JPS60258963A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60258963A
JPS60258963A JP11398284A JP11398284A JPS60258963A JP S60258963 A JPS60258963 A JP S60258963A JP 11398284 A JP11398284 A JP 11398284A JP 11398284 A JP11398284 A JP 11398284A JP S60258963 A JPS60258963 A JP S60258963A
Authority
JP
Japan
Prior art keywords
electrode
region
voltage
semiconductor device
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11398284A
Other languages
Japanese (ja)
Inventor
Minoru Kato
実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11398284A priority Critical patent/JPS60258963A/en
Publication of JPS60258963A publication Critical patent/JPS60258963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain composite transistors having the function of selfprotection which are formed by having the first electrode for the inflow of load current, second electrode for the outflow of load current, and third electrode having the function of opening and closing the current between the first and second electrodes. CONSTITUTION:When the voltage between the first electrode C and the second electrode E is low, the voltage between the electrode C and the third electrode B turns into forward voltage whereby holes are injected from the first region 5. Therefore, holes injected from the region 5 to the substrate 4 cross the N-region of the substrate 4 and diffuse to the second region 6. Current generated by this movement of holes becomes the base current, and the amplified current flows between the electrodes C and E in the CE direction. The action of amplification in this case is the same as in a normal transistor. On the other hand, when the voltage between the electrodes C and E becomes over a certain value, the hole injection from the region 5 to the substrate 4 is stopped because the voltage between the electrodes C and B reversely biases the P-N junction between the region 5 and the substrate 4.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、半導体装置に関し、特にスイッチング電源
やモータ制御回路等の出力段に使用するトランジスタに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a transistor used in an output stage of a switching power supply, a motor control circuit, or the like.

[発明の技術的背景1 パワートランジスタ等の電力用半導体素子は、過電圧及
び過電流などの通電によって素子破壊が起こらぬように
過電圧及び過電流の検知回路及び保護回路を接続して用
いられる。 たとえばパワートランジスタの場合、出力
電圧及び出力電流の検知回路を設けておき、過電圧もし
くは過N流がパワートランジスタに印加または通電され
た時に該検知回路が作動してトランジスタのベースコン
トロール部を制御し該パワートランジスタがオフされる
ように回路設計を行なっていた。 このような検知回路
及び保護回路は一般に外付は回路であり、素子自身の中
に過負荷検知機能や保護機能を備えているトランジスタ
はなかった。
[Technical Background of the Invention 1] Power semiconductor devices such as power transistors are used by connecting overvoltage and overcurrent detection circuits and protection circuits to prevent device destruction due to overvoltage and overcurrent. For example, in the case of a power transistor, a detection circuit for output voltage and output current is provided, and when an overvoltage or an excessive N current is applied or energized to the power transistor, the detection circuit is activated and controls the base control section of the transistor. The circuit was designed so that the power transistor was turned off. Such detection circuits and protection circuits are generally external circuits, and there is no transistor within the device itself that has an overload detection function or protection function.

[背景技術の問題点コ 従来のパワートランジスタでは検知回路や保護回路が半
導体素子とは別体の外付は回路であったため、構成部品
数が多く、従ってコストが高いうえ、電子回路が大型に
なる等の問題点があった。
[Problems with the background technology] In conventional power transistors, the detection circuit and protection circuit were external circuits that were separate from the semiconductor element, so the number of components was large, resulting in high cost and a large electronic circuit. There were some problems.

[発明の目的] この発明の目的は、前記問題点を解決し、素子自身の中
に保護機能を備えた電力用半導体装置を提供することで
ある。 更に詳細には、この発明の目的は、自己保護機
能を備えた複合型トランジスタを提供することである。
[Object of the Invention] An object of the present invention is to solve the above problems and provide a power semiconductor device having a protection function within the element itself. More specifically, it is an object of the invention to provide a composite transistor with self-protection functionality.

[発明の概要] この発明による半導体装置は、負荷電流が流入する第一
の電極と、n荷電流が流出する第二の電1.. 極と、
該第−及び第二の電極間の電流を開閉する機能を有した
第三の電極とを有して成り、該第−乃至第三の電極が共
通の半導体基板内に形成されている各領域に接続されて
おり、該半導体装置は該第−及び第二の電極の電圧が所
定値を越えた時には該第−及び第二の電極間の電流をし
ゃ断する機能を有している。 そして、本発明の半導体
装置においては2個のバイポーラトランジスタを絹み合
わせたモノリシック複合型トランジスタとして構成され
ている。 この複合型トランジスタは、例えばPNP型
トランジスタとNPN型トランジスタとの組合せから成
り、PNP型のコレクタがNPN型のベースに接続され
るとともにPNP型のベースがNPN型のコレクタに接
続されて、NPN型が出力段をまたPNP型が入力段を
それぞれ構成している。 従って、NPN型のコレクタ
、エミッタ間における電圧の大きざに応じてPNP型の
出力電流が開閉されると同時にPNP型の出力電流の開
閉に応じてNPN型の出力電流が開閉されることになり
、その結果、該複合型トランジスタは自己保In能を発
生する。
[Summary of the Invention] A semiconductor device according to the present invention includes a first electrode into which a load current flows, and a second electrode into which an n-charge current flows out. .. pole and
and a third electrode having a function of opening and closing a current between the first and second electrodes, each region in which the third to third electrodes are formed in a common semiconductor substrate. The semiconductor device has a function of cutting off the current between the first and second electrodes when the voltages of the first and second electrodes exceed a predetermined value. The semiconductor device of the present invention is constructed as a monolithic composite transistor in which two bipolar transistors are connected together. This composite transistor is composed of, for example, a combination of a PNP type transistor and an NPN type transistor. constitutes the output stage, and the PNP type constitutes the input stage. Therefore, the output current of the PNP type opens and closes depending on the voltage difference between the collector and emitter of the NPN type, and at the same time, the output current of the NPN type opens and closes according to the opening and closing of the output current of the PNP type. , As a result, the composite transistor generates a self-maintenance In ability.

[発明の実施例] 第1図は本発明による半導体装置の概念を等何回路とし
て表わしたものである。
[Embodiments of the Invention] FIG. 1 shows the concept of a semiconductor device according to the present invention as a circuit.

第1図に示すように、本発明の半導体装置1はたとえば
P N P型のトランジスタ2とNPN型のトランジス
タ3とを組合わせて構成されるモノリシック複合型トラ
ンジスタとして実現することができるものである。 こ
の半導体装置1においてはトランジスタ20ベースと]
レクタとがそれぞれトランジスタ3のコレクタとベース
とに接続されており、また、トランジスタ3のコレクタ
及びエミッタが該半導体装置1の外部の第一電極C及び
第二電極Eにそれぞれ接続されるとともにトランジスタ
2のエミッタが該半導体装置1の外部の第三電極Bに接
続されている。 ここに、第一電極Cは従来のバイポー
ラトランジスタにおけるコレクタ電極に該当し負荷電流
の流入を司り、第二電極Eは従来のトランジスタにおけ
るエミッタ電極に該当し、また第三電極Bはベース電極
に該当する。
As shown in FIG. 1, the semiconductor device 1 of the present invention can be realized as a monolithic composite transistor configured by combining a PNP type transistor 2 and an NPN type transistor 3, for example. . In this semiconductor device 1, the transistor 20 base]
The collector and emitter of the transistor 3 are respectively connected to the first electrode C and the second electrode E outside the semiconductor device 1, and the transistor 2 is connected to the collector and the base of the transistor 3, respectively. The emitter of is connected to a third electrode B outside the semiconductor device 1. Here, the first electrode C corresponds to the collector electrode in a conventional bipolar transistor and controls the inflow of load current, the second electrode E corresponds to the emitter electrode in the conventional transistor, and the third electrode B corresponds to the base electrode. do.

前記構成の半導体装置1では、第−電極Cと第2電極E
にかかる電圧がある値より高くなるとト5− ランジスタ2が非導通となって、そのコレクタ電流がし
ゃ断されるのでトランジスタ3のベース電流もカットさ
れてトランジスタ3も非導通になる。
In the semiconductor device 1 having the above configuration, the -th electrode C and the second electrode E
When the voltage applied to transistor 5 becomes higher than a certain value, transistor 2 becomes non-conductive and its collector current is cut off, so that the base current of transistor 3 is also cut and transistor 3 also becomes non-conductive.

従って、本発明の半導体装置1が自己しゃ断機能すなわ
ち自己保護機能を有していることは明らかである。
Therefore, it is clear that the semiconductor device 1 of the present invention has a self-shutoff function, that is, a self-protection function.

第2図は第1図のごとき概念の本発明の半導体装置1の
具体的な実施例を示したものである。
FIG. 2 shows a specific embodiment of the semiconductor device 1 of the present invention based on the concept shown in FIG.

第2図において、4はN型の半導体基板であり、該半導
体基板4の上下両面には互いに対向しない位置にP型の
第一領域5と第二領域6とが形成されている。 第二領
域6内にはN型の第三領域7が形成され、第二領域6に
対向する半導体基板下面部には第一電極Cが設けられる
とともに第三領域7には第二電極Eが設けられ、また第
一領域5には第三電極Bが設けられている。 従って、
第一電極Cが設けられている半導体基板の部分と第二及
び第三領域とによってNPNトランジスタ3が形成され
、また第一領域5と半導体基板4及び第二領域6とによ
ってPNPトランジスタ2が形6− 成されており、PNPt−ランジスタ2のベースとNP
Nトランジスタ3のコレクタとが共通の半導体基板によ
って構成され、さらにPNPトランジスタのコレクタと
NPNトランジスタ3のベースとが共通の第二領域6に
よって構成されることになる。 それゆえ、第2図の半
導体装置は第1図の半導体装置と同じく自己保護機能を
有しており、以下のJ:うに動作する。
In FIG. 2, reference numeral 4 denotes an N-type semiconductor substrate, and a P-type first region 5 and a second region 6 are formed on both upper and lower surfaces of the semiconductor substrate 4 at positions that do not face each other. An N-type third region 7 is formed in the second region 6, a first electrode C is provided on the lower surface of the semiconductor substrate facing the second region 6, and a second electrode E is provided in the third region 7. A third electrode B is also provided in the first region 5. Therefore,
An NPN transistor 3 is formed by the portion of the semiconductor substrate where the first electrode C is provided and the second and third regions, and a PNP transistor 2 is formed by the first region 5, the semiconductor substrate 4, and the second region 6. 6- The base of PNPt-transistor 2 and the NP
The collectors of the N transistors 3 are formed by a common semiconductor substrate, and the collectors of the PNP transistors and the bases of the NPN transistors 3 are formed by a common second region 6. Therefore, the semiconductor device shown in FIG. 2 has a self-protection function like the semiconductor device shown in FIG. 1, and operates as shown below.

第一電極Cど第二電極Fとの間の電圧が低い時には第一
電極Cと第三電極Bとの間の電圧は第一領域5からホー
ルの注入が行なわれるような順方向電圧となる。 従っ
て第一領域5から半導体基板4に注入されたホールは半
導体基板4のN領域を横切って第二領域6に拡散する。
When the voltage between the first electrode C and the second electrode F is low, the voltage between the first electrode C and the third electrode B becomes a forward voltage such that holes are injected from the first region 5. . Therefore, the holes injected into the semiconductor substrate 4 from the first region 5 cross the N region of the semiconductor substrate 4 and diffuse into the second region 6.

 このホールの移動によって生じた電流がこの半導体装
置くすなわち複合形トランジスタ)におけるベース電流
となって第一電極Cと第二電極「との間にCEの方向の
増幅された電流が流れる。 この場合の増) 幅動作は通常のトランジスタと同じである。
The current generated by the movement of the holes becomes the base current in this semiconductor device (ie, a composite transistor), and an amplified current flows between the first electrode C and the second electrode in the CE direction. (increase in width) The width operation is the same as a normal transistor.

一方、第一電極Cと第二電極Eとの間の電圧がある値(
Vth)LJ、上になった時には、第一電極Cと第三電
極Bとの間の電圧が第一領域5と半導体基板4との間の
PN接合を逆バイアスするため、第一領域5から半導体
基板4へのホールの注入が停止され、その結果、半導体
基板のN領域と第二及び第三領域とで構成されるNPN
トランジスタがオフされて第−電極Cと第二電極トとの
間の電流がしゃ断される。 従って、この半導体装置は
自己保護機能を有していることになる。
On the other hand, the voltage between the first electrode C and the second electrode E has a certain value (
Vth)LJ, when the voltage between the first electrode C and the third electrode B reverse biases the PN junction between the first region 5 and the semiconductor substrate 4, the voltage from the first region 5 increases. The injection of holes into the semiconductor substrate 4 is stopped, and as a result, an NPN composed of an N region and second and third regions of the semiconductor substrate is formed.
The transistor is turned off and the current between the negative electrode C and the second electrode T is cut off. Therefore, this semiconductor device has a self-protection function.

第3図は第2図の半導体装置をラテラル形に構成した実
施例を示している。 このようにラテラル配置とした構
成によると、第一領域5から注入されたホールがNPN
トランジスタ部分のベース電流となりやすいためNPN
トランジスタ部分の電流増幅率hfeが増大し、第2図
の半導体装置よりも大きな増幅率を有した半導体装置が
得られることになる。
FIG. 3 shows an embodiment in which the semiconductor device of FIG. 2 is configured in a lateral type. According to this lateral arrangement, the holes injected from the first region 5 become NPN
NPN because it tends to become the base current of the transistor part.
The current amplification factor hfe of the transistor portion increases, and a semiconductor device having a larger amplification factor than the semiconductor device shown in FIG. 2 can be obtained.

また、前記のごとき構造の半導体装置において第−及び
第二電極間の電流がしゃ断された状態で・第−及び第二
電極C,E間の電圧を増大させると、第一電極Cと第三
電極Bとの間に印加されている逆バイアスが更に大きく
なり、ついには第一領域5と半導体基板のN領域との境
界のPN接合がブレークダウンし始め、ボールとエレク
トロンが生じる。 その結果、第二領域6及び第三領域
7並びに半導体基板のN領域で構成されるNPNI−ラ
ンジスタが再び導通状態になってリーク電流として現わ
れる。 それゆえ、このような現象の発生を防ぐために
はPNP1〜ランジスタ部分の耐圧をNPNトランジス
タ部分のベースの耐■(以上にすることが必要であり、
それを実現するためには、たとえば第一領域5の拡散深
さd、を第三領域の拡散深さd2よりも同等かもしくは
大きくすることが好ましい。、 なお、第3図において第2図と同一符号で表示された部
分は第2図の半導体装置と同一の部分を示しているので
、この同一部分についての説明を省略する。
Furthermore, in a semiconductor device having the above structure, when the voltage between the first and second electrodes C and E is increased while the current between the first and second electrodes is cut off, The reverse bias applied between electrode B further increases, and finally the PN junction at the boundary between first region 5 and the N region of the semiconductor substrate begins to break down, producing balls and electrons. As a result, the NPNI transistor composed of the second region 6, the third region 7, and the N region of the semiconductor substrate becomes conductive again and appears as a leakage current. Therefore, in order to prevent the occurrence of such a phenomenon, it is necessary to make the withstand voltage of the PNP1~transistor part higher than the withstand voltage of the base of the NPN transistor part.
In order to achieve this, for example, it is preferable that the diffusion depth d of the first region 5 is equal to or larger than the diffusion depth d2 of the third region. Note that in FIG. 3, the parts indicated by the same reference numerals as those in FIG. 2 indicate the same parts as in the semiconductor device of FIG. 2, and therefore explanations of these same parts will be omitted.

[発明の効果] 第2図及び第3図のごとき構成の半導体装置を9− 製作し、これらについて静特性を調べた。[Effect of the invention] A semiconductor device having a configuration as shown in FIGS. 2 and 3 is 9- They were manufactured and their static characteristics were investigated.

第4図は前記半導体装置の静特性であり、同図において
横軸は第一電極Cと第二電極Eとの間の電圧Vc+=、
縦軸は第一電極Cと第二電極Eとの間に流れる負荷電流
ICE、であり各静特性曲線はベース電流(す1.Iわ
ち第三電極Bに流入する電流)を変化させて得られたも
のである。 NPNI−ランジスタ部分をオフさせる電
圧Vthはほぼ12ボルトとなっている。 V thは
半導体基板内の拡散領域の設計寸法によって自由に変更
することができ、たとえば、第三電極Bの入カインビ、
−ダンスを変えることによりV thを大幅に変更する
ことができる。
FIG. 4 shows the static characteristics of the semiconductor device, in which the horizontal axis is the voltage between the first electrode C and the second electrode E, Vc+=,
The vertical axis is the load current ICE flowing between the first electrode C and the second electrode E, and each static characteristic curve represents the change in the base current (i.e., the current flowing into the third electrode B). This is what was obtained. The voltage Vth that turns off the NPNI transistor portion is approximately 12 volts. V th can be freely changed depending on the design dimensions of the diffusion region in the semiconductor substrate, for example, the input voltage of the third electrode B,
-V th can be changed significantly by changing the dance.

第5図は、前記半導体装置におけるカットオフ電圧より
も^電圧における特性を、第4図には示されていない範
囲についてもスケール単位を小さくして示したものであ
る。 第5図において、実線は第一領域5の拡散深さを
第二領域の拡散深さよりも小さくした場合の特性であり
、破線は第一領域5の拡散深さを第二領域の拡散深さと
同等か10− 大きくした場合の特性である。 第5図に示されるよう
に、負荷電流■。Eのカットオフ後、ブレークダウン電
流によるリークが現われるが、第一領域5の拡散深さd
、を第二領域6の拡散深さd2よりも同等かもしくは大
きくすることによりリーク電流をを抑制することができ
る。
FIG. 5 shows the characteristics of the semiconductor device at a voltage lower than the cutoff voltage, with the scale unit being made smaller in a range not shown in FIG. In FIG. 5, the solid line shows the characteristic when the diffusion depth of the first region 5 is made smaller than the diffusion depth of the second region, and the broken line shows the characteristic when the diffusion depth of the first region 5 is made smaller than the diffusion depth of the second region. Equal or 10- This is the characteristic when increased. As shown in Figure 5, the load current ■. After the cutoff of E, leakage due to breakdown current appears, but the diffusion depth d of the first region 5
By making , equal to or larger than the diffusion depth d2 of the second region 6, leakage current can be suppressed.

なお、本発明の半導体装置の破壊耐力を調べたところ、
同じ大きさの従来のトランジスタにくらべて大幅に向上
していることがわかった。
In addition, when the breakdown strength of the semiconductor device of the present invention was investigated, it was found that
It was found that this is a significant improvement over conventional transistors of the same size.

以上に説明したように、この発明によれば、自己保護機
能を有した電力用半導体装置が得られ、従って、外付け
の保護回路が不要となり、電子回路の小形化及びコスト
低減が可能となる。 前記の実施例は本発明を限定する
ものではなく、本発明は図示以外の構造の半導体装置と
しても実現しうろことは当然である。
As explained above, according to the present invention, a power semiconductor device having a self-protection function can be obtained, thus eliminating the need for an external protection circuit, making it possible to downsize and reduce costs of electronic circuits. . The embodiments described above do not limit the present invention, and it goes without saying that the present invention may be realized as a semiconductor device having a structure other than that shown in the drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体装向の概念を等価回路で表わし
た本発明の概念図、第2図及び第3図は本発明の半導体
装置の実施例の断面図、第4図及び第5図は本発明の半
導体装置に関する静特性を表わした図である。 1・・・半導体装向、 2・・・PNPI−ランジスタ
、3・・・NPNトランジスタ、 4・・・半導体基板
、5・・・第一領域、 6・・・第二領域、 7・・・
第三領域、C・・・第一電極、 F・・・第二電極、 
B・・・第三電極。
FIG. 1 is a conceptual diagram of the present invention expressing the concept of the semiconductor device of the present invention as an equivalent circuit, FIGS. 2 and 3 are cross-sectional views of embodiments of the semiconductor device of the present invention, and FIGS. The figure is a diagram showing static characteristics regarding the semiconductor device of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor device, 2... PNPI-transistor, 3... NPN transistor, 4... Semiconductor substrate, 5... First region, 6... Second region, 7...
Third region, C...first electrode, F...second electrode,
B...Third electrode.

Claims (1)

【特許請求の範囲】 1 第一導電型の半導体基板と、該半導体基板の表面に
互いに相隔てて形成された第二導電型の第−及び第二領
域と、該第二領域の中に形成された第一導電型の第三領
域と、該半導体基板の表面に設けられた第一電極と、該
第三領域りに設けられた第三電極と、該第−領域上に設
けられた第三電極とを有して成り、該第−及び第二電極
間の電圧が所定値以Fの時にのみ、該第−電極をコレク
タ電極、該第二電極をエミッタ電極、そして該第三電極
をベース電極とするトランジスタ増幅動作が行なわれ、
該第−及び第二電極間の電圧が所定値を越えた時に該第
−及び第二電極間の電流がしゃ断されるように構成され
ていることを特徴とする半導体装置。 2 第一領域と第二領域とが半導体基板の同じ側の表面
に形成され、該第−領域の拡散深さが該第二領域の拡散
深さよりも同等かもしくは大きい特許請求の範囲第1項
記載の半導体装置。
[Scope of Claims] 1. A semiconductor substrate of a first conductivity type, second and second regions of a second conductivity type formed spaced apart from each other on the surface of the semiconductor substrate, and a semiconductor substrate formed in the second region. a third region of the first conductivity type, a first electrode provided on the surface of the semiconductor substrate, a third electrode provided on the third region, and a third region provided on the third region. It has three electrodes, and only when the voltage between the first and second electrodes is a predetermined value or more, the first electrode becomes the collector electrode, the second electrode becomes the emitter electrode, and the third electrode becomes the emitter electrode. Transistor amplification operation is performed using the base electrode.
A semiconductor device characterized in that the current between the first and second electrodes is cut off when the voltage between the first and second electrodes exceeds a predetermined value. 2. The first region and the second region are formed on the same surface of the semiconductor substrate, and the diffusion depth of the first region is equal to or larger than the diffusion depth of the second region. The semiconductor device described.
JP11398284A 1984-06-05 1984-06-05 Semiconductor device Pending JPS60258963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11398284A JPS60258963A (en) 1984-06-05 1984-06-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11398284A JPS60258963A (en) 1984-06-05 1984-06-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60258963A true JPS60258963A (en) 1985-12-20

Family

ID=14626089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11398284A Pending JPS60258963A (en) 1984-06-05 1984-06-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60258963A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108768A (en) * 1981-11-20 1983-06-28 Fujitsu Ltd Semiconductor memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108768A (en) * 1981-11-20 1983-06-28 Fujitsu Ltd Semiconductor memory device

Similar Documents

Publication Publication Date Title
JPS62115765A (en) Semiconductor device
CA1098978A (en) Semiconductor switch circuit
US5051612A (en) Prevention of parasitic mechanisms in junction isolated devices
JPS6271257A (en) Protecting circuit for induction load switch transistor
US4112315A (en) Semiconductor switch circuit
JPS5967670A (en) Semiconductor device
JPH0282533A (en) Bipolar transistor
JPH02130951A (en) Short circuit protection circuit for semiconductor element
JPS60258963A (en) Semiconductor device
JPH04280670A (en) Gate voltage clamp type semiconductor device
EP0186518B1 (en) A breakdown protected transistor device
GB1566540A (en) Amplified gate thyristor
JP4838421B2 (en) Analog switch
JP2005101386A (en) Electrostatic breakdown protective circuit
US6337503B1 (en) Integrated power circuit with reduced parasitic current flow
US5986290A (en) Silicon controlled rectifier with reduced substrate current
US5442220A (en) Constant voltage diode having a reduced leakage current and a high electrostatic breakdown voltage
US6815779B1 (en) Integrated circuit including protection against polarity inversion of the substrate potential
JPS59103425A (en) Switching device
JPS6127932B2 (en)
JPH0364955A (en) Semiconductor integrated circuit device
JPS5915215B2 (en) Amplifier circuit for driving inductive loads
US6624502B2 (en) Method and device for limiting the substrate potential in junction isolated integrated circuits
JPH0541487A (en) Vertical type insulated collector p-n-p transistor structure
GB2100513A (en) Darlington transistor circuit