 1:15 to 350
, m=1-80 and n=15-350. Note that the average molecular weight is 800 to 20,000. Furthermore, M in (iii) is an element contained in the starting material when synthesizing rigidity with a metal or nonmetal element such as Si, B, Ti, Fe, Zr, etc., or an element mixed when using a catalyst. indicates the elements contained in the main skeleton, R5, R6, R7 and R8 are hydrogen, alkyl group, aryl group, (C ratio) 2CH-, (C6 day 5
)2SiH- and (C)3Si-, one or a combination of two or more thereof may be used, but depending on the valence and structure of M, any of R5, R6, R7 and R8 may be deleted. be. , Q above (i) to ``A compound containing the skeleton component of W as a partial structure of any one of a chain structure and a three-dimensional structure, or a mixture thereof.

これら有機珪素ポリマーを非酸化性雰囲気中で加熱処理
すれば、SiとCよりなる非晶質物質となり、更には遊
離炭素を1部含む8−SICを形成することが上記矢島
教授らの研究により判明している。
According to the research by Professor Yajima et al., when these organosilicon polymers are heat-treated in a non-oxidizing atmosphere, they become an amorphous material consisting of Si and C, and furthermore, form 8-SIC containing a portion of free carbon. It's clear.

本発明者らは、上記有機珪素ポリマーの特質を最大限に
利用し、有機珪素ポリマーを常法により紙糸したものを
、オゾン処理、空気中加熱処理、y線照射、有機過酸化
物処理等の方法により、不融化させることにより、これ
らの繊維が加熱過程で、液化せずに初の形状を保持する
ようにした不融化繊維並びに有機珪素ポリマーを薄膜リ
ボン状に成形したものを不融化繊総と同様の方法で不融
化した薄膜リボン状物あるいはそれらの混合物を用い、
これらが非酸化性雰囲気下で、140000の熱処理に
よって、それぞれがセンイおよびSICの薄膜リボン状
物の形状を保持したまま6一SIC化しているのを確認
した。
The present inventors have made full use of the characteristics of the above organosilicon polymer, and fabricated paper threads from the organosilicon polymer using conventional methods, such as ozone treatment, in-air heat treatment, y-ray irradiation, organic peroxide treatment, etc. Infusible synthetic fibers are made by forming infusible fibers and organosilicon polymers into thin film ribbons, which are made infusible by the above method so that these fibers retain their original shape without liquefying during the heating process. Using a thin film ribbon-like material or a mixture thereof made infusible in the same manner as above,
It was confirmed that these were heat-treated for 140,000 degrees Celsius in a non-oxidizing atmosphere to form 6-SIC while maintaining the shape of thin film ribbons of fiber and SIC.

本発明者らは本発明の目的を達成させるべく〜有機珪素
ポリマーの不融化された繊維(以下、不融化繊維と称す
)および(有機珪素ポリマーの不融化)薄膜リボン状物
(以下不融化薄膜リボン状物と称す)が、そのままの形
状を保持して8一SIC化するのを利用し、珪素粉末と
不融化繊維および/又は不高率化リボン状物の混合物の
成形体をh450ooの温度下で、かつ窒素ガスまたは
窒素ガスとアンモニアガスとの混合ガス雰囲気下で加熱
処理することにより「不融化された有機珪素ポリマーが
t8−SIC化し、かつ遊離炭素と珪素粉末との反応で
鯖−SICを形成しておりトかつまた、それらが繊維状
および薄膜リボン状を呈してSiがN2と反応して生成
したSi3N4粒子の間に介在しており、両者が相互に
からみ合った状態を形成している。
In order to achieve the object of the present invention, the present inventors have developed an infusible organosilicon polymer fiber (hereinafter referred to as an infusible fiber) and an infusible organosilicon polymer thin film ribbon (hereinafter referred to as an infusible thin film). Taking advantage of the fact that a ribbon-like material (referred to as a ribbon-like material) is converted into 8-SIC while maintaining its shape, a molded body of a mixture of silicon powder, infusible fibers, and/or non-selective ribbon-like material is heated to a temperature of 450 oo. By heat treatment under nitrogen gas or a mixed gas atmosphere of nitrogen gas and ammonia gas, the infusible organosilicon polymer is converted into t8-SIC, and the reaction between free carbon and silicon powder converts the infusible organosilicon polymer into t8-SIC. They form SIC, and they also take the form of fibers and thin film ribbons and are interposed between Si3N4 particles produced by the reaction of Si with N2, forming a state in which both are entangled with each other. are doing.

生成したSICとSi3N4はサブミクロン〜数10ミ
クロンの微細結晶単位で、しかもこれら8−SICとS
i3N4とは相互に化学結合を有せず、又は相互に嵐溶
しないので「生成したSICとSi3N4との間には間
隙が生ずる。不融化された有機珪素ポリマーの繊維およ
び/又は薄膜リボン状物が8一SIC化する段階に於い
て「 これらの相互の結合は、成形段階時に直接に接触
しているか否かによって決まり、不融化繊維および/又
は不融化薄膜リボン状物間の接触部では、SIC繊維が
連結状態を示している。
The generated SIC and Si3N4 are in microcrystal units ranging from submicrons to several tens of microns, and these 8-SIC and Si3N4
Since i3N4 and Si3N4 do not have a chemical bond with each other or do not dissolve into each other, a gap is created between the generated SIC and Si3N4. 81 At the stage of converting into SIC, their mutual bonding depends on whether or not they are in direct contact during the molding stage; SIC fibers are shown in a connected state.

Si3N4の結合構造部とB−SICの繊維状部(また
は薄膜リボン状部)とのからみ合い構造をより多く、か
つ複雑化させることにより「組織体全体としての強度を
向上させ、かつ、耐熱衝撃性に於いても向上させること
が可能である。
By increasing the number and complexity of the intertwined structure between the Si3N4 bonding structure and the B-SIC fibrous portion (or thin film ribbon-like portion), we can improve the strength of the entire tissue and improve its thermal shock resistance. It is also possible to improve gender.

Si3N4部およびB−SIC部間のからみ合い構造を
より多く、かつ複雑化する方法として、大別して2つの
方法が挙げられる。第1の方法は珪素粉末に対し不審虫
化繊維及びノまたは不融化薄膜リボン状物を加えた杯土
組成物を成形して窒化雰囲気中で焼成する方法で、さる
なに場合によって不融化していない有機珪素ポリマーを
結合剤として加えることである。
There are two main methods for increasing the number of entangled structures between the Si3N4 part and the B-SIC part and making them more complicated. The first method is to form a potted clay composition in which silicon powder is mixed with infusible fibers and an infusible thin film ribbon, and then fired in a nitriding atmosphere. Adding a non-containing organosilicon polymer as a binder.

不融化されていない有機珪素ポリマーは加熱過程で軟化
し、一定時間は液化状態を保つので〜 この液化状態時
にSj粒子間および不融化繊維およびノ又は不融化薄膜
リボン状物間に浸潤していき、120ぴ○以上の温度で
のSIC化の段階で、SIC繊維およびノ又は薄膜リボ
ン状SIC間の結合部を形成するし、またSIC化の段
階で過剰の炭素がSi粒子表面から拡散することにより
8一SIC化してSiが4粒子と「SIC繊維および/
又は薄膜リボン状SIC間のからみ合いを形成する。し
かしながら、不融化されていない有機珪素ポリマーの添
加は、SIC繊維および/又は薄膜リボン状SIC間の
隙間を埋めて一体化させる恐れもあるため、その添加量
は適度でなければならない。
The organosilicon polymer that has not been made infusible softens during the heating process and remains in a liquefied state for a certain period of time. During this liquefied state, it infiltrates between Sj particles and between infusible fibers and infusible thin film ribbons. During the SIC process at a temperature of 120 pi or more, bonds are formed between the SIC fibers and thin film ribbon-like SIC, and excessive carbon diffuses from the Si particle surface during the SIC process. 8-1 SIC is formed by 4 Si particles and ``SIC fiber and/or
or forming entanglements between thin film ribbon-like SICs. However, since the addition of the non-infusible organosilicon polymer may fill the gaps between the SIC fibers and/or the thin film ribbon-like SIC and cause them to be integrated, the amount added must be appropriate.

それについては実施例で述べる。第2の方法は、有機珪
素ポリマーと珪素粉末の混合物を〜,He,Ne,N2
等の非酸化性雰囲気中で500qo〜1400qo(但
しN2は1000午0以上では窒化現象を伴うので、1
000oo以上の場合はN2を除く)の温度範囲で処理
し、有機珪素ポリマーを予め、分解させ、場合によって
8一SIC化させることにより、液化しない状態にした
ものを105ム以下に粉砕した粉砕物、すなわち珪素粉
末粒子の表面の一部または全部が8−SICを一部含む
か、または8一SICを含まない、主として珪素と炭素
よりなる非晶質によって被覆されているK粉末(昭和5
9手1月25日出機明細書において出願人の命名による
)を用いてこれに不融化繊維およびノ又は不融化薄膜リ
ボン状物及び珪素粉末を加えた配合割合の成形体を窒素
ガスあるいは窒素ガスとアンモニアガスとの混合ガス中
で1200〜18000Cの温度範囲で焼成することに
よって得られる。
This will be described in Examples. The second method uses a mixture of organosilicon polymer and silicon powder as ~, He, Ne, N2
500qo to 1400qo in a non-oxidizing atmosphere such as
A pulverized product obtained by processing the organosilicon polymer in a temperature range of (excluding N2 if it is over 000 000 mm), decomposing the organosilicon polymer in advance, and optionally converting it into 8-SIC so that it does not liquefy, and then pulverizing it to a size of 105 μm or less. In other words, K powder (Showa 5
9) (named by the applicant in the machine specification issued on January 25), a molded body containing infusible fibers, infusible thin film ribbons, and silicon powder was heated with nitrogen gas or nitrogen gas. It is obtained by firing in a mixed gas of gas and ammonia gas at a temperature range of 1200 to 18000C.

この方法に於いてt予備処理された有機珪素ポリマーは
、十分活性が高く、不融化された有機珪素ポリマー繊維
および/又は不融化された薄膜リボン状の有機珪素ポリ
マーと接触することにより、両者間に強固な結合が出来
、Si3N4の結合組織と3一SIC繊維およびノ又は
薄膜リボン状6−SICのからみ合い構造をより多く複
雑化することが可能である。更に加うるに第2方法の配
合割合のものに結合剤として不融化されていない有機珪
素ポリマーを加えることにより〜同様の効果が認められ
るが、この場合に於いてもト不融化されていない有機珪
素ポリマーの添加量は第1の方法の場合と同様の理由で
適度でなければならない。これについては実施例をもっ
て説明する。本発明の不融化8一SIC繊維と不融化B
−SIC薄膜リボンは、それぞれ単独に珪素粉末および
/又はK粉末と共に場合により有機珪素高分子化合物を
結合剤として本発明の特殊耐熱セラミックスとすること
ができるが、又これらを混合して上記と同様に本発明の
特殊耐熱セラミックスとすることができる。
In this method, the pretreated organosilicon polymer has a sufficiently high activity that when it comes into contact with the infusible organosilicon polymer fiber and/or the infusible thin film ribbon-like organosilicon polymer, the bond between the two can be increased. It is possible to form a strong bond between the Si3N4 connective tissue and the 3-SIC fibers and the thin film ribbon-like 6-SIC to make the intertwining structure more complex. Furthermore, a similar effect can be observed by adding a non-infusible organosilicon polymer as a binder to the compounding ratio of the second method, but even in this case, the non-infusible organic The amount of silicon polymer added must be moderate for the same reasons as in the first method. This will be explained using examples. Infusible 8-SIC fiber of the present invention and infusible B
- The SIC thin film ribbon can be made into the special heat-resistant ceramic of the present invention by using silicon powder and/or K powder as a binder, and optionally an organic silicon polymer compound as a binder. can be made into the special heat-resistant ceramic of the present invention.

このようにして製造された本発明の8−SIC−Si3
N4系複合特殊耐熱セラミックスは後述の実施例にも述
べるようにその焼成体中の8一SIC:Si3N4の重
量組成比は3〜40:97〜60の範囲であり、かつ組
織中に該8一SICが繊維状および/又は薄膜リボン状
の形状を有して譲るi3N4の粒間に分布し、かつ該8
一SICと該Si3N4とが相互に交錯した組織を有す
る特異的な組織を有し、そのために以下の実施例で示す
如く「優れた耐衝撃性および疲労破壊抵抗性を有する組
織体を形成する。
8-SIC-Si3 of the present invention produced in this way
As described in the Examples below, the N4-based composite special heat-resistant ceramic has a weight composition ratio of 8-SIC:Si3N4 in the range of 3 to 40:97 to 60, and the 8-SIC in the structure is in the range of 97 to 60. SIC is distributed between the particles of i3N4 having a fibrous and/or thin film ribbon-like shape, and the 8
The SIC and the Si3N4 have a unique structure in which they intersect with each other, thereby forming a structure with "excellent impact resistance and fatigue fracture resistance," as shown in the following examples.

しかし、これらの繊維状および薄膜リボン状の応力緩和
構造部の組織体全体に占める割合には上限がある。その
理由はこれらの応力緩和構造部は外力に対して十分な変
形性を有するがために、組織体全体の強度および密度に
対してはマイナスの要因となるためである。過剰に応力
緩和構造部を設けると構造体としての機能を無くしてし
まうからである。これらについては以下の実施例によっ
て、本発明品の実施の具体例及びその効果の優秀さを述
べる。実施例 1 有機珪素ポリマーから常法によって得られた繊維を空気
中で最高200ooまでの加熱処理によって不融化した
もの、直径10山〜100山の不融化繊維(初期の状態
では約500〜100比地の長さを有する)集合したも
のを5〜10地の適度の長さに切断して、表1に示す通
りの割合で、44ム以下の珪素粉末とポリビニールブチ
ラール(P.V.B)のエチルアルコール溶液(P.V
.B量は珪素粉末と不融化繊維の合量に対して外掛で2
〜3重量%)中で緑式混合したものを、エチルアルコー
ルを蒸気化させた。
However, there is an upper limit to the proportion of these fibrous and thin film ribbon stress relaxation structures in the entire tissue. The reason for this is that these stress relaxation structures have sufficient deformability against external forces, and therefore become a negative factor for the strength and density of the entire tissue. This is because if an excessive number of stress relaxation structures are provided, the function as a structure will be lost. Regarding these, specific examples of implementation of the product of the present invention and the excellence of its effects will be described in the following examples. Example 1 Fibers obtained from organosilicon polymers by a conventional method were made infusible by heat treatment in air up to 200 oo, and the infusible fibers had diameters of 10 to 100 (in the initial state, the ratio was about 500 to 100). Cut the aggregate into appropriate lengths of 5 to 10 mm, and add silicon powder of 44 mm or less and polyvinyl butyral (PVB) in the proportions shown in Table 1. ) of ethyl alcohol solution (P.V
.. The amount of B is 2 in terms of the total amount of silicon powder and infusible fiber.
~3% by weight) and the ethyl alcohol was vaporized.

この混合物を成形圧800k9/めで20×20×80
肋のサイズに成形し、この成形体を窒素雰囲気中で昇縞
速度100午C/minで1500qoまでもたらし、
1餌時間保持した。炉内放冷後サンプルを取り出し物性
を測定した。なお、焼成前の成形体を再度工チルアルコ
ール溶液に浸して崩解させた後、不融化繊維を取り出し
て顕微鏡観察によって長さを調査したところ、ほとんど
すべての不融化繊維は3肋以下であり、直径の1の音か
ら3M音程度になっていた。これは混合中に長い繊維(
5伽〜10の)が切断されたものである。物性測定は、
熱衝撃低抗性、常温および熱間の曲げ強度、疲労破壊抵
抗性、および走査型電子顕微鏡による組織観察を行った
This mixture was molded into 20 x 20 x 80 pieces at a molding pressure of 800 k9/me.
The molded body was molded to the size of the ribs, and the molded body was brought to 1500 qo at a rising rate of 100 °C/min in a nitrogen atmosphere.
It was held for 1 feeding period. After cooling in the furnace, the sample was taken out and its physical properties were measured. In addition, after disintegrating the pre-fired molded body by dipping it in the ethyl alcohol solution again, the length of the infusible fibers was examined by microscopic observation. , the diameter ranged from 1 to 3M. This is because long fibers (
5 to 10) are cut off. Physical property measurements are
Thermal shock resistance, bending strength at room temperature and hot temperature, fatigue fracture resistance, and structure observation using a scanning electron microscope were conducted.

熱衝撃抵抗性の測定は、サンプルサイズ5×10×3仇
帆のものを窒素ガス気流中で1200qoで20分間保
持し、その後炉を煩斜ごせ流水中急冷した。
Thermal shock resistance was measured by holding a sample size of 5 x 10 x 3 pieces in a nitrogen gas stream at 1200 qo for 20 minutes, and then quenching the furnace in flowing water.

サンプルを1粉ご間流水中に置いた後取り出し、乾燥後
テストサンプルを各種染料を用いてサンプルの亀裂を見
出すまで反復した。その反復回数で熱衝撃抵抗性を判定
した。曲げ強度は、サンプルサイズ5×5×5仇ゅのも
のをスパン3山吹で、常温および1400qoでの温度
下で測定した。
Each sample was placed in running water and then taken out. After drying, the test sample was repeatedly tested using various dyes until cracks were found in the sample. Thermal shock resistance was determined by the number of repetitions. The bending strength was measured using a sample size of 5 x 5 x 5 pieces with a span of 3 peaks at room temperature and at a temperature of 1400 qo.

疲労破壊抵抗性の測定は、サンプルサイズ5×5×5仇
岬のものを、スパン3比ゆでその中央に半径1縦のヘッ
ドを接触させ、初期荷重として曲げ強さの1%の負荷を
与えた。そして、サンプルの総たわみ量を10ムとして
片振りを行い、その変位にヘッドが必ず追随するように
保った。この状態を1300ooに保持された炉内に再
現し、1秒間に3M団の割合で繰り返し片振りを行った
。供謎サンプルの破断に至るまでの回数及び変形してヘ
ッドが追随しないようになるまでの結果を以つて評価し
た。走査型電子顕微鏡による組織観察は、Si3N4粒
子間に介在する3−SIC繊維の集合化の状況および一
個一個の繊維の独立性の程度、あるいはSi3N総泣子
と6一SIC繊維のからみ合いの程度を中心に観察した
Fatigue fracture resistance was measured by boiling a sample size 5 x 5 x 5 Qianqi with a span ratio of 3, contacting the center with a vertical head with a radius of 1, and applying a load of 1% of the bending strength as an initial load. Ta. Then, the sample was oscillated with a total deflection of 10 μm, and the head was maintained to follow the displacement. This condition was reproduced in a furnace maintained at 1300 oo, and oscillations were repeated at a rate of 3M groups per second. Evaluation was made based on the number of times it took for the mystery sample to break and the time it took for the sample to deform until the head could no longer follow it. Microstructure observation using a scanning electron microscope reveals the state of aggregation of 3-SIC fibers interposed between Si3N4 particles, the degree of independence of each fiber, or the degree of entanglement between Si3N aggregates and 61-SIC fibers. We mainly observed.

物性の評価の方法として、同様な方法で従釆の反応暁絹
Si3N4イ、反応焼結SIC口、反応競結Si3N4
結合SICハ、Mg0添加ホットプレスSi3N4二、
及びB03添加ホットプレスSIC木との比較による方
法を用いた。比較用各種のサンプルの物性値は表2に示
す。B−SICとSj3N4の生成相の重量組成比はX
線回析でクリストパラィトを標準物質に使用し、検量線
を作成して求めたものである。表 1 表2 表1と表2の結果を比較して分るように本発明品は優れ
た耐衝撃性と疲労破壊抵抗性を有している。
As a method for evaluating physical properties, similar methods were used to evaluate the reaction sintered Si3N4, reaction sintered SIC, and reaction competitive Si3N4.
Bonded SIC, Mg0-added hot pressed Si3N4,
and B03-added hot-pressed SIC wood. Table 2 shows the physical property values of various samples for comparison. The weight composition ratio of the generated phase of B-SIC and Sj3N4 is
It was determined by linear diffraction using cristopalite as a standard substance and creating a calibration curve. Table 1 Table 2 As can be seen by comparing the results in Tables 1 and 2, the products of the present invention have excellent impact resistance and fatigue fracture resistance.

これらの性質は、ラジアントチューブやレキュベレータ
ーチューブにとって最も適した特性である。不雛化繊維
の効果は6%以上の添加量で十分なる効果が認められる
が〜50%以上になると逆に品質が低下する。実施例
2 有機珪素ポリマーをnーヘキサンに溶解させた溶液をバ
ットに薄く敷いて、n−へキサンを蒸発させることによ
り、有機珪素ポリマーの薄膜を得る。
These properties are the most suitable for radiant tubes and recuberator tubes. A sufficient effect of non-synthesizing fibers is recognized when the amount added is 6% or more, but when the amount is 50% or more, the quality deteriorates. Example
2. A thin film of the organosilicon polymer is obtained by spreading a thin layer of a solution of an organosilicon polymer dissolved in n-hexane on a vat and evaporating the n-hexane.

これを空気中200qCまでの温度で加熱処理すること
により不葛虫化したものを、5側〜1仇吻程度の矩形状
の薄膜に作製した。この薄膜の厚さを顕微鏡で観察した
ところ、約10〜100山の範囲内に分布していた。こ
の薄膜を用いて実施例1に示す同様の方法にて焼成体を
得て、実施例1に示す同様な方法にて物性測定を行った
。この結果を表3に示す。なお、実施例2に於ける、焼
成前の成形体を再度エチルアルコール溶液に浸して競解
させた後、不葛虫化された薄膜を取り出して顕微鏡観察
によって、長さ、中を調査したところ、すべての不融化
薄膜は3肌以下であり、厚さの5倍から3の音程度にな
っていた。
This was heat-treated in air at a temperature of up to 200 qC to make it into a mold, and a rectangular thin film of about 5 sides to 1 side was prepared. When the thickness of this thin film was observed under a microscope, it was found that the thickness was distributed within a range of about 10 to 100 peaks. Using this thin film, a fired body was obtained in the same manner as in Example 1, and physical properties were measured in the same manner as in Example 1. The results are shown in Table 3. In addition, in Example 2, after immersing the pre-fired molded body in an ethyl alcohol solution and allowing it to dissolve, the length and inside of the film were examined using a microscope. , all the infusible thin films were less than 3 skins, ranging from 5 times the thickness to about 3 tones.

これは混合中に長い不融化膿(初期の寸法は5肌〜10
肌)が寸断されたものである。表 3 実施例1と同様に、薄膜リボン状8−SICが、Si3
N4粒間に介在して応力緩和構造を形成することにより
、熱衝撃抵抗性および疲労破壊抵抗が大中に向上するの
が認められるが、不買虫化繊維と不融化された薄膜リボ
ン状物の効果は3%以下ではあまり明白でなく、3%〜
40%の範囲で認められ、50%以上になると効果は大
中に減少する。
This is a long infusible suppuration during mixing (initial dimensions are 5 skin to 10
skin) has been shredded. Table 3 Similar to Example 1, the thin film ribbon-like 8-SIC was
It is recognized that the thermal shock resistance and fatigue fracture resistance are improved by forming a stress relaxation structure between the N4 grains, but it is found that the thermal shock resistance and fatigue fracture resistance are improved by the N4 grains. The effect is not very obvious below 3%, and from 3%
It is observed in the range of 40%, and the effect decreases to medium when it exceeds 50%.

実施例1と実施例2で分るように、不融化繊維と不融化
された薄膜リボン状物の添加量の効果は、ほとんど同様
であるため、これらの両者を組み合せたものの効果も同
様である。実施例 3 先ず本発明に使用するK粉末を次のようにして製造する
As can be seen from Examples 1 and 2, the effects of the added amounts of infusible fibers and infusible thin film ribbons are almost the same, so the effects of the combination of the two are also similar. . Example 3 First, K powder used in the present invention is manufactured as follows.

有機珪素ポリマー10の重量に対して、n−へキサン1
0の重量部を用いて溶解させた溶液を径44〆以下の珪
素粉末に加えて、湿式混合した後、nーヘキサンを蒸発
気化させた混合物を非酸化性雰囲気下、300qo〜1
40000の温度範囲で熱処理し、該熱処理物を105
ム以下に粉砕した。
1 part n-hexane per 10 parts by weight of organosilicon polymer
After adding the solution dissolved using 0 parts by weight to silicon powder with a diameter of 44 mm or less and wet mixing, the mixture in which n-hexane was evaporated was heated to 300 qo~1 in a non-oxidizing atmosphere.
40,000°C, and the heat-treated product was heated to 105°C.
It was crushed to a fine size.

該粉砕物を以後、K粉末(昭和53手1月25日出厭明
細書)と称す。表4にK粉末の特性を記載する。表4 K粉末の使用の意義は、不融化されていない有機珪素ポ
リマーを35重量%以上含む珪素粉末成形体を1200
oC〜1800qoの範囲で窒化焼成した場合有機珪素
ポリマーの軟化により成形体が変形して完全な成形体が
得られないため、有機珪素ポリマーの使用量が制限され
るためであり、それ以上に有機珪素ポリマーを使用する
ためには、該有機珪素ポリマーを前もって熱処理するこ
とにより、軟化しないように改質する必要がある。
The pulverized product is hereinafter referred to as K powder (Details issued on January 25, 1972). Table 4 lists the properties of K powder. Table 4 The significance of using K powder is that a silicon powder compact containing 35% by weight or more of non-infusible organosilicon polymer
This is because when nitriding is performed in the range of oC to 1800 qo, the molded body is deformed due to softening of the organosilicon polymer and a perfect molded body cannot be obtained, which limits the amount of organosilicon polymer used. In order to use a silicon polymer, it is necessary to heat-treat the organosilicon polymer in advance to modify it so that it does not become soft.

但し、この場合、珪素粉末を含ませずに有機珪素ポリマ
ーのみで熱処理すると軟化時に一体化して、熱処理後の
粉砕が困難になりかつ有機珪素ポリマーの熱処理物と珪
素粉末との成形時での接触程度が低下するため、3一S
ICとSi3N4とのからみ合い部が減少する。従って
〜K粉末の熱処理温度範囲は、表4より50び0〜14
00ooの範囲が好ましい。
However, in this case, if the organosilicon polymer alone is heat-treated without containing silicon powder, it will become integrated during softening, making it difficult to crush after heat treatment and causing contact between the heat-treated organosilicon polymer and the silicon powder during molding. Because the degree decreases, 31S
The amount of entanglement between the IC and Si3N4 is reduced. Therefore, the heat treatment temperature range of ~K powder is 50 and 0 to 14 from Table 4.
A range of 00oo is preferred.

1500qo以上では8−SICの結晶化がより完全と
なり、不融化繊総あるいは不融化薄膜リボン状物から生
成する8一SICとの結合が起りにくくなることは自明
のことである。
It is obvious that at 1,500 qo or more, the crystallization of 8-SIC becomes more complete, making it difficult to combine with 8-SIC produced from the total infusible synthetic fiber or the infusible thin film ribbon.

次に実施例1および実施例2から知られる不融化繊維ま
たは不融化薄膜リボンの6〜4の重量%範囲内の所要量
に対し、表4に記載したK粉末(A〜F)珪素粉末を配
合して坪士組成物をつくるが「 このときのK粉末の量
は、先ずK粉末中のCとSiの含量から〜化学理論量の
生成SIC計算量を求め〜そのSICとしての添加量を
3〜25%の間に定め「含量から添加すべきK粉末量を
定め「上記不融化繊維および/又は不融化薄膜シート量
と上記K粉末量の残量を珪素粉末量と定めて休土組成物
を構成し成形する。
Next, the K powder (A to F) silicon powder listed in Table 4 was added to the required amount within the range of 6 to 4 weight percent of the infusible fiber or infusible thin film ribbon known from Examples 1 and 2. The amount of K powder at this time is determined by first calculating the chemical theoretical amount of SIC produced from the content of C and Si in the K powder, and then calculating the amount added as SIC. ``Determine the amount of K powder to be added from the content and determine the amount of K powder to be added between 3 and 25%. ``Determine the remaining amount of the above infusible fiber and/or infusible thin film sheet and the above K powder amount as the amount of silicon powder, and make a rest composition. Construct and shape things.

このようにして、実施例1に記載した同一の方法で得ら
れた成形体について配合割合および物性値のうち代表的
なものを表5に示す。但しも表中の配合番号は実施例1
および2の配合割合の番号を示している。表 5 ・組織状況 恥.13 K粉末より生成した8−SICと8−SIC
繊維との間に結合が認められ、K粉末が窒化されて生じ
たSらN4粒との間に、より強いからみ合い結合が有り
、Si3N4粒間に8一SIC繊維が分布している。
Table 5 shows typical blending ratios and physical properties of the molded bodies obtained by the same method as described in Example 1. However, the formulation number in the table is Example 1.
and the number of the blending ratio of 2 are shown. Table 5 - Organizational situation shame. 8-SIC and 8-SIC produced from 13K powder
Bonds were observed between the fibers, stronger entanglement bonds were observed between the S and N4 grains produced by nitriding the K powder, and 81 SIC fibers were distributed between the Si3N4 grains.

No.14 K粉末より生成した8一SICと薄膜リボ
ン状8一SICとの間に結合が認められ、K粉末が窒化
されて生じたSi3N4粒との間のより強いからみ合い
が複雑化している。
No. Bonding was observed between the 81 SIC produced from the 14 K powder and the thin film ribbon-like 81 SIC, and the stronger entanglement with the Si3N4 grains produced by nitriding the K powder was complicated.

薄膜リボン状8−SICはK粉末より生成した8−SI
C粒とSi3N4粒間に介在しているものも認められる
Thin film ribbon-like 8-SIC is 8-SI produced from K powder.
Some particles interposed between C grains and Si3N4 grains are also observed.

M15 K粉末より生成した8−SICと繊維状B−S
ICとの間に結合が認められ、K粉末が窒化されて生じ
たS;3N4粒とのより強いからみ合い結合があり、繊
維状8一SICがSi3N4粒間に立体的に複雑に分布
しており、組織は非常に複雑になっている。
8-SIC and fibrous B-S produced from M15 K powder
A bond was observed between the K powder and the nitrided S;3N4 grains, and the fibrous 81 SIC was three-dimensionally and intricately distributed between the Si3N4 grains. The organization has become extremely complex.

M.16 K粉末より生成したB一SIC粒と薄膜リボ
ン状8−SICとの間に結合が認められる。
M. Bonding is observed between the B-SIC grains produced from the 16K powder and the thin film ribbon-like 8-SIC.

K粉末が窒化されて生成したSらN4粒と、8一SIC
粒とのからみ合い結合が大きい。薄膜リボン状ムーSI
Cは立体的に複雑に分布している。No.17 K粉末
より生じた8−SIC粒が、集合した状態で分布してお
り、繊維状8−SICとの結合が多くの部分で認められ
、繊維状B−SICの有する柔軟性が低下しているよう
である。
S N4 grains produced by nitriding K powder and 81 SIC
The entanglement and bonding with grains is large. Thin film ribbon-shaped Mu SI
C has a complex three-dimensional distribution. No. The 8-SIC grains produced from the 17 K powder were distributed in an aggregated state, and bonding with the fibrous 8-SIC was observed in many parts, resulting in a decrease in the flexibility of the fibrous B-SIC. It seems that there are.

Si3N4粒と3−SIC粒間の間隙に繊維状8−SI
Cの介在が認められる。No.18 K粉末より生じた
3−SIC粒が組織の1/3程度を占めており、繊維状
B−SICとの結合が多くの部分で起つている。
Fibrous 8-SI in the gap between 4 Si3N grains and 3-SIC grains
Intervention of C is observed. No. 3-SIC grains produced from 18K powder occupy about 1/3 of the structure, and bonding with fibrous B-SIC occurs in many parts.

8−SIC粒と、Si3N4とのからみ合いは単純にな
っている。
The entanglement between the 8-SIC grains and Si3N4 is simple.

K粉末の効果は、組織の繊密化および強度の向上に寄与
する。
The effect of K powder contributes to tissue densification and improved strength.

No.18に見られるように繊維状8一SIC量が35
%を越えると、熱衝撃抵抗性および疲労破壊抵抗が大中
に低下する。実施例 4 実施例1および実施例2に示している配合割合の範囲の
うち、好ましい範囲のもの2〜5および8〜11に不融
化されていない有機珪素ポリマーを加えた杯±を実施例
1に示した同様の方法にて成形体を作製した。
No. As seen in 18, the fibrous 8-SIC amount is 35
%, thermal shock resistance and fatigue fracture resistance are significantly reduced. Example 4 Example 1 was prepared by adding non-infusible organosilicon polymer to the preferable blending ratio ranges 2 to 5 and 8 to 11 shown in Examples 1 and 2. A molded body was produced in the same manner as shown in .

該成形体の配合割合および物性値のうち、代表的なもの
を表6に示す。但し、不融化されていない有機珪素ポリ
マーはn−へキサンに溶解させて、珪素粉末と先に混合
した後、n−へキサンを蒸発させて得られた混合物に不
融化繊維および不融化薄膜リボン状物を加える方法を用
いている。表6中の配合番号は実施例1および2の符号
の配合割合の体±を指す。
Table 6 shows typical blending ratios and physical property values of the molded product. However, the organosilicon polymer that has not been made infusible is dissolved in n-hexane, mixed with silicon powder first, and then the n-hexane is evaporated to form a mixture that contains infusible fibers and an infusible thin film ribbon. A method of adding similar substances is used. The blending numbers in Table 6 indicate the blending ratios of Examples 1 and 2.

表 6 Si3N4粒と不融化されていない有機珪素ポリマーか
ら生成する8一SICとの化学結合は認められないが、
有機珪素ポリマ−が8一SIC化する段階で生じる余剰
炭素が珪素粉末粒表面に侵入して生じる8−SICと室
化反応によって生じるSi3N4粒との間にからみ合い
が生じる。
Table 6 No chemical bond was observed between Si3N4 grains and 81 SIC produced from non-infusible organosilicon polymer, but
Excess carbon produced when the organosilicon polymer is converted into 8-SIC penetrates into the surface of the silicon powder grains, and entanglement occurs between the 8-SIC produced and the Si3N4 grains produced by the chambering reaction.

このからみ合いが物理的結合部を形成している。不融化
されていない有機珪素ポリマーから生じるP−SICと
繊維状8−SICと薄膜リボン状8−SICとの結合は
容易に起るため、これらの繊維間および薄膜間に不融化
されていない有機珪素ポリマーから侵入すると、これか
ら生じる3−SICが連結部を形成して、繊維および薄
膜を一体化させるために応力緩和構造が損われる。
This intertwining forms a physical bond. Since P-SIC, fibrous 8-SIC, and thin film ribbon-like 8-SIC formed from non-infusible organosilicon polymers are easily bonded to each other, non-infusible organic matter is formed between these fibers and thin films. Upon entry from the silicon polymer, the resulting 3-SIC forms connections that compromise the stress-relaxing structure to integrate the fibers and membranes.

No.24はそのことを意味している。表6に記載する
No.19〜No.23が示しているように、これらの
物性値は表2に記載している従来品に比べて、非常に優
れている。実施例 5実施例1および実施例2から知ら
れる不融化繊維または不融化薄膜リボンの6〜4の重量
%範囲内の所要量に対し、K粉末及び珪素粉末を配合し
て杯士組成物をつくるが、このときのK粉末の配合量は
、先ずK粉末中のCとSiの含量から、イb学量論の生
成SIC計算量を求め、そのSICとしての添加量を3
〜25%の間に定め、含量から添加すべきK粉末量を定
め、上記不融化繊維および/又は不融化薄膜リボン量と
上記K粉末量の残量を珪素粉末量と定め、さらにこれに
対して外掛けで3〜40重量%範囲の有機珪素ポリマー
を添加して坪土組成物として、これを用いて、例1に示
した同様の方法にて成形体を作製した。
No. 24 means that. No. listed in Table 6. 19~No. As shown in No. 23, these physical property values are extremely superior to those of the conventional products listed in Table 2. Example 5 K powder and silicon powder are blended into the required amount of infusible fibers or infusible thin film ribbons in the range of 6 to 4% by weight as known from Examples 1 and 2 to form a cup composition. At this time, the amount of K powder to be blended is determined by first calculating the amount of SIC produced in Ib stoichiometry from the content of C and Si in the K powder, and then calculating the amount added as SIC by 3.
-25%, determine the amount of K powder to be added from the content, define the remaining amount of the above infusible fiber and/or infusible thin film ribbon and the above K powder amount as the silicon powder amount, and further An organic silicone polymer was added in an amount of 3 to 40% by weight to form a clay composition, and a molded article was produced in the same manner as in Example 1 using this composition.

該成形体の配合割合および物性値のうち、代表的なもの
を表7に示す。但し不融化されていない有機珪素ポリマ
ーはnーヘキサンに溶解させて、珪素粉末と先に混合し
た後、n−へキサンを蒸発させて得られた混合物にK粉
末と不融化繊維および不融化薄膜リボン・状物を加える
方法を用いている。表7の配合番号は実施例1および実
施例2の符号の配合割合の杯±を指す。第 7 ・組織の状況 舷.25 K粉末により生成したB一SICと8一SI
C繊維との間に結合が認められ、更には不融化されてい
ない有機珪素ポリマーから生成した6一SICが8一S
IC繊維とSi3N4粒間に細い連結部を部分的に構成
しているのが認められる。
Table 7 shows typical blending ratios and physical property values of the molded product. However, the organosilicon polymer that has not been infusible is dissolved in n-hexane, mixed with silicon powder first, and then the n-hexane is evaporated.・The method of adding similar items is used. The blending numbers in Table 7 refer to the blending ratios of Examples 1 and 2. 7. Organizational situation. B-SIC and 8-SI produced by 25K powder
A bond was observed between the C fiber and the 6-SIC produced from the non-infusible organosilicon polymer.
It can be seen that thin connections are partially formed between the IC fibers and the four Si3N grains.

K粉末が窒化されて生じたSi3N4粒と8一SIC粒
間により強いからみ合いの結合が存在する。
A stronger entanglement bond exists between the Si3N4 grains and the 81 SIC grains produced by nitriding the K powder.

舷.26 K粉末より生成した8一SICと薄膜リボン
状8−SICとの間に結合が認められ、K粉末が窒化さ
れて生じたSi3N4粒との間により強いからみ合いが
複雑化されており、更には薄膜リボン状SIC間に一部
8一SICに.より連結部が認められる。
The gunwale. 26 Bonds were observed between the 8-SIC produced from the K powder and the thin film ribbon-like 8-SIC, and the strong entanglement with the Si3N4 grains produced by nitriding the K powder was complicated. is a part of 8-SIC between thin film ribbon-like SICs. Connecting parts are more visible.

Si3N4粒と薄膜リボン状8一SIC間にSICの細
い連結部が多く認められる。地.27 K粉末より生成
した8−SICと繊維状8一SICとの間には結合が認
められ、K粉末が窒化されて生じたSiが4粒および珪
素粉末が窒化されて生成したSi3N4粒の両者とも8
−SIC粒との間に複雑なからみ合いによる結合部があ
り、更に8一SIC粒と繊維状8−SICとの結合が多
く見られる。
Many thin SIC connections are observed between the Si3N4 grains and the thin film ribbon-like 81 SIC. Earth. 27 A bond was observed between 8-SIC produced from K powder and fibrous 8-SIC, and both 4 Si particles produced by nitriding K powder and 4 Si3N particles produced by nitriding silicon powder were observed. Tomo 8
- There are bonds between the SIC grains due to complicated entanglement, and there are also many bonds between the 8-SIC grains and the fibrous 8-SIC.

繊維状SICは立体的に複雑に分布している。船.28
K粉末より生成したB−SICと薄膜リボン状8一S
ICとの間に結合が認められる。
Fibrous SIC is three-dimensionally and complexly distributed. ship. 28
B-SIC produced from K powder and thin film ribbon-shaped 81S
Bonding is observed between the IC and the IC.

不融化されていない有機珪素ポリマーから生じた8一S
ICはSi3N4粒と薄膜リボン状SICとの間に細い
連結部を構成していて、薄膜リボン状8一SICは立体
的に複雑に分布している。
8-S produced from non-infusible organosilicon polymers
The IC constitutes a thin connection between the Si3N4 grains and the thin film ribbon-like SIC, and the thin film ribbon-like 81 SIC is three-dimensionally distributed in a complicated manner.

No.29 K粉末より生じた8一SIC粒が集合した
状態で分布しており、繊維状SICとの結合が多くの部
分で認められ、更に繊維状SIC間にも多くの結合部が
あり「一体化している部分が一部に認められ、繊維状8
−SICの有する柔軟性が低下していると思われる。
No. The 81 SIC grains produced from the 29 K powder are distributed in an aggregated state, and bonds with fibrous SIC are observed in many parts, and there are also many bonding parts between the fibrous SICs, indicating that they are ``integrated''. In some parts, fibrous 8
-It seems that the flexibility of SIC is decreasing.

Si3N4粒とB−SIC粒間に繊維状8‐SICの介
在が認められる。
Fibrous 8-SIC is observed between the Si3N4 grains and the B-SIC grains.

No.30 K粉末より生じた3一SICと繊維状3−
SICと結合が見られるとともに、不融化されていない
有機珪素ポリマーから生じた8一SICが繊維状8一S
IC間に多く見られも繊維状8−SICの一体化を起し
ており、繊維状3−SICの柔軟性を大中に低下させて
いると思われる。
No. 3-SIC and fibrous 3-SIC produced from 30K powder
Bonding with SIC is observed, and 81 SIC produced from the non-infusible organosilicon polymer is fibrous 81 S.
It is thought that the fibrous 8-SIC often found between ICs is integrated, and the flexibility of the fibrous 3-SIC is greatly reduced.

以上のように「 8一SICの量が35%以上になると
繊維状8一SICおよび/又は薄膜リボン状3−SIC
の応力緩和吸収構造が害われるため「熱衝撃抵抗性およ
び疲労破壊抵抗性が大中に低下する。
As mentioned above, if the amount of 8-SIC exceeds 35%, fibrous 8-SIC and/or thin film ribbon-like 3-SIC
``Thermal shock resistance and fatigue fracture resistance are significantly reduced because the stress relaxation absorption structure of the material is damaged.

このことは不敵化されていない有機珪素ポリマーの添加
量を外籍で20%以上になった場合でも同じである。本
発明品は反応嬢綾法で製造するので、押し出し成形、射
出成形、銭込成形「アィソスタティツクプレスによる成
形、及び金型成形等多くの成形手段を取ることができ「
異型形状を得ることができるために特殊耐熱材及び高温
構造材の分野での応用は広い。
This is the same even when the amount of the organic silicon polymer that has not been made invulnerable is increased to 20% or more. Since the product of the present invention is manufactured by the reaction molding method, it is possible to use many molding methods such as extrusion molding, injection molding, coin molding, isostatic press molding, and mold molding.
Since it is possible to obtain irregular shapes, it has a wide range of applications in the fields of special heat-resistant materials and high-temperature structural materials.

また容易に機械加工ができる程度までに窒化し、ネジ切
り等の機械加工を施し、再度窒化しても焼成体が得られ
るために〜複雑な形状をも得ることができる。従って、
本発明品の有する強度で適用できる範囲は自動車エンジ
ン部材、熱交換用パイプ、タービン部村、ラジアントチ
ューブ「熱間で使用する治具「支持台等の金属部材の代
替品として及びセラミックスとしてセラミックス分野、
原子力分野「化学及び化学工学分野及び製鉄分野等の熱
衝撃抵抗性及び熱疲労破壊抵抗性を要求される分野に於
いて「本発明品が有効に使用されうろことが期待できる
Further, even if the material is nitrided to the extent that it can be easily machined, machined such as thread cutting, and then nitrided again, a fired body can be obtained, so that even complex shapes can be obtained. Therefore,
The strength of the product of the present invention can be applied to automobile engine parts, heat exchange pipes, turbine parts, radiant tubes, jigs used in hot conditions, as a substitute for metal parts such as support stands, and as a ceramic field. ,
It is expected that the product of the present invention will be effectively used in fields that require thermal shock resistance and thermal fatigue fracture resistance, such as the nuclear power field, the chemical and chemical engineering field, and the steel manufacturing field.

Claims (1)

【特許請求の範囲】 1 (1) 炭素と珪素を主な骨格成分とする有機珪素
高分子化合物を紡糸し不融化処理を施して得た不融化繊
維6〜40重量%と(2) 残部が44μm径以下の珪
素粉末との混合物を成形し窒化性ガス雰囲気中1200
〜1800℃で窒化焼成することを特徴とするβ−Si
C−Si_3N_4系複合セラミツクスの製造方法。 2 (1) 炭素と珪素を主な骨格成分とする有機珪素
高分子化合物を紡糸し不融化処理を施して得た不融化繊
維6〜40重量%と、(2) 残部が44μm径以下の
珪素粉末と、炭素と珪素を主な骨格成分とする有機珪素
高分子化合物と珪素粉末との混合物を非酸化性雰囲気中
で熱処理して得た粉末、及び、炭素と珪素との混合粉末
の中の少なくとも一つとの混合物を成形し窒化性ガス雰
囲気中1200〜1800℃で窒化焼成することを特徴
とするβ−SiC−Si_3N_4系複合セラミツクス
の製造方法。
[Scope of Claims] 1 (1) 6 to 40% by weight of infusible fiber obtained by spinning an organic silicon polymer compound whose main skeleton components are carbon and silicon and subjecting it to infusibility treatment, and (2) the balance being A mixture with silicon powder with a diameter of 44 μm or less was molded and heated at 1200 μm in a nitriding gas atmosphere.
β-Si characterized by being nitrided and fired at ~1800°C
A method for manufacturing C-Si_3N_4-based composite ceramics. 2 (1) 6 to 40% by weight of infusible fibers obtained by spinning an organic silicon polymer compound whose main skeleton components are carbon and silicon and subjecting it to infusibility treatment, and (2) the remainder being silicon with a diameter of 44 μm or less. powder, a powder obtained by heat treating a mixture of an organic silicon polymer compound whose main skeleton components are carbon and silicon, and silicon powder in a non-oxidizing atmosphere, and a mixed powder of carbon and silicon. 1. A method for producing a β-SiC-Si_3N_4 composite ceramic, comprising forming a mixture with at least one of the ceramics and nitriding it at 1200 to 1800°C in a nitriding gas atmosphere.
JP55032046A 1980-03-12 1980-03-12 Production method of β-SiC-Si↓3N↓4-based composite ceramics Expired JPS6026075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55032046A JPS6026075B2 (en) 1980-03-12 1980-03-12 Production method of β-SiC-Si↓3N↓4-based composite ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55032046A JPS6026075B2 (en) 1980-03-12 1980-03-12 Production method of β-SiC-Si↓3N↓4-based composite ceramics

Publications (2)

Publication Number Publication Date
JPS56129668A JPS56129668A (en) 1981-10-09
JPS6026075B2 true JPS6026075B2 (en) 1985-06-21

Family

ID=12347913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55032046A Expired JPS6026075B2 (en) 1980-03-12 1980-03-12 Production method of β-SiC-Si↓3N↓4-based composite ceramics

Country Status (1)

Country Link
JP (1) JPS6026075B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107982A (en) * 1982-12-10 1984-06-22 東海カ−ボン株式会社 Highly antispalling zirconia refractories
JPS62158172A (en) * 1985-12-29 1987-07-14 株式会社 香蘭社 Manufacture of fiber reinforced ceramic

Also Published As

Publication number Publication date
JPS56129668A (en) 1981-10-09

Similar Documents

Publication Publication Date Title
US4158687A (en) Method for producing heat-resistant composite materials reinforced with continuous silicon carbide fibers
US7893000B2 (en) Boron carbide ceramic and manufacturing method thereof
JP2704332B2 (en) Carbon fiber reinforced silicon nitride nanocomposite and method for producing the same
Zhuang et al. Realizing high ceramic yield and low shrinkage of in-situ formed lightweight 3D-SiC (rGO) px polymer-derived ceramics with excellent fracture toughness
FR2470756A1 (en) SIC-SI3N4 COMPOUND SYSTEM FOR SPECIAL CERAMIC HEAT-RESISTANT MATERIALS AND METHOD OF MANUFACTURE
US20020006506A1 (en) Fibrous composite material and process for producing the same
JP4458192B2 (en) SiC fiber-bonded ceramics and method for producing the same
Hurwitz et al. Polymer Derived Nicalon/Si‐C‐O Composites: Processing and Mechanical Behavior
Bernard et al. Crystallinity, crystalline quality, and microstructural ordering in boron nitride fibers
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JP2010070421A (en) METHOD FOR MANUFACTURING SiC FIBER-REINFORCED SiC COMPOSITE MATERIAL
Takeda et al. Properties of polycarbosilane-derived silicon carbide fibers with various C/Si compositions
Rocha et al. Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix
RU2718682C2 (en) Method of making ceramics based on silicon carbide, reinforced with silicon carbide fibres
JPS6026075B2 (en) Production method of β-SiC-Si↓3N↓4-based composite ceramics
JP3604438B2 (en) Silicon carbide based fiber composite material and method for producing the same
CN100430341C (en) Method for producing a precursor ceramic
JP3141512B2 (en) Silicon carbide based inorganic fiber reinforced ceramic composite
Yamamura et al. Improvement of Si‐Ti (Zir)‐C‐O Fiber and a Precursor Polymer for High Temperature CMC
EP0444426B1 (en) Process for producing a silicon carbide whisker-reinforced silicon nitride composite material
Steinau et al. Functionally graded ceramics derived from preceramic polymers
JP2001181046A (en) Inorganic fiber bound ceramics, method for producing the same and high-surface accuracy member using the same
RU2795405C1 (en) Method for obtaining reinforced composite material based on silicon carbide
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber