JPS60258428A - Manufacture of cold rolled steel sheet having good aging property by continuous annealing - Google Patents

Manufacture of cold rolled steel sheet having good aging property by continuous annealing

Info

Publication number
JPS60258428A
JPS60258428A JP11411784A JP11411784A JPS60258428A JP S60258428 A JPS60258428 A JP S60258428A JP 11411784 A JP11411784 A JP 11411784A JP 11411784 A JP11411784 A JP 11411784A JP S60258428 A JPS60258428 A JP S60258428A
Authority
JP
Japan
Prior art keywords
temperature
annealing
aging
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11411784A
Other languages
Japanese (ja)
Inventor
Hiroshi Takechi
弘 武智
Osamu Matsumura
松村 理
Seishiro Bando
板東 誠志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11411784A priority Critical patent/JPS60258428A/en
Publication of JPS60258428A publication Critical patent/JPS60258428A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture a cold rolled steel sheet for press working having good aging property by hot and cold rolling a steel ingot contg. a specified compsn. of C, Mn, S, SolAl, O, then annealing said material continuously under a specified condition. CONSTITUTION:The steel ingot or slab contg. 0.005-0.025wt% C, 0.02-0.25% Mn, 0.001-0.015% S, 0.025-0.10% SolAl, <=0.01% O is heated to 980-1,200 deg.C, hot rolled, and wound at 600-780 deg.C. Next, when annealing continuously the steel obtained by cold rolling the hot rolled plate, the temp. is rised at about 1- 100 deg.C/sec heating rate, recrystallization annealing is applied at 680-850 deg.C temp. range for 20-200sec, then said sheet is cooled to 250-350 deg.C temp. by <=1.0- 100 deg.C/sec cooling rate, thereafter, immediately or after reheating, over aging treatment is performed at 250-350 deg.C temp. range for 1-12min to obtain the cold rolled steel sheet having good aging property.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は連続焼鈍により時効性の良好なプレス加工用冷
延鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing cold rolled steel sheets for press working which have good aging properties through continuous annealing.

従来技術および問題点 プレス加工用冷延鋼板の問題点として、時効性に関して
は従来から多くの精力的な検討がなされてきた。ここで
言う時効とは鋼板製造後の経時変化により機械的性質が
劣化し、ストレッチャー・ストレインの発生、プレス割
れの発生などプレス不具合を惹起す現象を指す。近年普
及してきたAtキルド系連続焼鈍材の場合、このような
時効劣化の原因は、箱焼鈍材に比し短時間に急冷するこ
とによる固溶Cの残留にあるとされており、従って再結
晶温度からの冷却後過時効炉を付設し、経済上もしくは
生産能率上杵される時間内で炭化物析出処理を施すのが
通例である。しかしながらこのような処理を経ても現実
VCは固溶限を超える固溶Cの残留、すなわち時効劣化
は避は難く、これが連続焼鈍材の適用拡大を妨げる最大
の原因とされている。
Prior Art and Problems As a problem of cold-rolled steel sheets for press working, many energetic studies have been made regarding aging properties. Aging here refers to a phenomenon in which mechanical properties deteriorate due to changes over time after the steel sheet is manufactured, causing press defects such as stretcher strain and press cracking. In the case of At-killed continuously annealed materials that have become popular in recent years, the cause of such aging deterioration is said to be due to the residual solid solution C due to rapid cooling in a shorter time than in box-annealed materials, and therefore recrystallization. After cooling from temperature, it is customary to attach an overaging furnace and perform carbide precipitation treatment within the time required for economic reasons or production efficiency. However, even after such treatment, it is difficult to avoid residual solid solution C in actual VC exceeding the solid solubility limit, that is, aging deterioration, and this is considered to be the biggest cause of hindering the expansion of the application of continuously annealed materials.

連続焼鈍のように時間的制約の下で非時効化効果を上げ
るには、原理的に再結晶焼純のあと、固溶Cの多い状態
から1000℃/冠以上の冷却速度で水焼入し、そして
焼戻せばよいわけであるが、この場合、焼入歪など各種
欠陥の導入e凍結、場合ニよっては急冷組織の形成、こ
れらにフェライト粒内に析出した炭化物の影響も重畳し
て、極度の硬質化、ひいては加工性の大巾劣化を招くこ
とになる。一方再結晶後ガスもしくはこれと水の混気を
用いて1〜b 却速度で冷却し、400℃程度の過時効を行えば、鋼板
は軟質化するが、時効性は上側よりかなり劣るものとな
る。これを避けるため、過時効温度をより低ぐすると、
過時効処理に要する時間が長引き、生産能率低下および
コストアップを招く。
In order to increase the non-aging effect under time constraints such as continuous annealing, in principle, after recrystallization annealing, water quenching from a state with a large amount of solid solute C is performed at a cooling rate of 1000℃/cap or more. , and then tempering, but in this case, the introduction of various defects such as quenching distortion, freezing, and depending on the case, the formation of a rapidly cooled structure, and the effects of carbides precipitated within the ferrite grains are also superimposed on these. This will lead to extreme hardness and, in turn, a significant deterioration in workability. On the other hand, if the steel plate is cooled at a cooling rate of 1-b using gas or a mixture of it and water after recrystallization and over-aged at about 400℃, the steel sheet will become soft, but the aging properties will be considerably inferior to the upper side. Become. To avoid this, if the overaging temperature is lowered,
The time required for over-aging treatment becomes longer, leading to lower production efficiency and higher costs.

以上のように一般のAtキルド系鋼の連続焼鈍材の場合
、加工性と時効性を同時に満すことは不可能とされてお
り、唯一の例外として、特公昭42−12348号公報
に見られるようなT i 、 Nb等を添加したいわゆ
るI−F、(1nterstitial free)鋼
が挙げられるが、これとて、原料および脱炭に要するコ
スト増が大きく、汎用と称するには程遠い現状にある。
As mentioned above, in the case of continuous annealing materials of general At-killed steels, it is considered impossible to satisfy both workability and aging properties at the same time. Although the so-called I-F (interstitial free) steel added with Ti, Nb, etc., can be mentioned, it requires a large increase in the cost of raw materials and decarburization, and is currently far from being called a general-purpose steel.

このような情勢を考慮して、本発明者らは加工性を損わ
ずしかも良好な時効性を得るための連続焼鈍条件を種々
検討してきたが、その際前提とした基本曲者えを以下に
述べる。
Taking these circumstances into consideration, the present inventors have investigated various continuous annealing conditions in order to obtain good aging properties without impairing workability. I will explain.

まず再結晶焼鈍後、過時効温度に至る迄の冷却速度を極
端に急冷することによる材質硬化を避けるために冷速は
比較的緩やか(1〜b 以後徐冷却と称す)でなければならない。この場合、従
来の知見からすれば、必然的に時効性は劣化するはずで
ある。つぎに時効性を向上させるには平衡固溶Cの小さ
い通例より低い温度(250ないし350℃:以後低温
過時効と称す)で適時とは先刻述べた通りである。
First, after recrystallization annealing, the cooling rate must be relatively slow (hereinafter referred to as slow cooling in 1 to b) in order to avoid hardening of the material due to extremely rapid cooling until the overaging temperature is reached. In this case, according to conventional knowledge, the statute of limitations should inevitably deteriorate. Next, as mentioned earlier, in order to improve the aging property, it is appropriate to use a lower temperature than usual (250 to 350°C: hereinafter referred to as low-temperature overaging) where the equilibrium solid solution C is small.

従って再結晶後、徐冷却し、低温過時効で所望の時効性
を生産上許容しうる時間内に実現するためには、過時効
開始時点で炭化物核生成に必要最小限のCの過飽和度と
、十分な核生成サイトを確保する何らかの方策が必要と
なる。
Therefore, in order to achieve the desired aging properties by slow cooling after recrystallization and low-temperature overaging within an allowable time for production, it is necessary to maintain the minimum degree of C supersaturation necessary for carbide nucleation at the start of overaging. , some measure is required to secure sufficient nucleation sites.

本発明者らは、上記再結晶後の徐冷却、低温過時効を前
提に種々の検討を行なった結果、特定の成分および工程
条件の下では、このような制約にもかかわらず、比較的
簡単に非時効化が可能であることな知見した。
The present inventors conducted various studies based on the above-mentioned slow cooling after recrystallization and low-temperature overaging, and found that under specific components and process conditions, despite these limitations, it is possible to We found that non-aging is possible.

即ち、本発明者らの実験によれば、Mnsが過時効時の
粒内炭化物の優先析出サイトとなり、適量のMnおよび
Sを含むスラブを1oso℃程度の低温加熱熱延すると
MIISの一部は溶け、一部は溶は残るが、この内溶け
たMnおよびSは他の未溶解析出物、又は介在物に再析
出し、溶は残りM n Sと合せて、後工程での炭化物
析出サイトとして適正なサイズ、分布状態が得られるこ
とが知見された。
That is, according to the experiments conducted by the present inventors, Mns becomes the preferential precipitation site for intragranular carbides during overaging, and when a slab containing an appropriate amount of Mn and S is hot-rolled at a low temperature of about 1 oso℃, part of the MIIS Some of the dissolved Mn and S remain, but the dissolved Mn and S re-precipitate into other undissolved precipitates or inclusions, and the dissolved Mn and S, together with the remaining Mn, become carbide precipitation sites in the subsequent process. It was found that an appropriate size and distribution state could be obtained.

なおここにいう適正MnSサイズ、分布状態とは、0、
005〜1.0μ程度のものが、平均間隔はぼ1.5〜
5μ未満で分布しているものを指す。
Note that the appropriate MnS size and distribution state referred to here are 0,
005~1.0μ, the average spacing is about 1.5~
Refers to those distributed at less than 5μ.

発明の構成 本発明は以上の新知見をもととして構成されており、連
続焼鈍材に分ける時効性と加工性の両立という技術上の
隘路を克服した全く新税な鋼板の製造方法である。すな
わち本発明は重fチでCO,005〜+1.025チ、
Mn0.02〜0.25 t4.80.001〜0.0
15%、5olA1.0.025〜0.10%、00.
01チ以下含む鋼塊もしくはスラブを980〜1200
℃に加熱・熱延し、600〜780Cで捲取り、ひきつ
づき冷延を施した鋼を連続焼鈍するに際し、680〜8
50℃の温度域で20〜200廐の再結晶焼鈍を行なっ
たのち、1.0〜100C/□□□未満の冷却速度で2
50〜350℃の@度域に冷却し、しかる後ただちにも
しくは再加熱して、250〜350℃の温度域で1〜1
2−の過時効処理を行なうことを特徴とする連続焼鈍に
よる時効性の良い冷延鋼板の製造方法である。
Structure of the Invention The present invention is constructed based on the above-mentioned new findings, and is a completely new method for manufacturing steel sheets that overcomes the technical bottleneck of achieving both aging properties and workability when dividing into continuously annealed materials. That is, the present invention is CO,005 to +1.025 cm in heavy f-chi,
Mn0.02~0.25 t4.80.001~0.0
15%, 5olA1.0.025-0.10%, 00.
Steel ingots or slabs containing 0.01 inch or less 980-1200
When continuously annealing steel that has been heated and hot rolled to 600 to 780C, then cold rolled to 680 to 8
After performing recrystallization annealing for 20 to 200 degrees in a temperature range of 50℃, annealing at a cooling rate of less than 1.0 to 100C/□□□
Cool to a temperature range of 50 to 350°C, then immediately or reheat to 1 to 1°C in a temperature range of 250 to 350°C.
This is a method for manufacturing a cold rolled steel sheet with good aging properties by continuous annealing, which is characterized by carrying out the over-aging treatment of 2-.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず、対象とする鋼の成分範囲について述べると、Cは
0.025%を超んると再結晶焼鈍に続く冷却の過程で
ノR−ライトとしてもしくは結晶粒界や冷延前に存在す
るμオーダーの巨大な既存析出物、介在物界面に炭化物
として析出し、低温過時効開始時点での十分なC過飽和
度を確保できず、析出サイトとして適正なMnSのサイ
ズ、分散状態が存在しても、効果を活かし得す、結果的
に良好な時効性は得られない。一方Cがo、oos%未
満であると、もともとC析出核生成に必要なC過飽和度
が不足し、良好な時効性は得られない。以上からCの上
限を0.025%とし、下限を0.005 %とするが
、最も有効かつ安定して時効性向上を狙うとすれば0.
010〜0.018%が望ましい。
First, regarding the composition range of the target steel, if C exceeds 0.025%, it will be present as no-R-rite in the cooling process following recrystallization annealing or at grain boundaries or before cold rolling. Existing large precipitates of the order of magnitude precipitate as carbides at the inclusion interface, making it impossible to ensure sufficient C supersaturation at the start of low-temperature overaging, even if the appropriate size and dispersion state of MnS exists as a precipitation site. However, good aging properties cannot be obtained as a result. On the other hand, if the C content is less than o, oos%, the degree of C supersaturation necessary for C precipitation nucleation is insufficient, and good aging properties cannot be obtained. From the above, the upper limit of C is set at 0.025% and the lower limit is set at 0.005%, but if the most effective and stable way to improve aging is to be aimed at, 0.025% is set.
010 to 0.018% is desirable.

Mn量については熱間脆性防止かつ炭化物析出サイトと
して有効なMnSを形成する上で最低0,02俤以上に
必要であり、多過ぎるとかえって過時効開始時点での過
飽和Cを減するので0,25%を超えてはならない。し
たがって0.02〜0.25%と限定する1時効性に及
はす効果を最適にし、かつMnf?を増にともなうr値
劣化を考慮すれば0,05〜0.20%未満が望ましい
The amount of Mn is required to be at least 0.02 to prevent hot embrittlement and to form MnS, which is effective as a carbide precipitation site. Must not exceed 25%. Therefore, the effect on aging should be optimized by limiting it to 0.02-0.25%, and Mnf? Taking into consideration the deterioration of the r value due to an increase in the amount of carbon, it is desirable that the amount is less than 0.05 to 0.20%.

S量については、Mntによって些少の差違はあるが、
有効MnS形成の上で少くとも0.001%は必要であ
り、0.015%を超えるとμオーダーの大き々MnS
が多数残存し、ま几フェライト粒4小さくなるため、時
効性が劣化する。したがって0.001〜0.015%
と限定する。時効性向上効果を最大限に発揮する上では
o、 o o a〜0.010チ未満が望ましい。
Regarding the amount of S, although there are slight differences depending on Mnt,
At least 0.001% is necessary for effective MnS formation, and if it exceeds 0.015%, large MnS on the μ order
A large number of ferrite grains remain and the ferrite grains 4 become smaller, resulting in deterioration of aging properties. Therefore 0.001-0.015%
limited to. In order to maximize the effect of improving aging properties, it is desirable that o, o o a be less than 0.010 h.

S o 111量については、鋼中に常識的に存在する
0、 007チ以下程度のNを完全に固定するため、最
低0.025 %は必要とし、0.10 %を超えると
強度上昇、伸び劣化な招くので0.025〜0.10 
%と限定するが、フェライト粒を十分発達させ、時効性
を最も向上させたい場合には0,05〜0.10%とす
ることが望ましい。
Regarding the amount of S o 111, a minimum of 0.025% is required in order to completely fix the N of 0.007 or less, which is commonly present in steel.If it exceeds 0.10%, strength increases and elongation occurs. 0.025 to 0.10 as it may cause deterioration.
%, but if you want to fully develop ferrite grains and improve aging properties the most, it is desirable to set it to 0.05 to 0.10%.

0については、酸化物の形で鋼中に存在し、多過ぎると
S過剰の場合同様時効性に悪影響を及ぼす。この悪影響
を完全に除去するには0.0.05%以下に抑えること
が望ましいが、0.01%以下なら実質的な悪影響は許
容しりる程度なので0,01%以下とする。St 量、
PtおよびNtについては、特に限定するものではない
が、r値、伸びの劣化の点から、それぞれ0.3%以下
、0.08%以下および0.007%以下が望ましい。
0 exists in the steel in the form of an oxide, and if it is too much, it will have a negative effect on the aging properties, as in the case of excess S. In order to completely eliminate this adverse effect, it is desirable to suppress it to 0.0.05% or less, but if it is 0.01% or less, the substantial adverse effect is tolerable, so it is set to 0.01% or less. St amount,
Pt and Nt are not particularly limited, but from the viewpoint of r-value and elongation deterioration, they are preferably 0.3% or less, 0.08% or less, and 0.007% or less, respectively.

以上の成分を含む鋼塊もしくはスラブを熱延するに際し
てまず加熱温度については有効MnSを確保するために
は通常より低目に設定する必要がある。1200℃を超
えて加熱するとMn Sは大部分溶解し、冷却過程で主
にγ粒界に再析出するが、この様な微細なMn S t
’l、析出サイトとしての効果を持たない。一方、加熱
温度を980℃未満にすると材料は硬化し、圧延機に過
大の負担をかける。
When hot rolling a steel ingot or slab containing the above components, the heating temperature must be set lower than usual in order to ensure effective MnS. When heated above 1200°C, most of MnS dissolves, and during the cooling process it reprecipitates mainly at the γ grain boundaries.
'l, has no effect as a precipitation site. On the other hand, if the heating temperature is lower than 980° C., the material will harden, placing an excessive burden on the rolling mill.

したがって加熱温度の上限を1200℃下限を980℃
とする。ただし時効性向上効果を最大限に発揮させしか
も操業し易さの点からは、1020℃〜1120℃が望
ましい。
Therefore, the upper limit of the heating temperature is 1200℃, and the lower limit is 980℃.
shall be. However, from the viewpoint of maximizing the effect of improving aging properties and ease of operation, the temperature is preferably 1020°C to 1120°C.

熱延終了後の捲取温度については、NをAtNとして十
分に固定する必要から600℃以上とするが、スケール
酸洗性の観点から780℃を超えてはならない。これら
のバランスで最も望ましいのは700〜750℃の間で
ある。
The winding temperature after hot rolling is set at 600° C. or higher because it is necessary to sufficiently fix N as AtN, but it must not exceed 780° C. from the viewpoint of scale pickling properties. The most desirable balance between these temperatures is between 700 and 750°C.

冷延については、通常行われるはは50〜90−程度の
圧下率で良くとくに圧下率の限定を行なう必要はない。
As for cold rolling, it is not necessary to particularly limit the rolling reduction, which is usually carried out at a rolling reduction of about 50 to 90.

連続焼鈍を行なうに際して茨鈍加熱速[H通常通すtl
ぼ1〜b については再結晶を十分に行わせるため最低680℃は
必要である。−力士限値につhては、フェライト粒径な
大きくするため時効性を良くする点からは或程度高温度
が望ましいとも言えるが、余り高過ぎて粗大粒化すると
、肌あれの危険性もあるので、850℃以下とする必要
がある。焼鈍時間は再結晶完了に要する時間として20
sec以上必要であり、また長過ぎても生産性を阻害す
るので200(6)以内とする必要がある。上記種々の
点を考慮し、バランス上置も効率良く生産するには、7
70℃〜830℃で30〜120secの焼鈍を行なう
ことが望ましい。
When performing continuous annealing, the thorn annealing heating rate [H normal passing tl
For items 1 to 1b, a minimum temperature of 680° C. is required for sufficient recrystallization. - Regarding the sumo wrestler limit h, it can be said that a somewhat high temperature is desirable from the point of view of increasing the ferrite grain size and improving aging properties, but if the temperature is too high and the grains become coarse, there is a risk of rough skin. Therefore, it is necessary to keep the temperature below 850°C. The annealing time is 20 minutes as the time required to complete recrystallization.
sec or more is required, and if it is too long, productivity will be hindered, so it must be within 200 (6). Considering the various points mentioned above, in order to efficiently produce balance tops, 7.
It is desirable to perform annealing at 70°C to 830°C for 30 to 120 seconds.

再結晶焼鈍後の冷却速度については、そもそも本発明の
前提とも言うべき因子であり、加工性劣化を避ける几め
100℃/9ec以上の急冷は絶対に避けなくてはなら
ない、適正冷却速度は、既述の各成分曖や熱延加熱源1
度とも関連するが、IC/sec未満では過時効開始時
点での過飽和Cが少くなり過ぎ、折角の有効MnSを活
かせず、時効性向上につながらないので除外する。
Regarding the cooling rate after recrystallization annealing, it is a factor that can be said to be a premise of the present invention in the first place, and rapid cooling of 100 ° C / 9 ec or more must be absolutely avoided in order to avoid deterioration of workability. The appropriate cooling rate is: Each component mentioned above and hot rolling heating source 1
Although it is related to the degree of aging, if it is less than IC/sec, the supersaturated C at the start of overaging becomes too small, and the effective MnS cannot be utilized, which does not lead to improvement in aging performance, so it is excluded.

なお冷却途中で、冷却速度を随時変更しても、冷却速度
が上記の範囲内であれば、いずれにせよ所期の効果は得
られるが、時効性と加工性の最適バランスを保証する点
では/! 650〜700℃の温度域な境にしてこれ以
上を5〜b れ以下を10〜b ここで限定した冷却速度の終点温度は過時効温度と一致
しても、あるいは過時効温度以下に過冷却しても構わな
いが、いずれにしても終点温度は350℃以下、窒まし
くは300℃以下として十分にCの過飽和度を確保する
必要がある。しかし250℃未満としても通常見出され
る01%以外の別の炭化物(ε相)が生成し、これに対
する過飽和度が見掛上小さくなるので、250℃未#は
避けねばならない。つぎに過時効温度については冷却終
点温度で説明した理由と全く同じ理由により350℃以
下(望ましくは300℃以下)250℃以上の温度域で
行なう必要がある。冷却後ただちに該温度域で保定して
も、過冷却して再加熱・保定してもあるいは保定せず、
該温度域で最初高温、時間と共に温度な下げるいわゆる
傾斜過時効方式や階段過時効方式を採用しても良い。冷
却終点から過時効終了(最終的[250℃未満に下った
時点)に至るまでの所要時間が1馴未満ではC析出は完
了せず12jI!I+を超えることは生産性を著しく阻
害するので本発明の範囲から除外する。なお最も有効に
本発明の効果を得るためには、基本的に270〜300
℃の温度域に該当する時間の総計を5−以上確保するこ
とが望ましく、また過時効終段におAて270〜250
℃の温度域で30冠以上経過する熱サイクルを設けるこ
とも有効である。
Even if the cooling rate is changed at any time during cooling, as long as the cooling rate is within the above range, the desired effect will be obtained in any case, but this will not guarantee the optimal balance between aging properties and workability. /! The temperature range is 650 to 700℃, and above this temperature range is 5 to b. Below this temperature range is 10 to b. Even if the end point temperature of the cooling rate limited here matches the overaging temperature, or is supercooled to below the overaging temperature. However, in any case, it is necessary to set the end point temperature to 350° C. or lower, preferably 300° C. or lower, to ensure a sufficient degree of C supersaturation. However, even if the temperature is lower than 250°C, another carbide (ε phase) other than the normally found 01% carbide will be formed, and the degree of supersaturation with respect to this will appear to be small, so temperatures below 250°C must be avoided. Next, regarding the overaging temperature, it is necessary to carry out the aging in a temperature range of 350° C. or lower (preferably 300° C. or lower) and 250° C. or higher for exactly the same reason as explained for the cooling end point temperature. Even if it is held in the specified temperature range immediately after cooling, whether it is supercooled and reheated and held, or it is not held at all,
A so-called gradient overaging method or step overaging method may be adopted in which the temperature is initially high in this temperature range and the temperature is lowered over time. If the time required from the end of cooling to the end of overaging (the final point when the temperature drops below 250°C) is less than 1°C, C precipitation will not be completed and 12jI! Exceeding I+ significantly inhibits productivity and is therefore excluded from the scope of the present invention. In order to most effectively obtain the effects of the present invention, basically 270 to 300
It is desirable to ensure that the total time corresponding to the temperature range of
It is also effective to provide a thermal cycle that lasts 30 cycles or more in the temperature range of °C.

以上の工程な経た鋼板に通例にしたがって0.5〜2.
0チの調質圧延を施こすことにより所期の狙い通り、焼
鈍後の冷却速度が比較的iI(でも、時効性に優れ、か
つ加工性にも優れた鋼板が得られる。
0.5 to 2.
By performing 0-chi temper rolling, a steel plate with excellent aging properties and excellent workability can be obtained, although the cooling rate after annealing is relatively iI (as expected).

以下本発明の効果を実施例にもとづいて、さらに具体的
に説明する。
The effects of the present invention will be explained in more detail below based on Examples.

実施例 第1表((示すように成分量の異なる各種の鋼を転炉も
しくはイ炉で溶輿し、スラブとし、加熱温度、捲取温度
を変えて熱延ン行ない、酸洗後78〜80%の冷延を行
なったのち連続焼鈍な施こし、成品の時効性および機械
的性質を調べt6時効性は、Aging Index 
(A、1.、 kf / rxJ )で評価した。
Examples Table 1 After 80% cold rolling, the product was subjected to continuous annealing, and the aging properties and mechanical properties of the finished product were examined.
(A, 1., kf/rxJ).

これは成品板に10%の一軸歪を与え、1oo″”Cx
1 hr の人工時効を施したのち、再度引張り、時効
前後の応力差&A、1.七し、これが小さいほど時効性
良しとしたものである。通常3.0〜3.5 kf/I
jなら時効性にかなり良(,2kg/wj以下なら実質
非時効と考えて良い。この結果より本発明により得られ
た鋼板の時効性は極めて優れていることが判る。
This gives a uniaxial strain of 10% to the finished board, 1oo""Cx
After artificial aging for 1 hr, tensile again, stress difference before and after aging &A, 1. 7. The smaller this value is, the better the aging property is. Normally 3.0-3.5 kf/I
If it is less than 2 kg/wj, it can be considered that the aging property is quite good (and if it is less than 2 kg/wj, it can be considered that there is no real aging. From this result, it is clear that the aging property of the steel sheet obtained by the present invention is extremely excellent.

発明の効果 以上のように本発明によれば、連続焼鈍でも時効性、加
工性とも優れた鋼板を製造できる。
Effects of the Invention As described above, according to the present invention, it is possible to produce a steel plate with excellent aging properties and workability even by continuous annealing.

代理人 弁理士 秋 沢 政 光 外2名Agent Patent Attorney Masaaki Akizawa 2 people outside

Claims (1)

【特許請求の範囲】[Claims] (1)重量% でCO,005〜0.025%、Mn 
0.02〜0.25%、S O,001−0,015%
、5otAtO,025〜0.10%、00.01%以
下含む鋼塊もしくはスラブを980〜1200℃に加熱
・熱延し、6oo〜780℃で捲取り、ひきつづき冷延
を施した鋼を連続焼鈍するに際し、680〜850℃の
温度域で20〜200(8)の再結晶焼鈍を行なったの
ち、1.0〜b 350℃の温度に冷却し、しかる後ただちにもしくは再
加熱して250〜350℃の温度域で1〜12−の過時
効処理を行なうことを特徴とする連続焼鈍による時効性
の良い冷延鋼板の製造方法。
(1) CO, 005-0.025%, Mn in weight%
0.02-0.25%, SO,001-0,015%
, 5otAtO, 025~0.10%, 00.01% or less steel ingot or slab is heated and hot rolled to 980~1200℃, rolled at 6oo~780℃, and then cold rolled steel is continuously annealed. After recrystallization annealing of 20 to 200 (8) in the temperature range of 680 to 850 °C, cool to a temperature of 1.0 to 350 °C, and then immediately or reheat to 250 to 350 °C. A method for producing a cold-rolled steel sheet with good aging properties by continuous annealing, characterized in that an overaging treatment of 1 to 12 degrees Celsius is carried out in a temperature range of 1 to 12 degrees Celsius.
JP11411784A 1984-06-04 1984-06-04 Manufacture of cold rolled steel sheet having good aging property by continuous annealing Pending JPS60258428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11411784A JPS60258428A (en) 1984-06-04 1984-06-04 Manufacture of cold rolled steel sheet having good aging property by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11411784A JPS60258428A (en) 1984-06-04 1984-06-04 Manufacture of cold rolled steel sheet having good aging property by continuous annealing

Publications (1)

Publication Number Publication Date
JPS60258428A true JPS60258428A (en) 1985-12-20

Family

ID=14629559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11411784A Pending JPS60258428A (en) 1984-06-04 1984-06-04 Manufacture of cold rolled steel sheet having good aging property by continuous annealing

Country Status (1)

Country Link
JP (1) JPS60258428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372828A (en) * 1986-09-16 1988-04-02 Nippon Steel Corp Manufacture of steel sheet having superior deep drawability by continuous annealing
JPS6372829A (en) * 1986-09-16 1988-04-02 Nippon Steel Corp Manufacture of steel sheet for deep drawing having superior uniformity in internal quality of coil
JPH01136933A (en) * 1987-11-21 1989-05-30 Nippon Steel Corp Manufacture of cold-rolled steel strip for deep drawing
JPH02182837A (en) * 1989-01-10 1990-07-17 Nippon Steel Corp Manufacture of aluminum killed steel sheet stock for continuous annealing
CN101880821A (en) * 2010-06-11 2010-11-10 武汉钢铁(集团)公司 Steel-aluminum compound hot rolled steel with tensile strength of 280MPa and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372828A (en) * 1986-09-16 1988-04-02 Nippon Steel Corp Manufacture of steel sheet having superior deep drawability by continuous annealing
JPS6372829A (en) * 1986-09-16 1988-04-02 Nippon Steel Corp Manufacture of steel sheet for deep drawing having superior uniformity in internal quality of coil
JPH01136933A (en) * 1987-11-21 1989-05-30 Nippon Steel Corp Manufacture of cold-rolled steel strip for deep drawing
JPH02182837A (en) * 1989-01-10 1990-07-17 Nippon Steel Corp Manufacture of aluminum killed steel sheet stock for continuous annealing
CN101880821A (en) * 2010-06-11 2010-11-10 武汉钢铁(集团)公司 Steel-aluminum compound hot rolled steel with tensile strength of 280MPa and production method thereof

Similar Documents

Publication Publication Date Title
US5102478A (en) Method of making non-oriented magnetic steel strips
US4014717A (en) Method for the production of high-permeability magnetic steel
JP4715496B2 (en) Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy
US4116729A (en) Method for treating continuously cast steel slabs
JPS60258428A (en) Manufacture of cold rolled steel sheet having good aging property by continuous annealing
KR100419046B1 (en) Method for Manufacturing Martensite Stainless Steel Coil by Batch Annealing Furnace
JPH07242995A (en) Cold rolled sheet of low carbon aluminum killed steel for deep drawing and its production
JPH025803B2 (en)
JPS6234803B2 (en)
JPH0310020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic
JPS6043432A (en) Manufacture of cold rolled aluminum killed steel sheet
JPS6349726B2 (en)
JP2985730B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPS6326179B2 (en)
JPS6323248B2 (en)
JPH0153334B2 (en)
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPH07100817B2 (en) Method for manufacturing slow-aging cold-rolled steel sheet
JP2953323B2 (en) Manufacturing method of low carbon cold rolled steel sheet
JPS63103025A (en) Manufacture of cold rolled steel sheet for deep drawing from cast thin strip
JPS6274024A (en) Manufacture of cold rolled high strength steel
JPS622614B2 (en)
JPH04276023A (en) Manufacture of cold rolled steel sheet for working excellent in surface property by continuous annealing
JPH04107218A (en) Production of starting sheet for soft tin plate and tfs excellent in stretcher strain resistance by continuous annealing