JPS60257790A - Controller of ac elevator - Google Patents

Controller of ac elevator

Info

Publication number
JPS60257790A
JPS60257790A JP59112698A JP11269884A JPS60257790A JP S60257790 A JPS60257790 A JP S60257790A JP 59112698 A JP59112698 A JP 59112698A JP 11269884 A JP11269884 A JP 11269884A JP S60257790 A JPS60257790 A JP S60257790A
Authority
JP
Japan
Prior art keywords
command
magnetic flux
pattern
torque
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59112698A
Other languages
Japanese (ja)
Other versions
JPH0585470B2 (en
Inventor
Kazuo Maruyama
和夫 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
Original Assignee
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd filed Critical Fujitec Co Ltd
Priority to JP59112698A priority Critical patent/JPS60257790A/en
Publication of JPS60257790A publication Critical patent/JPS60257790A/en
Publication of JPH0585470B2 publication Critical patent/JPH0585470B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Abstract

PURPOSE:To remarkably reduce the noise of a motor by controlling the pattern of a magnetic flux and a slip constantly or variably in response to a load. CONSTITUTION:A magnetic flux command phi2* is outputted from a magnetic flux pattern generator 8, a torque current command i* is outputted from a torque current pattern generator 9, and a slip frequency command omegaS* is outputted from a slip frequency pattern generaotr 10 in response to a torque command T* by the control of a speed regulator 7 to control a motor 4. The generator 8 sets a magnetic flux to the prescribed value lower than at rated time when a load is the prescribed value or lower and variably to the load when the load is the prescribed value or higher, the generator 8 sets the slip variably in response to the load when the load is the prescribed value or lower and to the constant value when the prescribed value or higher. Thus, the noise of the motor can be reduce without losing the adaptability of a control system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、インバータ或いはザイクロコンバータで運
転される交流エレベータの制御装置の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a control device for an AC elevator operated by an inverter or a cycloconverter.

〔従来の技術〕[Conventional technology]

誘導電動機(以下モータという)に1可変電圧、可変周
波数の交流電力を供給して速度制御を行なう方法として
は、2次鎖交磁束(以下磁束という)を一定にして運転
する方法や、すべりを一定とし磁束を可変として運転す
る方法、或いは最大効率のすべり周波数で運転する方法
などがある。
Methods of speed control by supplying variable voltage, variable frequency AC power to an induction motor (hereinafter referred to as a motor) include a method of operating with a constant secondary magnetic flux linkage (hereinafter referred to as a magnetic flux) and a method of operating with a constant secondary flux linkage (hereinafter referred to as a magnetic flux). There are methods to operate with constant magnetic flux and variable, or methods to operate at maximum efficiency slip frequency.

〔発明が解決しようとする間頴点〕[Intermediate point that the invention attempts to solve]

磁束の発生にはモータ2次時定数(0,005S〜0.
+s) で決まる遅れ時間か存在するため、これによる
トルクの発生の遅れ時間が存在し、従って連応性を要求
される分野では磁束一定で運転される。エレベータの速
度制御においても、連応性の観点からは磁束一定で運転
することが望ましい。この場合、すべての負荷に対して
それ相応のトルクを出す必要があることから一磁束は大
きめの値に設定する必要があり、通常はモ−夕の定格磁
束(モータな定格負荷、定格電圧1定格電流で運転した
時の磁束)に設定される。
The generation of magnetic flux requires a motor secondary time constant (0,005S to 0.
Since there is a delay time determined by +s), there is a delay time in the generation of torque due to this, and therefore, in fields where coordination is required, the magnetic flux is operated at a constant value. In elevator speed control as well, it is desirable to operate with constant magnetic flux from the viewpoint of coordination. In this case, it is necessary to generate a corresponding torque for all loads, so it is necessary to set the magnetic flux to a large value, and usually the rated magnetic flux of the motor (the rated load of the motor, the rated voltage of Magnetic flux when operating at rated current).

一方、エレベータの場合は極めて静寂な運転が要求され
るため、エレベータ走行時の最も大きな音の一つである
モータ電磁騒音を極力小さくする必要がある。このモー
タ電磁騒音はモータの磁束と大きな関係かあり、モータ
磁束の増大に伴って著しく増大する。
On the other hand, since elevators are required to operate extremely quietly, it is necessary to minimize motor electromagnetic noise, which is one of the loudest sounds when an elevator is running. This motor electromagnetic noise has a strong relationship with the magnetic flux of the motor, and increases significantly as the motor magnetic flux increases.

従って・磁束を定格磁束に設定して一定で運転する方法
では、すべての負荷に渡って大きな電磁騒音を発生ずる
ことになり、エレヘ−夕の駆動方式としては実用的でな
い。
Therefore, if the magnetic flux is set to the rated magnetic flux and operated at a constant value, a large electromagnetic noise will be generated across all loads, and this is not practical as a driving method for an electric heater.

この問題を避けるため・負荷に対してずへりを一定どし
モータ磁束を可変としてトルクを制御する方法もあるか
、この場合、駆動領域から制動領域Gこ移行する時、或
いはこの逆の時にすべりの極性を反転する必要があり、
この時エレベータは著しく大きなかご振動を発生する。
In order to avoid this problem, is there a way to control the torque by keeping the shear constant with respect to the load and varying the motor magnetic flux? In this case, there is no slippage when moving from the drive region to the braking region G or vice versa. You need to reverse the polarity of
At this time, the elevator generates significantly large car vibrations.

これはすべり周波数が急激に正極性の一定値から負極性
の一定値に変化するのに対して、磁束の変化は必ず遅れ
、この遅れ量が」二記ずへり周波数の極性が変化する近
傍では磁束指令の変化量が大きいために、より大きくな
るからである。
This is because while the slip frequency suddenly changes from a constant value of positive polarity to a constant value of negative polarity, the change in magnetic flux is always delayed, and this delay amount is ``2'' in the vicinity where the polarity of the edge frequency changes. This is because the amount of change in the magnetic flux command is large, so it becomes larger.

従ってすべりを一定とする運転方式は、エレベータの乗
心地の面から見て問題かある。
Therefore, an operation method that maintains a constant slip is problematic from the viewpoint of elevator ride comfort.

また、可変磁束、可変すべり周波数で運転する方式とし
て、すべての負荷に対して最大効率のすべり周波数で運
転する方式もあるが・すべり周波数及び磁束のパターン
設定が極めて複雑となり、更にこれらのパターン設定を
モータ仕様(モータ容量、電圧仕様等)が変わる毎に変
えなければならないという問題点かあり、やはりエレベ
ータ用としては実用的でない。
Additionally, as a method of operating with variable magnetic flux and variable slip frequency, there is also a method of operating at the maximum efficiency slip frequency for all loads, but the pattern settings for the slip frequency and magnetic flux are extremely complicated, and these pattern settings are also difficult. This has the problem of having to be changed every time the motor specifications (motor capacity, voltage specifications, etc.) change, which makes it impractical for elevators.

〔問題点を解決するための手段及Oζ作用〕本発明は上
記問題点を解決するため、負荷か所定値以下の時は定格
時より低い一定の値に、負荷が所定値以上の時は負荷に
応して可変となるように磁束を設定する手段と、負荷が
所定値以下の時は負荷Gこ応じて可変となるように、負
荷が所定仏具」−の時は一定の値Qこすべりを設定する
手段とを備えたことを特徴とし)しかも磁束及びず−\
りのパターンは制御系の線形性か保たれるように設定し
ている。これにより、軽負荷時には磁束は定格時より低
い一定の値で1ずベリはトルク指令に比例するように運
転か行なわれ、また重負荷時にはずベリか一定で、磁束
かl・ルク指令に応じ可変となるように運転か行なわれ
、制御系の連応性を損うことなくモータ騒音の低減を図
ることかできる。
[Means for solving the problem and Oζ action] In order to solve the above problems, the present invention aims to reduce the load to a constant value lower than the rated value when the load is below a predetermined value, and to reduce the load to a constant value lower than the rated value when the load is equal to or higher than the predetermined value. Means for setting the magnetic flux so that it is variable according to ) and a means for setting the magnetic flux.
The pattern is set so that the linearity of the control system is maintained. As a result, when the load is light, the magnetic flux is kept at a constant value lower than the rated value, and the flux is proportional to the torque command, and when the load is heavy, the flux is constant and the flux is proportional to the torque command. Since the motor is operated in a variable manner, it is possible to reduce motor noise without impairing the coordination of the control system.

〔実 施 例〕〔Example〕

第1図(Jlこの発明による交流エレヘ−夕の制御装置
の一実施例を示す全体構成図で、ここでは本発明をベク
トル制御に適用した例を示している。
FIG. 1 is an overall configuration diagram showing one embodiment of an AC electric heater control device according to the present invention. Here, an example in which the present invention is applied to vector control is shown.

図中、R,S、 T は正相交流電源、1は正相交流電
力を直流に変換するコンバータ装置、2はコンバータ装
置1の出力を平滑にするフィルタ、6は直流を可変′市
川・可変周波数の交流に変換するインバータ装置、4−
エレベータを[動するモータ、5はモータ4の回転数(
エレベータの速度)を検出し速度帰還信号N rを出力
する速度発電機、6は所定の速度指令N を発生する速
度指令発生器、7は速度指令N と速度帰還信号1行と
の偏差を増幅しトルク指令T* とじて出力する速度調
節器・8はl・ルク指令T*に応じて所定の磁束指令φ
2を出力する磁束バクーン発生器、9はl・ルク指令T
 に応して所定のトルク電流指令]・丁1を出力するト
ルク電流パターン発生器・ 10はトルク指令T*に応
して所定のすへり周波数指令ωS*を出力するずへり周
波数パターン発生器111は磁束指令φ2*を励磁電流
指令1□Iに変換する位相進み回路、12は励磁電流指
令ユ1.A*とトルク電流指令」9T′とから1次電流
指令11を演算するベクトル演算器、13は1次電流へ
クトルf1と磁束−クトイ欠 ヨJ、φ2の位相差θをめるための関係発生器、14は
微分器・(θ□′は1次周波数指令である。
In the figure, R, S, and T are positive-phase AC power supplies, 1 is a converter device that converts positive-phase AC power into DC, 2 is a filter that smoothes the output of converter device 1, and 6 is a DC variable variable Ichikawa variable. Inverter device for converting frequency into alternating current, 4-
The motor that moves the elevator, 5 is the rotation speed of motor 4 (
6 is a speed command generator that generates a predetermined speed command N, and 7 amplifies the deviation between the speed command N and the speed feedback signal line 1. The speed regulator 8 outputs a predetermined magnetic flux command φ according to the torque command T*.
Magnetic flux Bakun generator outputs 2, 9 is l-lux command T
10 is a shear frequency pattern generator 111 that outputs a predetermined shear frequency command ωS* in response to the torque command T*. 12 is a phase advance circuit that converts the magnetic flux command φ2* into an excitation current command 1□I, and 12 is an excitation current command unit 1. A vector calculator that calculates the primary current command 11 from A* and the torque current command 9T', 13 is a relationship for calculating the phase difference θ between the primary current hector f1 and the magnetic flux - torque current J and φ2 14 is a differentiator (θ□' is the primary frequency command.

以−にの構成において、ベクトル制御は周知であるので
詳細な説明は省略するか1エレヘークの速度指令N と
、速度発電機5からの速度帰源信号Nrとの偏差か速度
調tVl;?r7によって増幅され、トルク指令T*と
して出力される。このトルク指令T*に応じて所定の速
度指令φ2*、トルク電流指令IT*1すべり周波数指
令ωS*が出力される。そしてh下記(1)〜(4)の
関係式に基づいて、各指令φ2*+ lT*l ωS*
がら1次電流指令11*と1次層波数指令ω1*とが演
算され・磁束φ2とすべり角周波数ωSとが所定のパタ
ーンとなるように制御される。
In the configuration described above, since vector control is well known, a detailed explanation will be omitted.Is it the deviation between the speed command N of one electric wave and the speed return signal Nr from the speed generator 5, or the speed adjustment tVl;? It is amplified by r7 and output as a torque command T*. In response to this torque command T*, a predetermined speed command φ2*, torque current command IT*1 and slip frequency command ωS* are output. Based on the relational expressions (1) to (4) below, each command φ2*+ lT*l ωS*
Meanwhile, the primary current command 11* and the primary layer wave number command ω1* are calculated, and the magnetic flux φ2 and the slip angular frequency ωS are controlled to have a predetermined pattern.

φ””’ 1+T、S IM ”” fl)□、−F評
〒7 ・・・・(2) dθ θノ1+ωS十ωr+□・−・・(3)d、t ―θ−ωs T 2 ・・・・・・・・・ (4)第2
図は、本発明における各指令のパターンを示す図で、(
a)は磁束指令φ2*のパターンを、(匂はすべり周波
数指令(++3*のパターンを−(C)はトルク電流指
令コ−7*のパターンをそれぞれ示している。第2図か
ら明らかなように\磁束指令φ2*はトルク指令T*の
絶対値か所定値(To)以下の時、すなわちエレベ〜り
の所要トルクが所定値以下の時は定格磁束より低い一定
の値とし、トルク指令T*の絶対値か所定仏具」−の時
すなわぢエレベータの所要トルクが所定値以上の時は、
トルク指令T*の平方根に比例するようにしている。す
べり周波数指令o)s*は、トルク指令T*の絶対値が
所定値以下の時にはトルク指令T*に比例し、所定値以
上の時には一定値となる。
φ””' 1+T, SIM ”” fl)□, -F evaluation〒7...(2) dθ θノ1+ωStenωr+□・-・(3) d, t −θ−ωs T 2 ・・・・・・・・・・ (4) Second
The figure shows the pattern of each command in the present invention.
(a) shows the pattern of the magnetic flux command φ2*, (O) shows the pattern of the slip frequency command (++3*, and -(C) shows the pattern of the torque current command -7*.As is clear from Fig. 2, When the magnetic flux command φ2* is less than the absolute value of the torque command T* or a predetermined value (To), that is, when the required torque for elevator is less than the predetermined value, the magnetic flux command φ2* is set to a constant value lower than the rated magnetic flux, and the torque command T If the required torque of the elevator is greater than the specified value,
It is made to be proportional to the square root of the torque command T*. The slip frequency command o)s* is proportional to the torque command T* when the absolute value of the torque command T* is less than or equal to a predetermined value, and becomes a constant value when the absolute value of the torque command T* is greater than or equal to the predetermined value.

ここで、磁束指令φ2*とすべり周波数指令ωS*をト
ルク指令T*に対して第2図に示すような特性とするの
は次のような理由による。
Here, the reason why the magnetic flux command φ2* and the slip frequency command ωS* have the characteristics shown in FIG. 2 with respect to the torque command T* is as follows.

すなわち\モータの発生トルクTeは Toαφ1.、I、5100.(5) で与えられる。従って磁束φ2か一定の時にはωS*と
T*との関係かωS*αT*となるようにωS*のパタ
ーンを設定することにより・また(IJ S か一定の
時にはφ*とT*との関係かφ*αr −下となるよう
にφ才のパターンをadすることにより、モータの発生
トルクTOはトルク指令゛]”*に対して常にTeαT
*となる。
That is, the torque Te generated by the motor is Toαφ1. , I, 5100. (5) is given by. Therefore, by setting the pattern of ωS* so that when the magnetic flux φ2 is constant, the relationship between ωS* and T* becomes ωS*αT*, and when (IJ S is constant, the relationship between φ* and T* By adding the pattern of φ so that φ*αr − is below, the generated torque TO of the motor is always TeαT with respect to the torque command ゛]”*
* becomes.

この結果、制御系の線形性か保たれ、良好な速叱(性を
確保てきるからである。
As a result, the linearity of the control system is maintained, ensuring good speed control.

また、l・ルク電流指令ユ7、′のパターンは第2図(
c)に示したようになるか、これはTe−にφ2〕 (
Kは定数)−−−[6)であることから、制御系の線形
を保つためにはφ2*のパターンか定まれば必然的に定
まることになる。すなわち、前述のように制御系か線形
となるためにはTeαT*、従って(6)式よりT*α
φ2*IT* となる必要がある。ここてφ2は IT”l > ITOIてφ2*αFTIT l < 
1Tol でφ2−一定であることから、工Tのパター
ンは +T*l > ITolでIT*、、r−* * IT l < 1Tol で −、T αTとなり、第
2図(c)に示したようになる。
In addition, the pattern of l·lux current command unit 7,' is shown in Figure 2 (
It becomes as shown in c), which means that Te− has φ2〕 (
Since K is a constant)---[6), in order to maintain the linearity of the control system, it is necessary to determine the pattern of φ2*. That is, as mentioned above, in order for the control system to be linear, TeαT*, and therefore from equation (6), T*α
It is necessary that φ2*IT*. Here, φ2 is IT”l > ITOI φ2*αFTIT l <
Since φ2- is constant at 1Tol, the pattern of T is: +T*l > ITol, IT*, r-* * ITl < 1Tol, -, T αT, as shown in Figure 2(c). become.

第6図は、本発明における磁束パターン発生器の構成の
一実施例を示す図である。磁束パターン発生器8は、絶
対値回路8as 平方根演算器3b、 下限値制限回路
8Cて構成され、トルク指令T・トから第2図に示ず磁
束指令φ2*のパターンを得ることかできる。
FIG. 6 is a diagram showing an embodiment of the configuration of a magnetic flux pattern generator according to the present invention. The magnetic flux pattern generator 8 is composed of an absolute value circuit 8as, a square root calculator 3b, and a lower limit value limiting circuit 8C, and can obtain a pattern of magnetic flux command φ2* (not shown in FIG. 2) from torque commands T and T.

第4図は1本発明におけるトルク電流パターン発生器の
構成の一実施例を示ず図である。l・ルク電流パターン
発JE器9は、絶久]値回路9a。
FIG. 4 is a diagram showing an embodiment of the configuration of a torque current pattern generator according to the present invention. The l·lux current pattern generating JE device 9 has an infinite value circuit 9a.

平方根演算器9b、最小値選択回路9cs 極性判別回
路9 a ’=極性切替回路9eにより構成され、これ
により第2図に示す)・ルク電流指令IT*のパターン
を得ることかできる。
It is composed of a square root calculator 9b, a minimum value selection circuit 9cs, a polarity discrimination circuit 9a', and a polarity switching circuit 9e, thereby making it possible to obtain the pattern of the torque current command IT* (shown in FIG. 2).

また・第2図に示したすべり周波数指令ωS*のパター
ンは、すべり周波数パターン発生器を上限値及び下限値
制限回路で構成することにより容易に得ることができる
Furthermore, the pattern of the slip frequency command ωS* shown in FIG. 2 can be easily obtained by configuring the slip frequency pattern generator with an upper limit value and lower limit value limiting circuit.

4rお、以上の説明については各指令のパターンを理想
的な特性で示したか飄制御に支障のない範囲で簡略化す
ることも可能である。
4r. In the above explanation, the patterns of each command have been shown with ideal characteristics, or they can be simplified to the extent that they do not interfere with air control.

第5図は、磁束指令φ2*のパターンを簡略化した例を
示すもので、lT*l、−41Tolてφ2*αT*と
じて直線的に立ち上げている。この場合でも前述とほぼ
同等の応答性を得ることかできる。
FIG. 5 shows a simplified example of the pattern of the magnetic flux command φ2*, in which lT*l and -41Tol are linearly raised as φ2*αT*. Even in this case, almost the same responsiveness as described above can be obtained.

第6図は、第5図の簡略化した磁束指令φ2*限回路8
cだけの簡単な構成とすることかできる。
Figure 6 shows the simplified magnetic flux command φ2*limiting circuit 8 in Figure 5.
It is possible to have a simple configuration with only c.

〔発明の効果〕〔Effect of the invention〕

本発明によれば・モータの磁束とすべり周波数が所要ト
ルクに対して常に第2図に示したパターンのように制御
され1犬部分の運転において磁束を定格磁束一定運転に
比して十分低減して運転できるので・モータの騒音を著
しく低減でき、しかも制御系を線形化することにより良
好な速度応答を得ることができる。
According to the present invention, the magnetic flux and slip frequency of the motor are always controlled according to the pattern shown in Fig. 2 with respect to the required torque, and the magnetic flux is sufficiently reduced during operation of one dog section compared to constant rated magnetic flux operation. Motor noise can be significantly reduced, and by linearizing the control system, good speed response can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による交流エレベータの制御装置の一
実施例を示す全体構成図、第2図(a)は本発明の磁束
指令のパターンを示す図、第2図(b)は本発明のすへ
り周波数指令のパターンを示す図、第2図(C)は本発
明のトルク電流指令のパターンを示す図、第6図は本発
明における磁束パターン発生器の構成の一実施例を示す
図・第4図は本発明におけるl・ルク電流パターン発生
器の構成の一実施例を示すIK、第5図は磁束指令のパ
ターンの他の、一実施例を示す図、第6図は磁束パター
ン発生器の他の一実施例を示す図である。 1、・、コンバータ装置 牟・・・インバータ装置 4・・・モータ 5・・・速度発電機 6・・・速度指令発生器 7・・・速度調節器 8・・・磁束パターン発生器 9・・・トルク電流パターン発生器 10、 、すべり周波数バクーン発生監1寸* 速度指
令 T* ・・・トルク指令 φ2*・・・磁束指令 〕T*・・・トルク電流指令 ユIV4*・・・励磁電流指令 ユ1*・・・1次電流指令 ωS7・・・ずべり周波数指令 0ノ1*・・・1次周波数指令 特信・出願人 フジチック株式会社 第 1 区 牛 Z 図 頴凍指分ψf 第 3 図 第 4 凶
FIG. 1 is an overall configuration diagram showing one embodiment of an AC elevator control device according to the present invention, FIG. 2(a) is a diagram showing a pattern of magnetic flux command according to the present invention, and FIG. FIG. 2(C) is a diagram showing the pattern of the shear frequency command, FIG. 2(C) is a diagram showing the pattern of the torque current command of the present invention, and FIG. Fig. 4 shows IK showing one embodiment of the configuration of the l/rk current pattern generator according to the present invention, Fig. 5 shows another embodiment of the magnetic flux command pattern, and Fig. 6 shows magnetic flux pattern generation. It is a figure which shows another Example of a container. 1. Converter device... Inverter device 4... Motor 5... Speed generator 6... Speed command generator 7... Speed regulator 8... Magnetic flux pattern generator 9...・Torque current pattern generator 10, , Slip frequency Bakun generation monitor 1 inch * Speed command T * ... Torque command φ2 * ... Magnetic flux command] T * ... Torque current command IV4 * ... Excitation current Command unit 1*...Primary current command ωS7...Slip frequency command 0/1*...Primary frequency command Special communication/Applicant: Fujichik Co., Ltd. No. 1 Kugyu Z Figure Freezing index ψf No. 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 商用交流電源をコンバータによって直流に変換し、これ
をインバータで町、変周波数の交流電力に変換し、この
変換された交流電力によって誘導電動機を駆動し、エレ
ベータの運転を行なうようにしたものにおいて1所要ト
ルクが所定値以Fの時は定格時より低い一定の値に、所
要トルクが所定値以」−の時は所要トルクに応して可変
となるように磁束を設定する手段と、所要トルクか所定
値以下の時は所要トルクに応して可変となるように、所
要トルクが所定値以上の時は一定の値にずベリを設定す
る手段とを備えたことを特徴とする交流エレヘ−夕の制
御装置。
A converter converts commercial AC power into DC power, an inverter converts it into variable frequency AC power, and the converted AC power drives an induction motor to operate an elevator.1. means for setting the magnetic flux to a constant value lower than the rated value when the required torque is less than a predetermined value; An AC electronic device characterized in that it is provided with a means for setting the torque so that it is variable according to the required torque when it is below a predetermined value, and is not set to a constant value when the required torque is above a predetermined value. Evening control device.
JP59112698A 1984-05-31 1984-05-31 Controller of ac elevator Granted JPS60257790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59112698A JPS60257790A (en) 1984-05-31 1984-05-31 Controller of ac elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59112698A JPS60257790A (en) 1984-05-31 1984-05-31 Controller of ac elevator

Publications (2)

Publication Number Publication Date
JPS60257790A true JPS60257790A (en) 1985-12-19
JPH0585470B2 JPH0585470B2 (en) 1993-12-07

Family

ID=14593254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59112698A Granted JPS60257790A (en) 1984-05-31 1984-05-31 Controller of ac elevator

Country Status (1)

Country Link
JP (1) JPS60257790A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176277A (en) * 1987-01-16 1988-07-20 フジテツク株式会社 Controller for elevator
JPS63314193A (en) * 1987-06-15 1988-12-22 Toyo Electric Mfg Co Ltd Method of controlling flux of motor
JPH01252192A (en) * 1988-03-31 1989-10-06 Fanuc Ltd Controller for torque of induction motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627345B2 (en) * 2000-03-27 2011-02-09 三菱電機株式会社 DC elevator control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063429A (en) * 1973-08-31 1975-05-29
JPS5683284A (en) * 1979-12-11 1981-07-07 Fanuc Ltd Variable speed operating device for induction motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063429A (en) * 1973-08-31 1975-05-29
JPS5683284A (en) * 1979-12-11 1981-07-07 Fanuc Ltd Variable speed operating device for induction motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176277A (en) * 1987-01-16 1988-07-20 フジテツク株式会社 Controller for elevator
JPH0530747B2 (en) * 1987-01-16 1993-05-10 Fuji Tetsuku Kk
JPS63314193A (en) * 1987-06-15 1988-12-22 Toyo Electric Mfg Co Ltd Method of controlling flux of motor
JPH01252192A (en) * 1988-03-31 1989-10-06 Fanuc Ltd Controller for torque of induction motor

Also Published As

Publication number Publication date
JPH0585470B2 (en) 1993-12-07

Similar Documents

Publication Publication Date Title
KR950002194A (en) Induction motor controller to control AC supply voltage of induction motor
US6459599B1 (en) Determining phase of AC mains in PWM controlled converters without voltage sensors
WO2015139420A1 (en) Double closed loop control method of switch reluctance motor speed and acceleration
CN107896083B (en) Motor speed adjusting method and device
JPS60257790A (en) Controller of ac elevator
KR900000679B1 (en) Control devices of alternating elevator
JPS6120236B2 (en)
WO2015193964A1 (en) Electric vehicle control device
JP4490308B2 (en) Power converter
RU2284645C1 (en) Adjusting device for drive with asynchronous motor
JPH02280688A (en) Inverter device
JPS6139886A (en) Controller for inverter
JPS6139891A (en) Controller of ac elevator
RU2626325C1 (en) Frequency control method of asynchronous electric motor
Murthy et al. Energy-Optimal Single-Axis Motion Trajectories
JPS6186631A (en) Testing apparatus of power transmitting mechanism
JPH0583471B2 (en)
JP2609229B2 (en) Controller for circulating current type cycloconverter
JPS6056362B2 (en) Induction motor control circuit for trains
JP3476176B2 (en) Induction motor vector control device
JP2006014487A (en) Three-phase inverter device for generator parallel operation
JPH08251933A (en) Controller and control method for inverter
JPS638709B2 (en)
JPH01144393A (en) Controller for inverter
JPS6328290A (en) Control system for motor driving inverter