JPS60259775A - Swash plate type compressor - Google Patents

Swash plate type compressor

Info

Publication number
JPS60259775A
JPS60259775A JP59116296A JP11629684A JPS60259775A JP S60259775 A JPS60259775 A JP S60259775A JP 59116296 A JP59116296 A JP 59116296A JP 11629684 A JP11629684 A JP 11629684A JP S60259775 A JPS60259775 A JP S60259775A
Authority
JP
Japan
Prior art keywords
swash plate
compressor
low pressure
chamber
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116296A
Other languages
Japanese (ja)
Inventor
Taku Degawa
出川 卓
Yukio Takahashi
由起夫 高橋
Kazuro Takano
和朗 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59116296A priority Critical patent/JPS60259775A/en
Publication of JPS60259775A publication Critical patent/JPS60259775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To restrain lubricating oil from flowing into a low-pressure chamber to the utmost as well as to improve the relationship between an oil circulating rate of a refrigerating cycle and a refrigerant flow rate, by installing a low-pressure passage, ranging from a swash plate chamber to the low-pressure chamber, in and around a compressor rotary shaft. CONSTITUTION:A swash plate chamber 7 and each of low-ressure chambers 18 and 18' are partitioned off by a partition walls 17 and 17'. Inside this swash plate chamber, lubricating oil is separated from a suction refrigerant by rotation of a swash plate 2. This separated lubricating oil is the higher in a distribution rate the nearer to the circumferential side of the inside of the swash plate chamber 7. Therefore, each of low-pressure flow passages 19 and 19' is installed in these partition walls 17 and 17' in and around a compressor rotary shaft 3 being low in this distribution rate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自動車用空調装置などに使用される(1) 斜板式圧縮機に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention is used for automobile air conditioners, etc. (1) This relates to a swash plate compressor.

〔発明の背景〕[Background of the invention]

冷凍サイクルを循環する冷媒中に潤滑油を混入し、上記
潤滑油を含んだ冷媒を斜板室に導いて斜板その他の圧縮
機摺動部に直接吹き付けるようにした、いわゆる噴霧潤
滑方式を採用する斜板式圧縮機にあっては、圧縮機摺動
部が低温冷媒で一旦冷却されたところに直接潤滑油が析
出するので、潤滑効果が高く、潤滑油の使用量が少なく
て済むという利点がある。
A so-called spray lubrication method is adopted in which lubricating oil is mixed into the refrigerant circulating in the refrigeration cycle, and the refrigerant containing the lubricating oil is guided into the swash plate chamber and sprayed directly onto the swash plate and other sliding parts of the compressor. In a swash plate compressor, the lubricating oil is deposited directly where the compressor sliding parts are once cooled with low-temperature refrigerant, so the lubrication effect is high and the advantage is that the amount of lubricating oil used is small. .

ここで、従来実用に供されている斜板式圧縮機の内部構
造を第1図に示す。
FIG. 1 shows the internal structure of a swash plate compressor that has been put into practical use in the past.

第1図において、1および1′は斜板2を挟んで対向す
るシリンダーブロックを示し、シリンダーブロック1,
1′には、圧縮機回転軸3が、軸受4,4′を介して支
持されておシ、回転軸3には、上記斜板2が取り付けら
れている。回転軸3の回転は、斜板2と従来公知の鋼球
と摺動子とを介してピストン(いずれも図示せず)に伝
えられ、当該ピストンの往復運動に変換される。潤滑油
を(2) 混入した冷媒ガスは、低圧冷媒吸入口5を介し、ケーシ
ング6とシリンダーブロック1.1′によって形成され
た斜板室7内に吸入される。斜板室7内に吸入された冷
媒ガスは、斜板2に代表される圧縮機摺動部を冷却する
と同時に、冷媒ガス中に混入されている潤滑油によって
上記圧縮機摺動部が潤滑される。そして、その陵、斜板
室7内の冷媒ガスは、仕切壁8,8′の上方から他の仕
切壁9.9′の低圧通路10.10’を通って低圧室1
1.11’に至り、さらに他の仕切壁12゜12′の低
圧通路13.13’を通って次の低圧室14.14’に
導かれた後、図示を省略したシリンダに送り込まれる。
In FIG. 1, 1 and 1' indicate cylinder blocks facing each other with a swash plate 2 in between.
1', a compressor rotating shaft 3 is supported via bearings 4, 4', and the rotating shaft 3 is attached to the swash plate 2. The rotation of the rotating shaft 3 is transmitted to a piston (none of which is shown) via the swash plate 2 and conventionally known steel balls and sliders, and is converted into reciprocating motion of the piston. The refrigerant gas mixed with (2) lubricating oil is drawn into the swash plate chamber 7 formed by the casing 6 and the cylinder block 1.1' through the low-pressure refrigerant suction port 5. The refrigerant gas sucked into the swash plate chamber 7 cools the compressor sliding parts represented by the swash plate 2, and at the same time, the compressor sliding parts are lubricated by the lubricating oil mixed in the refrigerant gas. . Then, the refrigerant gas in the swash plate chamber 7 passes from above the partition walls 8, 8' through the low pressure passages 10, 10' of the other partition walls 9, 9', and enters the low pressure chamber 7.
1.11', and then guided to the next low pressure chamber 14.14' through the low pressure passage 13.13' of the other partition wall 12.12', and then fed into a cylinder (not shown).

図中、15.15’はそれぞれシリンダーブロック1.
1′に設けた油入を示している。
In the figure, 15 and 15' are respectively cylinder blocks 1.
The oil tank installed at 1' is shown.

従来実用に供されている斜板式圧縮機の内部構造は以上
のとおりであるが、第1図に示す従来型この種圧縮機に
おいては、既述のように、斜板室7内で斜板2などを冷
却・潤滑した後の冷媒ガスが仕切壁8,8′の上方を通
って低圧室11゜11′側に導かれるため、次に述べる
ような問題のあることが判明した。
The internal structure of the swash plate type compressor that has been used in practical use is as described above, but in the conventional compressor of this type shown in FIG. It has been found that the following problems arise because the refrigerant gas after cooling and lubricating the parts passes above the partition walls 8, 8' and is guided to the low pressure chamber 11°11' side.

すなわち、冷凍サイクルを循環する冷媒中に潤滑油を混
入し、上記潤滑油を′aんだ冷媒を斜板室7に導いて直
接圧縮機摺動部に吹き1勺ける114造の斜板式圧縮機
にあっては、斜板2の回転により、斜板室7内が非常に
効率のよい油分離器として機能することになる。これを
換註すると、斜板室7内において、斜板2の回転によっ
て冷媒ガスから分離された油は、斜板室7内の外周方向
に飛ばされる傾向を示すため、斜板室7内における油の
分布状態は、圧縮機回転軸3に近い側で油分比率が低く
、回転軸3から遠ざかるにつれて油分比率が高くなる。
That is, a 114-built swash plate compressor in which lubricating oil is mixed into the refrigerant circulating in the refrigeration cycle, and the refrigerant containing the lubricating oil is guided to the swash plate chamber 7 and directly blown onto the sliding parts of the compressor. In this case, the rotation of the swash plate 2 causes the inside of the swash plate chamber 7 to function as a highly efficient oil separator. In other words, the oil separated from the refrigerant gas by the rotation of the swash plate 2 in the swash plate chamber 7 tends to be blown away toward the outer periphery of the swash plate chamber 7, so the oil distribution in the swash plate chamber 7 is In this state, the oil content ratio is low on the side closer to the compressor rotating shaft 3, and the oil content ratio increases as the distance from the rotating shaft 3 increases.

したがって、第1図に示すように、斜板室7内で斜板2
などを冷却・潤滑した後の冷媒ガスが仕切壁8,8′の
上方を通って低圧室11.11’側に導かれる構造の斜
板式圧縮機にあっては、油分比率の高い斜板室7の外周
から低圧室11゜11′に冷媒ガスを送り込む形となる
ため、斜板室7内で一度分離された油が低圧室11.1
1’側に送り込まれる結果全招来するが、油循環率と冷
凍能力との間には、油循環率が増加すると冷凍能力が低
下するという相関々係がある。
Therefore, as shown in FIG.
In a swash plate compressor having a structure in which the refrigerant gas after cooling and lubricating the swash plate chamber 7, which has a high oil content, passes above the partition walls 8, 8' and is guided to the low pressure chamber 11, 11' side. Since the refrigerant gas is sent from the outer periphery of the swash plate chamber 7 to the low pressure chamber 11.
As a result of being sent to the 1' side, the oil circulation rate and the refrigerating capacity are correlated, so that as the oil circulation rate increases, the refrigerating capacity decreases.

上記を考慮して、本出願人は、先に、特開昭52−36
312号として、第2図に示すごとき構造の斜板式圧縮
機を提案した。
In consideration of the above, the present applicant has previously proposed
As No. 312, we proposed a swash plate compressor with the structure shown in Figure 2.

第2図において、第1図と同一符号は同一部分を示し、
特開昭52−36312号には、グラスウールなどで作
ったフィルター16.16’を冷媒通路の途中に設け、
上記フィルター16.16’で冷媒ガス中の油を分離す
る技術が開示されている。
In FIG. 2, the same symbols as in FIG. 1 indicate the same parts,
In JP-A No. 52-36312, a filter 16.16' made of glass wool or the like is installed in the middle of the refrigerant passage,
A technique for separating oil in refrigerant gas using the filter 16, 16' is disclosed.

しかしながら、冷媒通路の途中にフィルター16.16
’を設け、上記フィルター16.16’によって冷媒ガ
ス中の油を分離する構造にあっては、フィルター16.
16’による油分離効率を高めようとすると、冷媒通路
抵抗が増大し、体積効率の低下をきたす傾向を示す。ま
た、上記とは反対に、フィルター16.16’として、
体積効率を損なわないフィルターを用いた場合は、油分
離効果を十分に達成することができない。したがって、
冷媒通路の途中にフィルター16.16’を設ける構造
の斜板式圧縮機にあっては、上記二点を十分に満足でき
るフィルターの開発が望まれる。
However, there is a filter 16.16 in the middle of the refrigerant passage.
In a structure in which the oil in the refrigerant gas is separated by the filter 16.16', the filter 16.
If an attempt is made to increase the oil separation efficiency by 16', the refrigerant passage resistance tends to increase and the volumetric efficiency tends to decrease. Also, contrary to the above, as a filter 16.16',
If a filter that does not impair volumetric efficiency is used, a sufficient oil separation effect cannot be achieved. therefore,
In a swash plate compressor having a structure in which a filter 16, 16' is provided in the middle of a refrigerant passage, it is desired to develop a filter that can fully satisfy the above two points.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の問題点を解決すへく、種
々研究、開発の結果なされたものであって、その目的と
するところは、従来とは全く異なる構造の採用により、
斜板室内の油が当該斜板室に連なる低圧室側、ひいては
冷凍サイクルに流入するのを極力阻止することができ、
冷凍サイクルの油循環率を低減して、当該冷凍サイクル
の油循環率−冷媒流量の関係を従来よりも改善すること
のできる、冷凍能力にすぐれた斜板式圧縮機を提供しよ
うとするものである。
The present invention has been made as a result of various research and development in order to solve the above-mentioned problems of the prior art, and its purpose is to:
The oil in the swash plate chamber can be prevented as much as possible from flowing into the low pressure chamber side connected to the swash plate chamber, and eventually into the refrigeration cycle.
The object of the present invention is to provide a swash plate compressor with excellent refrigerating capacity that can reduce the oil circulation rate of the refrigeration cycle and improve the relationship between the oil circulation rate and the refrigerant flow rate of the refrigeration cycle compared to the conventional one. .

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、冷凍サイクルを循
環する冷媒中に潤滑油を混入し、上記潤滑油を含んだ冷
媒を斜板室に導いて直接圧縮機摺動部に吹き伺ける構造
の斜板式圧縮機において、上記斜板室から低圧室に連な
る低圧通路を、圧縮機回転軸の近傍に位置して、斜板室
と低圧室とを仕切る仕切壁に貫通して設けたことを特徴
とするものである。
In order to achieve the above object, the present invention has a structure in which lubricating oil is mixed into the refrigerant circulating in the refrigeration cycle, and the refrigerant containing the lubricating oil is guided into the swash plate chamber and can be blown directly onto the sliding parts of the compressor. The swash plate compressor is characterized in that a low pressure passage connecting the swash plate chamber to the low pressure chamber is located near the compressor rotating shaft and penetrates a partition wall that partitions the swash plate chamber and the low pressure chamber. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を、第3図ない1〜第7図にもとづいて説
明すると、第3図は本発明に係る斜板式圧縮機の一実施
例を示す内部構造の縦断面図、第4図は第3図のZ矢視
図で、第3図および第4図において、第1図および第2
図と同一符号は同一部分、17,17′は斜板室7と低
圧室18.18’との間を仕切る仕切壁を示し、本発明
においては、上記斜板室7から低圧室18.18’に連
なる低圧通路19.19’を、圧縮機回転軸3の近傍に
位置して、上記仕切壁17.17’に貫通して設けたこ
とを特徴とするものである。
Hereinafter, the present invention will be explained based on Figures 1 to 7 (not Figure 3). Figure 3 is a longitudinal sectional view of the internal structure of an embodiment of the swash plate compressor according to the present invention, and Figure 4 is This is a Z arrow view in Figure 3, and in Figures 3 and 4, Figures 1 and 2 are
The same reference numerals as in the drawings indicate the same parts, and 17 and 17' indicate partition walls that partition the swash plate chamber 7 and the low pressure chamber 18.18'. A continuous low-pressure passage 19.19' is located near the compressor rotating shaft 3 and is provided through the partition wall 17.17'.

以上の構成において、潤滑油を混入した冷媒ガスは、低
圧冷媒吸入口5を介し、ケーシング6とシリンダーブロ
ック1,1′によって形成された斜板室7内に吸入され
る。斜板室7内に吸入された冷媒ガスは、斜板2に代表
される圧縮機摺動部を冷却すると同時に、冷媒ガス中に
混入されている潤滑油によって、上記圧縮機摺動部が潤
滑される。そして、その後、斜板室7内の冷媒ガスは、
圧縮機回転軸3の近傍に位置する油分比率の低い仕切壁
17.17’の低圧通路19.19’を通って低圧室1
8.18’に至る。なお、図示実施例において、低圧室
18.18’に導かれた冷媒ガスは、仕切壁9,9′に
よって形成された迂回路(低圧室18.18’)内を略
90度向きを変えて流れる間にさらに油を分離され、核
部で分離された油は、油入15,15’を経て圧縮機回
転軸3に供給される。また、図示実施例において、斜板
室7から低圧室18,18′に至る低圧通路19.19
’の周囲の肉厚は、第5図(a)に示すように、その回
シの仕切壁17,17′の肉厚よシも厚く成形されてい
る。したがって、斜板2による潤滑油の投掛作用により
、仕切壁17.17’に撥ね掛けられた油りが当該仕切
壁17,17′の表面に沿って流れ落ちてきても、その
流下油りは、低圧通路19.19’の周囲に沿って下方
に流れ落ちるため、流下油りが冷媒Rとともに低圧室1
8.18’に流入するのを効果的に阻止することができ
る。他方、斜板室7から低圧室18゜18′に至る低圧
通路19.19’の周囲の肉厚を、第5図(b)に示す
ように、その周りの仕切壁17.17’の肉厚と同一と
すると、斜板2による潤滑油の投掛作用によって仕切壁
17.17’に撥ね掛けられた油りが当該仕切壁17.
17’の表面に沿って流れ落ちてきた場合に、流ド油り
の一部が冷媒Rとともに低圧室18.18’に流入する
が、既述のように、圧縮機回転軸3に近い側での油分比
率は低いため、流下油りの一部が低圧室18.18’に
流入することによる影響は、本発明圧縮機を実際に運転
するーヒで殆ど無視することができる。
In the above configuration, refrigerant gas mixed with lubricating oil is sucked into the swash plate chamber 7 formed by the casing 6 and the cylinder blocks 1 and 1' through the low-pressure refrigerant suction port 5. The refrigerant gas sucked into the swash plate chamber 7 cools the compressor sliding parts represented by the swash plate 2, and at the same time, the compressor sliding parts are lubricated by the lubricating oil mixed in the refrigerant gas. Ru. After that, the refrigerant gas in the swash plate chamber 7 is
The low pressure chamber 1 passes through the low pressure passage 19.19' of the partition wall 17.17' with a low oil content located near the compressor rotating shaft 3.
It reaches 8.18'. In the illustrated embodiment, the refrigerant gas guided to the low pressure chamber 18, 18' changes its direction approximately 90 degrees within the detour (low pressure chamber 18, 18') formed by the partition walls 9, 9'. While flowing, the oil is further separated, and the oil separated at the core is supplied to the compressor rotating shaft 3 via oil reservoirs 15, 15'. Also, in the illustrated embodiment, low pressure passages 19, 19 leading from the swash plate chamber 7 to the low pressure chambers 18, 18'
As shown in FIG. 5(a), the wall thickness around the swivel is thicker than that of the partition walls 17, 17' of the swivel. Therefore, even if the oil splashed onto the partition walls 17, 17' flows down along the surfaces of the partition walls 17, 17' due to the lubricating oil spraying action of the swash plate 2, the falling oil will not flow. , because it flows downward along the periphery of the low pressure passage 19, 19', the flowing oil flows into the low pressure chamber 1 along with the refrigerant R.
8.18' can be effectively prevented. On the other hand, as shown in FIG. 5(b), the wall thickness around the low pressure passage 19.19' leading from the swash plate chamber 7 to the low pressure chamber 18°18' is the wall thickness of the partition wall 17.17' around it. If it is the same as that of the partition wall 17.17', the oil splashed onto the partition wall 17.
17', a part of the spilled oil flows into the low pressure chamber 18 and 18' together with the refrigerant R, but as mentioned above, it flows down on the side near the compressor rotating shaft 3. Since the oil content ratio is low, the influence of part of the flowing oil flowing into the low pressure chamber 18, 18' can be almost ignored when actually operating the compressor of the present invention.

第6図は第1図に示す従来型圧縮機と本発明圧縮機との
冷媒流量−油循環率特性線図である。
FIG. 6 is a refrigerant flow rate-oil circulation rate characteristic diagram of the conventional compressor shown in FIG. 1 and the compressor of the present invention.

(9) 第6図に示すように、第1図に示す従来制圧縮機と本発
明圧縮機とにそれぞれ150ccの潤滑油を封入した場
合、冷媒流量がCkg/hの時、従来型圧縮機の油循環
率はB%であるのに対し、本発明圧縮機のそれはA%で
あり、従来型圧縮機に比べて本発明圧縮機の油循環率は
、約50係程度低減していることが判る。
(9) As shown in Fig. 6, when the conventional compressor shown in Fig. 1 and the compressor of the present invention are each filled with 150 cc of lubricating oil, when the refrigerant flow rate is C kg/h, the conventional compressor The oil circulation rate of the compressor of the present invention is B%, whereas that of the compressor of the present invention is A%, which means that the oil circulation rate of the compressor of the present invention is reduced by about 50 factors compared to the conventional compressor. I understand.

第7図は第1図に示す従来型圧縮機と本発明圧縮機との
油循環率−冷凍能力特性線図Cある。
FIG. 7 is an oil circulation rate-refrigeration capacity characteristic diagram C of the conventional compressor shown in FIG. 1 and the compressor of the present invention.

第7図に示すように、油循環率0φの時の冷凍能力を1
とすると、従来型圧縮機の冷凍能力は0.87であるの
に対し、本発明圧縮機のそれは0.97であり、下式か
ら、本発明圧縮機の冷凍能力は、従来型圧縮機のそれよ
りも約11%程度回上していることが判る。
As shown in Figure 7, the refrigeration capacity when the oil circulation rate is 0φ is 1
Then, the refrigerating capacity of the conventional compressor is 0.87, while that of the compressor of the present invention is 0.97. From the formula below, the refrigerating capacity of the compressor of the present invention is equal to that of the conventional compressor. It can be seen that the rate is about 11% higher than that.

なお、第1図に示す従来型圧縮機に封入する潤滑油の量
を減らせば、第6図および第7図に符号Bで示す油循環
率を下げることができる。しかしく10) ながら、第1図に示す従来型圧縮機に封入する潤滑油の
址を、たとえば150 CCから100CCに減らした
場合は、斜板2その他の圧縮機摺動部に対する潤滑油が
不十分となって発熱量が増大し、冷凍サイクルの温度が
大幅に上昇するため、圧縮機の耐久性を維持する上で好
ましくない。これに対し、本発明においては、第6図お
よび第7図に符号Aで示すように、冷凍サイクル中の油
循環率を従来よりも低減することができるから、圧縮機
に封入する潤滑油の量を、たとえば150ccとしても
、斜板室7内には、従来よシも多量の潤滑油が貯溜され
るものであって、この斜板室7内の油は、斜板2による
投掛作用によって常に圧縮機摺動部を潤滑し、圧縮機摺
動部の発熱を抑止するように機能するものであるから、
冷凍ザイクルの温度上昇を小さな範囲内に抑えつつ、圧
縮機の耐久性をも良好に維持することができる。
Note that by reducing the amount of lubricating oil sealed in the conventional compressor shown in FIG. 1, the oil circulation rate shown by the symbol B in FIGS. 6 and 7 can be lowered. However, if the amount of lubricating oil sealed in the conventional compressor shown in Fig. 1 is reduced from, for example, 150 CC to 100 CC, the lubricating oil for the swash plate 2 and other sliding parts of the compressor will become insufficient. As a result, the amount of heat generated increases and the temperature of the refrigeration cycle rises significantly, which is not preferable in terms of maintaining the durability of the compressor. On the other hand, in the present invention, as shown by the symbol A in FIGS. 6 and 7, the oil circulation rate during the refrigeration cycle can be lowered than before, so that the lubricating oil sealed in the compressor can be reduced. Even if the amount is, for example, 150 cc, a larger amount of lubricating oil is stored in the swash plate chamber 7 than in the past, and the oil in the swash plate chamber 7 is constantly maintained by the pouring action of the swash plate 2. It functions to lubricate the compressor sliding parts and suppress heat generation in the compressor sliding parts.
It is possible to suppress the temperature rise of the frozen cycle within a small range and maintain good durability of the compressor.

捷た、第1図に示す従来型圧縮機の冷凍目ヒカを向上さ
せるためには、圧縮機の容量を大きくすればよいが、こ
のようにすると、圧縮機そのものは(11) 勿論のこと、コンデンサー、エバポレーターなどの関連
機器の容量も大きくする必要があシ、コストの大幅上昇
は避けられない。しかしながら、本発明においては、圧
縮機の一部を設計変更するだけで冷凍能力の大幅向上化
をはかることができ、コンデンサー、エバポレーターな
どの関連機器の容量を大きくする必要はないので、経済
性の点でもすぐれている。
In order to improve the refrigeration loss of the conventional compressor shown in Fig. 1, it is possible to increase the capacity of the compressor, but in this case, the compressor itself becomes It is also necessary to increase the capacity of related equipment such as condensers and evaporators, and a significant increase in costs is unavoidable. However, in the present invention, the refrigerating capacity can be significantly improved by simply changing the design of a part of the compressor, and there is no need to increase the capacity of related equipment such as condensers and evaporators. It is also excellent in many respects.

第8図は、本発明による冷媒吸入構造を、外殻とシリン
ダボア形成体が一体構造をなす斜板式圧縮機に適用した
実施例である。本実施例においては、油を含んだ低圧冷
媒はリア側シリンダーブロック1′に開口した低圧冷媒
吸入口5から斜板室7に入る。その後斜板2の回転によ
る遠心分離作用により油分の少なくなる回転軸3近傍に
設けた低圧通路19.19’を通って低圧室18.18
’内に流入する。このため、本実施例においても第3図
に示した実施例と同様の効果をもち、油循環率を低減さ
せ、耐久性を維持しつつ冷凍能力にすぐれた圧縮機を得
ることができる。
FIG. 8 shows an embodiment in which the refrigerant suction structure according to the present invention is applied to a swash plate compressor in which an outer shell and a cylinder bore forming body form an integral structure. In this embodiment, the low-pressure refrigerant containing oil enters the swash plate chamber 7 through the low-pressure refrigerant suction port 5 opened in the rear cylinder block 1'. Thereafter, the oil passes through the low pressure passage 19.19' provided near the rotating shaft 3, where the oil content decreases due to the centrifugal separation effect caused by the rotation of the swash plate 2, and then passes through the low pressure chamber 18.18.
'Flow into.' Therefore, this embodiment also has the same effect as the embodiment shown in FIG. 3, and it is possible to obtain a compressor with excellent refrigerating ability while reducing the oil circulation rate and maintaining durability.

(12) 〔発明の効果〕 以上詳述したように、本発明によれば従来とは全く異な
る構造の採用によシ、斜板室内の油が当該斜板室に連な
る低圧室側に流入するのを極力阻止することができ、冷
凍サイクルに流入する潤滑油の量を低減することができ
るものであって、冷媒サイクルに流入する潤滑油の量を
低減できるということは、取シも直さず、当該冷凍サイ
クルの油循環率が低減することを意味し、その結果、冷
凍サイクルの油循環率−冷媒流量の関係を従来よりも改
善した、冷凍能力にすぐれた斜板式圧縮機を得ることが
できる。
(12) [Effects of the Invention] As detailed above, according to the present invention, by adopting a structure completely different from the conventional one, oil in the swash plate chamber can be prevented from flowing into the low pressure chamber side connected to the swash plate chamber. It is possible to prevent this as much as possible and reduce the amount of lubricating oil flowing into the refrigeration cycle. Being able to reduce the amount of lubricating oil flowing into the refrigerant cycle means that there is no need to change the mechanism. This means that the oil circulation rate of the refrigeration cycle is reduced, and as a result, it is possible to obtain a swash plate compressor with excellent refrigeration capacity that improves the relationship between the oil circulation rate of the refrigeration cycle and the refrigerant flow rate compared to the conventional one. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来実用に供されている斜板式圧縮機の内部構
造を示す縦断面図、第2図は本出願人によって先に提案
された斜板式圧縮機の内部構造を示す縦断面図、第3図
は本発明に係る斜板式圧縮機の一実施例を示す内部構造
の縦断面図、第4図は第3図のZ矢視図、第5図(a)
および(b)はいずれも圧縮機内一部における冷媒およ
び潤滑油の流れ(13) 方向を説明する図、第6図は第1図に示す従来型圧縮機
と本発明圧縮機との冷媒流量−油循環率特性線図、第7
図は第1図に示す従来型圧縮機と本発明圧縮機との油循
環率−冷凍能力特性線図、第8図は本発明の他の実施例
を示す図面である。 ■および1′・・・シリンダーブロック、2・・・斜板
、3・・・圧縮機回転軸、訃・・低圧冷媒吸入口、6・
・・ケーシング、7・・・斜板室、8および8′・・・
仕切壁、9.9′・・・仕切壁、10.10’・・・低
圧通路、11.11’・・・低圧室、12.12’・・
・仕切壁、13.13’・・・低圧通路、14.14’
・・・低圧室、15.15’・・・油入、17.17’
・・・仕切壁、18.18’・・・低圧室、19.19
’・・・低圧通路、L・・・潤滑油、R・・・冷媒。 代理人 弁理士 長崎博男 (ほか1名) (14) 第4 目 茅5 目 体) (?−) 第2 図 第7図
FIG. 1 is a vertical sectional view showing the internal structure of a conventional swash plate compressor that has been put into practical use; FIG. 2 is a vertical sectional view showing the internal structure of a swash plate compressor previously proposed by the applicant; FIG. 3 is a longitudinal sectional view of the internal structure of an embodiment of the swash plate compressor according to the present invention, FIG. 4 is a view taken along the Z arrow in FIG. 3, and FIG. 5(a)
and (b) are diagrams explaining the flow (13) directions of refrigerant and lubricating oil in a part of the compressor. Oil circulation rate characteristic diagram, 7th
The figure is an oil circulation rate-refrigeration capacity characteristic diagram of the conventional compressor shown in FIG. 1 and the compressor of the present invention, and FIG. 8 is a drawing showing another embodiment of the present invention. ■ and 1'... Cylinder block, 2... Swash plate, 3... Compressor rotating shaft, End... Low pressure refrigerant suction port, 6...
...Casing, 7...Swash plate chamber, 8 and 8'...
Partition wall, 9.9'...Partition wall, 10.10'...Low pressure passage, 11.11'...Low pressure chamber, 12.12'...
・Partition wall, 13.13'...Low pressure passage, 14.14'
...Low pressure chamber, 15.15'...Oil filled, 17.17'
...Partition wall, 18.18'...Low pressure chamber, 19.19
'...Low pressure passage, L...Lubricating oil, R...Refrigerant. Agent Patent attorney Hiroo Nagasaki (and 1 other person) (14) (?-) Figure 2 Figure 7

Claims (1)

【特許請求の範囲】 1、冷凍サイクルを循環する冷媒中に潤滑油を混入し、
上記潤滑油を含んだ冷媒を斜板室に導いて直接圧縮機摺
動部に吹き付ける構造の斜板式圧縮機において、上記斜
板室から低圧室に連なる低圧通路を、圧縮機回転軸の近
傍に位置して、斜板室と低圧室とを仕切る仕切壁に貫通
して設けたことを特徴とする斜板式圧縮機。 2、特許請求の範囲第1項記載の発明において、斜板室
から低圧室に至る低圧通路の周囲の肉厚を、その回りの
仕切壁の肉厚よりも厚くした胴板式圧縮機。 3、特許請求の範囲第1項または第2項記載の発明にお
いて、低圧室内の冷媒流路を迂回路とした斜板式圧縮機
[Claims] 1. Mixing lubricating oil into the refrigerant circulating in the refrigeration cycle,
In the swash plate compressor, which has a structure in which the refrigerant containing lubricating oil is guided into the swash plate chamber and sprayed directly onto the compressor sliding parts, the low pressure passage leading from the swash plate chamber to the low pressure chamber is located near the compressor rotation axis. A swash plate compressor characterized in that the compressor is provided through a partition wall that partitions a swash plate chamber and a low pressure chamber. 2. A shell plate compressor according to the invention as set forth in claim 1, in which the wall thickness around the low pressure passage leading from the swash plate chamber to the low pressure chamber is thicker than the wall thickness of the surrounding partition wall. 3. In the invention as set forth in claim 1 or 2, the swash plate compressor has a refrigerant flow path in the low pressure chamber as a detour.
JP59116296A 1984-06-05 1984-06-05 Swash plate type compressor Pending JPS60259775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116296A JPS60259775A (en) 1984-06-05 1984-06-05 Swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116296A JPS60259775A (en) 1984-06-05 1984-06-05 Swash plate type compressor

Publications (1)

Publication Number Publication Date
JPS60259775A true JPS60259775A (en) 1985-12-21

Family

ID=14683512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116296A Pending JPS60259775A (en) 1984-06-05 1984-06-05 Swash plate type compressor

Country Status (1)

Country Link
JP (1) JPS60259775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217380A (en) * 1985-07-16 1987-01-26 Diesel Kiki Co Ltd Swash plate type rotary compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066812A (en) * 1973-10-22 1975-06-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066812A (en) * 1973-10-22 1975-06-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217380A (en) * 1985-07-16 1987-01-26 Diesel Kiki Co Ltd Swash plate type rotary compressor

Similar Documents

Publication Publication Date Title
US2057381A (en) Pump for refrigerating means
US3904320A (en) Swash plate compressor
US3999893A (en) Compressor for refrigerating machines
US3248044A (en) Refrigerant compressor lubrication arrangement
CN114857012A (en) Compressor oil return structure, compressor and air conditioner
AU591850B2 (en) Screw compressor lubrication channel for lubrication of a rotor bearing
US2040507A (en) Pump for refrigeration apparatus
US2844305A (en) Refrigerating apparatus
JPS60259775A (en) Swash plate type compressor
TWI668373B (en) Two-stage compressor
US2673026A (en) Hermetic motor-compressor unit
JPH07208337A (en) Enclosed type compressor
CN217481539U (en) Compressor oil return structure, compressor and air conditioner
KR20030066044A (en) Internal oil separator for compressor
JPH07174089A (en) Rotary type motor-driven compressor
JPS5925096A (en) Lubricating device for swash plate type compressor
US2918210A (en) Compressor with crankcase oil surge tank
JP3140201B2 (en) Hermetic electric compressor
JPS5870081A (en) Scroll compressor
KR920002476Y1 (en) Device suppling grease of pistons in compressors
JPS5855355B2 (en) compressor
JPS5891392A (en) Rotary compressor
JPS5844281A (en) Swash-plate type compressor
US2796744A (en) Refrigerant compressor cooling
JP3572959B2 (en) Horizontal rotary compressor