JPS60259622A - Polymonovinyl aromatic compound fiber and its manufacture - Google Patents

Polymonovinyl aromatic compound fiber and its manufacture

Info

Publication number
JPS60259622A
JPS60259622A JP11102784A JP11102784A JPS60259622A JP S60259622 A JPS60259622 A JP S60259622A JP 11102784 A JP11102784 A JP 11102784A JP 11102784 A JP11102784 A JP 11102784A JP S60259622 A JPS60259622 A JP S60259622A
Authority
JP
Japan
Prior art keywords
fiber
aromatic compound
polymonovinyl
polyethylene
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11102784A
Other languages
Japanese (ja)
Inventor
Masahiro Henmi
昌弘 辺見
Toshio Yoshioka
敏雄 吉岡
Seiji Shimamura
島村 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11102784A priority Critical patent/JPS60259622A/en
Publication of JPS60259622A publication Critical patent/JPS60259622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fiber having excellent heat-resistance and excellent durability against solvents and chemicals such as strong acids, strong alkalis, etc., by irradiating a fiber composed of a polymonovinyl aromatic compound and PE with electron beam, thereby crosslinking the PE. CONSTITUTION:A fiber composed of a polymonovinyl aromatic compound (preferably PS, etc.) and PE (e.g. a multi-core sea-and-island composite fiber wherein the sea component is PS and the island component is PE) is irradiated with electron beam preferably at a dose of 5-50Mrad to effect the crosslinking of the PE and obtain the objective fiber.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐薬品性ならびに耐熱性にすぐれたポリモノ
ビニル芳香族化合物繊維およびその製造法に関づ−る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polymonovinyl aromatic compound fiber having excellent chemical resistance and heat resistance, and a method for producing the same.

(従来の技術) 従来、ポリモノビニル芳香族化合物1[とじて適用され
ていたポリモノビニル芳香族化合物とポリオレフィンか
ら4TるlE紐、たとえば特公昭56−18139号で
みられるような複合または混合繊維はM硫酸や脂肪族炭
化水素、芳香族炭化水素およびハロゲン化炭化水素など
の有機溶剤系の中ではポリスチレンならびにポリオレー
ツインが侵され易いため、形態安定性が恕く、その上耐
熱性にも問題を右している。たとえば芳香族炭化水素を
溶媒として、そのj!流下でイオン交換基を導入するよ
うな反応系ではポリオレフィンが溶出するため、導入後
の[F形状が保てないなどの問題があって、反応系を選
択しなりればならないという制約かあつ lこ 。
(Prior art) Conventionally, polymonovinyl aromatic compound 1 [4T IE string made of polymonovinyl aromatic compound and polyolefin, which was applied by binding, such as composite or mixed fibers as seen in Japanese Patent Publication No. 18139/1983, Polystyrene and polyoletene are easily attacked by organic solvents such as M sulfuric acid, aliphatic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons, resulting in poor morphological stability and problems with heat resistance. That's right. For example, if aromatic hydrocarbons are used as a solvent, the j! In a reaction system where an ion exchange group is introduced downstream, the polyolefin is eluted, so there are problems such as not being able to maintain the [F shape] after introduction, and there are constraints that the reaction system must be selected. child .

(発明が解決しようとする問題点) 本発明はポリモノビニル芳香族化合物とポリオレフィン
からなる繊維に、すぐれた耐薬品性ならびに耐熱性を付
与することによって、そのすぐれた反応性と機械的強度
を有効に利用し、広範囲の反応系に適用し得る5繊維を
提供するものである。
(Problems to be Solved by the Invention) The present invention provides excellent chemical resistance and heat resistance to fibers made of polymonovinyl aromatic compounds and polyolefins, thereby making effective use of their excellent reactivity and mechanical strength. The present invention provides five fibers that can be used in a wide range of reaction systems.

本発明によって得られるポリモノビニル芳香族化合物r
jA 14 hs +うは極細の架橋不溶化した極細ボ
リ1.71ノン繊維が1!7られるのみならず、該ポリ
モノビニル芳香族イ比合物に官能基を導入することにに
す、CJぐれたi・I )E!品f1、耐熱性を右する
広範囲の用途に適用できる繊維を提供できるものである
Polymonovinyl aromatic compound obtained by the present invention
jA 14 hs + U is not only capable of producing ultra-fine cross-linked and insolubilized ultra-fine 1.71 non-fibers, but also to introduce functional groups into the polymonovinyl aromatic compound. i・I)E! Product f1 can provide fibers that can be applied to a wide range of uses depending on heat resistance.

(問題点を解決するだめの手段) (1) ポリモノビニル芳香族化合物と架橋不溶化され
たポリエチレンからなるポリモノビニル芳香族化合物綴
紐。
(Means to Solve the Problem) (1) A polymonovinyl aromatic compound binding string made of a polymonovinyl aromatic compound and crosslinked insolubilized polyethylene.

(2) ポリモノビニル芳香族化合物とポリエチレンか
らなる繊維を電子線照割して、ポリエチレンを架橋ηる
ことを特徴と覆るポリモノビニル芳香族化合物l!雑の
製造法。
(2) A polymonovinyl aromatic compound that is characterized by crosslinking the polyethylene by subjecting fibers made of the polymonovinyl aromatic compound and polyethylene to electron beam irradiation. Miscellaneous manufacturing methods.

本発明でいうポリモノビニル芳香族化合物(A)とポリ
エチレン(B)からなる繊維とは、繊維断面にa3いて
Δ中に複数のBが分散した海島繊維構造、Bを一木の芯
成分とし△を鞘成分とする芯鞘構造があり、複合紡糸や
混合紡糸によって製造J−ることができる。これらの中
でも向島型繊緒形式のものが特に好ましい。
The fiber made of polymonovinyl aromatic compound (A) and polyethylene (B) as used in the present invention has a sea-island fiber structure in which a plurality of Bs are dispersed in Δ at a3 in the fiber cross section, and B is a core component of one tree and Δ It has a core-sheath structure with a sheath component, and can be manufactured by composite spinning or mixed spinning. Among these, those of the Mukojima type cord type are particularly preferred.

1 本発明でい・)ポリビニル芳香族化合物としては電
子線に対する安定性の点からスチレン、ビニル1−ルエ
ンなどの小モポリマーならびにこれらのコポリ7−また
はこれらのブ1ノント物が好ましく適用される。
1.) In the present invention, as the polyvinyl aromatic compound, small monopolymers such as styrene and vinyl 1-luene, as well as copolymer 7- and monopolymers thereof, are preferably used from the viewpoint of stability against electron beams.

ポリエチレンどじでは、低密度、中密度、高輌度のいず
れのものを適用してしよいが、製糸性の点から畠密麿の
ポリ」−チレンが好ましい。なお、数平均重合度が低す
ぎると不溶化が充分に達成されず、逆に高覆き゛るど充
分に細い紡糸ができないという欠点が起こるので、通常
は300〜10,000、好ましくは500〜3000
の数平均重合度を有り−るポリエチレンが選択される。
Any of low-density, medium-density, and high-density polyethylene may be used, but Hatamizumaro's polyethylene is preferred from the viewpoint of silk-spinning properties. Note that if the number average degree of polymerization is too low, insolubilization will not be achieved sufficiently, and conversely, if the number average degree of polymerization is too low, it will not be possible to spin sufficiently thin fibers.
A polyethylene having a number average degree of polymerization of .

該繊維中のポリエチレンの含有量は所望する繊維の機械
的強度と用途、たとえば官能基導入を目的とづる場合は
該官rap 基の隼によって設定されるが、通常10〜
90重悟%、好ましくは20〜80車半%の範囲で選択
される。
The content of polyethylene in the fiber is determined by the desired mechanical strength and use of the fiber, for example, when the purpose is to introduce a functional group, the content of polyethylene in the fiber is determined by the content of the functional group, but it is usually 10-10.
It is selected in the range of 90%, preferably 20 to 80%.

本発明の第1番目の発明では、ポリエチレンはたとえば
、電子線によって架橋でることがで゛きる。
In the first aspect of the present invention, polyethylene can be crosslinked, for example, by electron beams.

、1.よ−、) T 、、□□お1□1.−1−ア、ア
 (は、たどえば、 〜CH2−CH−CH2へ・ などの構造が主として生ずると考えられる。
, 1. Yo-,) T,,□□O1□1. It is thought that structures such as -1-a, a (to CH2-CH-CH2) mainly occur.

本発明の繊維としては電子線が透過する範囲であればそ
の直径を問わないが、通常500μ以下、好ましくは1
〜100μ程度のものである。なお、海島型繊維構造の
島に関して言えば、さらに飛躍的に細くすることができ
るが、本発明においては用途に応じて適宜、Ili雑の
太さを変更しても、本発明の効果を何ら阻害するもので
はない。
The fibers of the present invention may have any diameter as long as they are permeable to electron beams, but are usually 500 μm or less, preferably 1 μm or less.
It is about ~100μ. Regarding the islands of the sea-island type fiber structure, it is possible to make them even thinner dramatically, but in the present invention, even if the thickness of the Ili miscellaneous is changed as appropriate depending on the application, the effect of the present invention will not be affected in any way. It is not a hindrance.

かかるvanの形状としては短lm11ft、フィラメ
ント、繊維束、編織物、不織布、紙状物、紐状物などを
あげることができるが、本発明においては、これらの形
状に限定されるものではない。
Examples of the shape of such a van include a short length of 11 feet, a filament, a fiber bundle, a knitted fabric, a nonwoven fabric, a paper-like material, a string-like material, etc., but the present invention is not limited to these shapes.

本発明のポリ上ノビニル芳香族化合物!Meltは極細
の架橋不溶化されたポリエチレンV&紺を得る前駆体と
して有効である。ターなわら、本発明の繊維中ポリモノ
ビニル芳香族化合物を溶出することにより、耐薬品fl
ならびに耐熱性にすぐれたポリエチレン繊糾が簡単に得
られ、従来の耐薬品性、耐熱性用途に適用されていた繊
維の代替品として適用できる利点を有し、ポリエチレン
が極めて廉価であることと相俟って、その用途展開上に
与える影響は人である。
Polyvinyl aromatic compound of the present invention! Melt is effective as a precursor for obtaining ultrafine cross-linked and insolubilized polyethylene V&navy blue. Moreover, by eluting the polymonovinyl aromatic compound in the fiber of the present invention, chemical resistance fl
In addition, polyethylene fibers with excellent heat resistance can be easily obtained, which has the advantage of being able to be used as a substitute for conventional fibers used for chemical and heat resistant applications, and this is compatible with the fact that polyethylene is extremely inexpensive. In other words, people are the main influence on the development of its uses.

しかし、本発明の繊維の用途分野における本命【J、該
ポリモノビニル芳香族化合物を官能基導入片部どして適
用する分野であり、従来ポリモノビニル芳香族化合物繊
維に代って、極めて有効に適用されるものである。この
場合は上記ポリエチレンは該芳香族化合物を補強する作
用を有する。
However, the main field of application of the fiber of the present invention [J] is the field in which the polymonovinyl aromatic compound is applied as a functional group-introduced piece, and it can be used extremely effectively in place of the conventional polymonovinyl aromatic compound fiber. applicable. In this case, the polyethylene has the effect of reinforcing the aromatic compound.

官能基を導入する場合は、該芳香族化合物を架橋すると
同時に官能基を導入する方法もあるが、通常は該芳香族
化合物を架橋した後、官能基を導入するのが、安全かつ
安定した方法として好ましく採用される。
When introducing a functional group, there is a method of crosslinking the aromatic compound and introducing the functional group at the same time, but it is usually a safe and stable method to introduce the functional group after crosslinking the aromatic compound. It is preferably adopted as

本発明の繊維が官fil J、t >n入用繊維として
適用される場合の9Tましい態様は該繊維のポリモノビ
ニルy)査族化合物も不溶化されていることである。
When the fiber of the present invention is applied as a fiber for government use, a preferable embodiment is that the polymonovinyl y) group compound of the fiber is also insolubilized.

かかる化合物が架橋不溶化される方法としては化学反応
によるI−J法が一般的であるが、該化合物が架橋され
れば別に他の方法でもさしつがえない。
The general method for crosslinking and insolubilizing such a compound is the I-J method using a chemical reaction, but other methods may also be used as long as the compound is crosslinked.

化学反応による場合の架橋基とじCは、たどえはメチレ
ン基、メ1ヘキシメチレン基などをあげることができる
。かかる架橋基は実用的にはアルデヒド系化合物、特に
ホルムアルデヒドによって好ましく形成される。
Examples of the crosslinking group C in the case of a chemical reaction include a methylene group and a dihexymethylene group. Such a crosslinking group is practically preferably formed by an aldehyde compound, particularly formaldehyde.

かかる架橋不溶化の程度はトルエン不溶分率で表わすこ
とができるが、官能基を導入する場合は該分率が全繊維
重量の少なくとも70%、好ましくは80%以上、さら
に好ましくは90%以上であるの′b号好ましい。
The degree of such crosslinking and insolubilization can be expressed as the toluene insoluble fraction, but in the case of introducing a functional group, this fraction is at least 70%, preferably 80% or more, and more preferably 90% or more of the total fiber weight. 'b' is preferred.

トルエン不溶分率が70%未満では形態安定性に” 、
tb<、え。よう’J a’A□、L□や。いイ、い9
、さらに粉末状になったりして、繊維としての特徴が消
失する傾向がでてくる。
If the toluene insoluble fraction is less than 70%, the shape stability will deteriorate.
tb<, huh? Yo'J a'A□, L□ya. Good, good 9
In addition, the fibers tend to become powdery and lose their characteristics as fibers.

かかる架橋不溶化された繊維は耐薬品性にすぐれ、官能
基導入に際し−C使用される各種薬品や溶剤に対して充
分な耐久性を有し、繊維特性の劣化も極めて小さいとい
う特徴を右する。かくして得られる官能基導入繊維は官
能基の種類や導入量に1 よって、不溶性から可溶性に
変化する場合もあるが、通常の揚台、不溶性を保持して
おり、従来繊維(不溶化前の繊維)では溶解していた反
応系にも適用可能であり、さらに同種または他種の官能
基を増m、尊入り−ることが可能である。場合によって
は多秤類の官能基を同時に有づ゛る特殊な81腑を形成
づることも可能である。
Such cross-linked and insolubilized fibers have excellent chemical resistance, have sufficient durability against various chemicals and solvents used in -C during the introduction of functional groups, and have extremely low deterioration in fiber properties. The functional group-introduced fibers obtained in this way may change from insoluble to soluble depending on the type and amount of functional groups introduced, but they retain their insolubility and are comparable to conventional fibers (fibers before insolubilization). It is also applicable to a reaction system in which the reaction system is dissolved, and it is also possible to increase the number of functional groups of the same kind or other kinds. In some cases, it is also possible to form a special 81-layer having multiple functional groups at the same time.

ここでトルエン不溶分率とは、該繊維を充分乾燥して重
量(Wo)を測定し、該Ua@ 0.5q当り100m
1のトル1ンを加え、2時間速流した後、取り出し、渇
かいトルエンで洗浄し、真空乾燥し、不溶残留物の重t
ri<w)を測定したとき、次式により表わされる不溶
残留物の百分率である。
Here, the toluene insoluble fraction is determined by sufficiently drying the fiber and measuring its weight (Wo),
After adding 1 ton of toluene from 100ml and running it for 2 hours, it was taken out, washed with dry toluene, dried under vacuum, and the weight of the insoluble residue was reduced.
When measured, ri<w) is the percentage of insoluble residue expressed by the following formula:

h )Lr I ”、y工ゎいや一3□7.。、8.。h)Lr I   , y 工ゎ ゎ ゎ ゎ    7., 8..

。 l゛本発明の11雑に導入され得る官能基としては
、たとえば、スルホン酸基、ホスホン酸基、カルボン酸
基、クロルメチル基、1〜3級アミノ基、4級アンモニ
ウム基、キレート基、ホスホニウム基、クラウンエーテ
ルv4造単位、クリプタンド構造単位、有機金属錯体、
金属コロイドなど、通常のスチレン重合体およびスチレ
ン・ジビニルベンゼン共重合体に導入可能な官能基は全
てあげることができる。
. l゛Functional groups that can be introduced into the 11th category of the present invention include, for example, sulfonic acid groups, phosphonic acid groups, carboxylic acid groups, chloromethyl groups, primary to tertiary amino groups, quaternary ammonium groups, chelate groups, and phosphonium groups. , crown ether v4 structural unit, cryptand structural unit, organometallic complex,
All functional groups such as metal colloids that can be introduced into ordinary styrene polymers and styrene/divinylbenzene copolymers can be mentioned.

次に本発明のポリモノビニル芳香族化合物m維の製造方
法について説明する。
Next, the method for producing the polymonovinyl aromatic compound m-fiber of the present invention will be explained.

原利繊[はポリモノビニル芳香族化合物とポリエチレン
からなるIl維である。
Harari fiber is an Il fiber made of polymonovinyl aromatic compound and polyethylene.

本発明の第2番目の発明の特徴は該原II繊維中のポリ
エチレンを架橋させるのに電子線を適用する点にある。
The second feature of the present invention is that an electron beam is applied to crosslink the polyethylene in the raw II fiber.

−リなわら、電子線はポリスチレンなどのポリモノビニ
ル芳6族化合物などには作用が小さく、ポリ−1−ヂレ
ンに選択的に作用するという特異性に着目したものであ
る。その場合ボリモノビこル芳香族化合物が架橋してい
るといないとに拘りら8F、該電子線を照射するとポリ
エチレンのみが架橋する。したがって、照射の時期は何
時でもよく、その方法も如何なる方法でもよいが、酸素
によって架橋反応が阻害される傾向があるので、窒素気
流など不活性気体中や真空中で照射するのが好ましい。
- However, the electron beam has a small effect on polymonobinyl aromatic hexagroup compounds such as polystyrene, and focuses on the specificity that it acts selectively on poly-1-dylene. In that case, irrespective of whether or not the bolimonobicol aromatic compound is crosslinked, only the polyethylene will be crosslinked when irradiated with the electron beam. Therefore, the irradiation can be performed at any time and by any method, but since the crosslinking reaction tends to be inhibited by oxygen, it is preferable to perform the irradiation in an inert gas such as a nitrogen stream or in a vacuum.

電子線照射装置は公知のものを適用すればよく、たとえ
ばファン・デ・グラーフ電子線加速器が代表的なものと
して例示できる。
Any known electron beam irradiation device may be used, and a typical example is a van de Graaf electron beam accelerator.

出力1MeV、100μAの条件下で、被処理物を線速
度40cm/minで移動さUながら1分間照射した時
の電子線吸収線量は1Mradで表わされる。
The electron beam absorption dose when the object to be treated is irradiated for 1 minute while moving at a linear velocity of 40 cm/min under conditions of an output of 1 MeV and 100 μA is expressed as 1 Mrad.

この吸収線量が高い程架橋は進むが、余り高すぎると繊
維の劣化が起こる。したがって、通常1〜100Mra
d 、好ましくは5−50M radの範囲の処理条イ
11が選択される。
The higher the absorbed dose, the more the crosslinking progresses, but if it is too high, fiber deterioration occurs. Therefore, usually 1~100Mra
d, preferably in the range of 5-50M rad is selected.

本発明のIN中のポリモノビニル芳香族化合物を架橋す
る方法は通常採用されている化学反応による方法、たと
えば特公昭56−18139号に記載されている方法で
よい、、なかでも、ホルムアルデヒド源ど硫酸を含む水
溶液(水: 5〜20容が%)系で架橋させるのが、架
橋度のコントロールのし易さ、化学的な安定性などの点
で好ましい。
The method for crosslinking the polymonovinyl aromatic compound in the IN of the present invention may be a commonly used chemical reaction method, such as the method described in Japanese Patent Publication No. 56-18139. It is preferable to carry out crosslinking in an aqueous solution (water: 5 to 20% by volume) system containing the following from the viewpoint of ease of controlling the degree of crosslinking and chemical stability.

(実施例) 実施例1 海成分がポリスチレン50部、島成分がポリエチレン(
数平均重合度−1300)50部であり、島本数が16
本で繊頒直径が34xl(約9で1)である多芯海島型
複合繊維からなる編成物に、ファン・デ・グラーフ型加
速機を用いて20℃、窒素気流中(酸“素′fA瓜20
0ppm以下)で、IMeV、 100tlAの条件下
で、該編成物を線速度8cm7′In r nで移動さ
Uながら電子線を照射する処理を3回施しjζ。この繊
維の吸収線量は15M radであった。
(Example) Example 1 Sea component is 50 parts of polystyrene, island component is polyethylene (
The number average degree of polymerization is -1300) 50 parts, and the Shimamoto number is 16.
In this book, a knitted fabric made of multicore sea-island type composite fibers with a fiber diameter of 34xl (approximately 9:1) was heated at 20°C in a nitrogen stream (oxygen 'fA') using a van de Graaf type accelerator. Melon 20
The knitted structure was irradiated with an electron beam three times under the conditions of IMeV and 100 tlA (0 ppm or less) while moving at a linear velocity of 8 cm7'In r n. The absorbed dose of this fiber was 15M rad.

この電子線照04繊糾は沸騰1−ル]−ンで処理しても
、ポリスチレンは溶解ザるが、ポリ1ヂレンは繊維状に
残った。しかし、電子線を照射しない該織締tよ沸騰1
〜ルー1ンで両方の繊維成分が完全に溶1 解しCしま
っIこ、。
Even when this electron beam irradiated 04 fiber was treated with boiling 1-Lune, the polystyrene was dissolved, but the poly-1-Dylene remained in the form of fibers. However, if the electron beam is not irradiated, the boiling point 1
~In one run, both fiber components are completely dissolved.

次に、該電子線照@It)AtA1aニ対し/ T: 
1iltl 酸5ml、パラ小ルムノフルj” ヒト 
200mg、水0.5mlを加えて、100℃×4時間
反応させて、架橋繊維を得た。
Next, the electron beam irradiation @It) AtA1a/T:
1iltl acid 5ml, paralumnofluj” human
200 mg and 0.5 ml of water were added and reacted at 100° C. for 4 hours to obtain crosslinked fibers.

この架橋繊維のトルエン不溶分率を測定したどころ、ポ
リスブレンもポリエチレンもほとんど溶解t!71’9
G%て゛あ−〕た。Ii雑の外観も極め−C良好であっ
た。
When we measured the toluene-insoluble fraction of this crosslinked fiber, we found that almost no polybrene or polyethylene was dissolved! 71'9
G%tea-]. The appearance of Ii miscellaneous was also very good.

比較例1 実施例1で使用した編成物1gを電子線処理をしないで
、硫酸5ml、パラボルムアルデヒド200+ng、水
0.51を加え、100℃×4時間反応させた。
Comparative Example 1 Without electron beam treatment, 1 g of the knitted material used in Example 1 was added with 5 ml of sulfuric acid, 200+ ng of parabomaldehyde, and 0.51 ng of water, and reacted at 100° C. for 4 hours.

この繊維のトルエン不溶分率を測定したところ、59%
であった。肉眼で観察したところでは該繊維のポリエチ
レンかばとんど溶解してしまっており、繊組状を早さず
粉状体であった。
When the toluene insoluble fraction of this fiber was measured, it was 59%.
Met. When observed with the naked eye, almost all of the polyethylene in the fibers was dissolved, and the fibers did not quickly change into a fibrous form, but were instead powdery.

実施例2 実施例1の架橋繊維10gを用いて、クロルメチルエー
テル100m1 と塩化第2スズ10m1からなる溶液
に浸漬し、30℃で1時間反応させた。この繊維を10
%塩酸、蒸溜水、アセトンで洗浄した。次に 1このク
ロルメチル化繊1tlhを30%トリメチルアミン水溶
液1001に浸して、30℃で1時間アミノ化した。
Example 2 Using 10 g of the crosslinked fiber of Example 1, it was immersed in a solution consisting of 100 ml of chloromethyl ether and 10 ml of stannic chloride, and reacted at 30° C. for 1 hour. 10 pieces of this fiber
% hydrochloric acid, distilled water, and acetone. Next, 1 tlh of this chloromethyl synthetic fiber was immersed in 30% trimethylamine aqueous solution 1001 and aminated at 30° C. for 1 hour.

得られたアニオン交換繊維は2.5 mcq/ gの交
換容量をイフしていた。
The resulting anion exchange fiber had an exchange capacity of 2.5 mcq/g.

なお、上記官能j、I導入段階にりるトルエン不溶分率
は、クロルメチル化した段階−e98%、最終的に)l
ミノ化しIこ段階では100%であった。
In addition, the toluene insoluble fraction at the stage of introducing functionalities j and I is 98% at the stage of chloromethylation, and finally)
It was 100% at the miniaturization stage.

実施例3 実施例1で使用した多芯海島型複合繊肩rからなる編成
物4用いて、該実施例と同−電子線照射処理をMb L
、た3、この編成物をメチルエヂルケトンに浸漬しリフ
ラックスしてポリスチレンを溶解除去した。得られた編
成物は太さ約6μ(約0,3d )の架橋ポリニー1−
レン極細繊維からなる弾力性に富むものであった。この
編成物はトルエン不溶分率80%の形態安定性を有して
いた。
Example 3 Using the knitted fabric 4 made of the multicore sea-island composite fiber shoulder r used in Example 1, the same electron beam irradiation treatment as in Example 1 was applied to Mb L
, 3. This knitted fabric was immersed in methyl edyl ketone and refluxed to dissolve and remove the polystyrene. The obtained knitted fabric is a cross-linked polynylene 1-
It was made of ultrafine fibers and had high elasticity. This knitted material had a morphological stability with a toluene insoluble content of 80%.

(発明の効果) 本発明は、耐熱性はもとより、強酸や強アルカリをはじ
め各種の薬品や溶剤に対して極めて耐久性にすぐれたポ
リモノビニル芳香族化合物S雑を提供覆るものであり、
従来の官能基導入操作におりる自由度が格段に拡大され
、各種反応に適用可能にしたものである。まIこ、本発
明によれば、極細の架橋不溶化されたポリエチレン繊維
成形物が容易に得られる利点も有する。
(Effects of the Invention) The present invention provides a polymonovinyl aromatic compound S which is not only heat resistant but also extremely durable against various chemicals and solvents including strong acids and strong alkalis.
The degree of freedom in conventional functional group introduction operations has been greatly expanded, making it applicable to a variety of reactions. Additionally, the present invention has the advantage that ultrafine crosslinked and insolubilized polyethylene fiber moldings can be easily obtained.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1) ポリモノビニル芳香族化合物と架橋不溶化され
たポリエチレンからなるポリ−[ノビニル芳香族化合物
繊維。
(1) Poly-[novinyl aromatic compound fibers made of polymonovinyl aromatic compound and crosslinked insolubilized polyethylene.
(2) ポリモノビニル芳香族化合物とポリエチレンか
らなる繊維を電子線照射して、ポリエチレンを架橋り゛
ることを特徴どするポリモノビニル芳香族化合物繊維の
製造法。
(2) A method for producing a polymonovinyl aromatic compound fiber, which comprises crosslinking the polyethylene by irradiating the fiber made of the polymonovinyl aromatic compound and polyethylene with an electron beam.
JP11102784A 1984-06-01 1984-06-01 Polymonovinyl aromatic compound fiber and its manufacture Pending JPS60259622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11102784A JPS60259622A (en) 1984-06-01 1984-06-01 Polymonovinyl aromatic compound fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11102784A JPS60259622A (en) 1984-06-01 1984-06-01 Polymonovinyl aromatic compound fiber and its manufacture

Publications (1)

Publication Number Publication Date
JPS60259622A true JPS60259622A (en) 1985-12-21

Family

ID=14550536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11102784A Pending JPS60259622A (en) 1984-06-01 1984-06-01 Polymonovinyl aromatic compound fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS60259622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229477A2 (en) * 1985-11-30 1987-07-22 Mitsui Petrochemical Industries, Ltd. Molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229477A2 (en) * 1985-11-30 1987-07-22 Mitsui Petrochemical Industries, Ltd. Molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof

Similar Documents

Publication Publication Date Title
US3227510A (en) Dyeing substrates ionically binding in localized areas catalysts for the predyeing olefin polymerization thereon
US4647280A (en) Binder for low density lipoproteins
Thuaut et al. Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. I. Synthesis parameters
US4446255A (en) Sized carbon fibers suitable for use in composites of improved impact resistance
WO2001029104A1 (en) Organic polymeric material, process for producing the same, and heavy-metal ion remover comprising the same
JPS60259622A (en) Polymonovinyl aromatic compound fiber and its manufacture
Kabanov et al. Radiation chemistry of polymers
WO2001097973A1 (en) Polymeric ion exchange fibers
JP3245454B2 (en) Production method of ion exchange resin
CN115262223B (en) Polyester/chitosan gel composite fiber film and preparation method thereof
JPH0348938B2 (en)
KR20100026546A (en) Preparation method of ion selective fibrous nano-form using hyperbranched polystyrene with reactive acrylic resin
JP3218090B2 (en) Manufacturing method of polymer electrolyte composite
JPS581205B2 (en) Insoluble acylaminomethylated polymonovinyl aromatic compound fiber and method for producing the same
US4089816A (en) Cation exchanger
Bucheńska Grafting of poly (acrylic acid) on polyamide yarn
JPH0777616B2 (en) Anion exchanger
JPS5714622A (en) Production of polyamideimide resin
JPS5883633A (en) Carrier for immobilization of physiologically active substance
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JP3248259B2 (en) Ion exchange felt
Gautam et al. Structural characterization of alpha methyl styrene‐butyl acrylate‐grafted polyetheretherketone films
JPH04190837A (en) Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof
JP2000102715A (en) Chemical filter
JPH02289628A (en) Ultrafine ion-exchange fiber and production thereof