JPS60257751A - Alternator - Google Patents

Alternator

Info

Publication number
JPS60257751A
JPS60257751A JP11068884A JP11068884A JPS60257751A JP S60257751 A JPS60257751 A JP S60257751A JP 11068884 A JP11068884 A JP 11068884A JP 11068884 A JP11068884 A JP 11068884A JP S60257751 A JPS60257751 A JP S60257751A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
engine
flux density
rotating speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11068884A
Other languages
Japanese (ja)
Inventor
Masahiko Tawara
雅彦 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11068884A priority Critical patent/JPS60257751A/en
Publication of JPS60257751A publication Critical patent/JPS60257751A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • H02K21/026Axial air gap machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Abstract

PURPOSE:To obtain a stable generating amount over the entire rotating area of an internal-combustion engine by controlling a magnetic flux density varying mechanism for varying the magnetic flux density of a magnetic circuit in response to the rotating speed of the engine. CONSTITUTION:A pressure control circuit 28 recognizes the rotating speed of an engine by a detection signal applied from a rotating speed sensor 30. The control circuit 28, when recognizing the rotating speed of the engine, for example, at 1,000r.p.m. or lower by a detection signal applied from the sensor 30, controls penumatic pressure in a pressure chamber 26 so that the pneumatic pressure in the chamber 26 is atmospheric pressure. Thus, a magnetic valve yoke 16 is attracted by the attacting force of a permanent magnet 4 to a housing 15, and adhered to the housing 15. Thus, since the magnetic flux density of a magnetic circuit 10 increases, the generated electromotive force increases. As described above, the control circuit 28 can control the generating amount of an alternator in response to the rotating speed of the engine in a wide rotating speed range constantly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は一般にオルタネータに関し、」、り詳しくは永
久磁石を界磁極とするオルタネータに関覆−る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates generally to alternators, and more particularly to alternators whose field poles are permanent magnets.

[従来技術] オルタネータは周知のように自動車の各種電気装置の電
源として使用される充電装置であり、三相交流発電機が
用いられ−Cいる。
[Prior Art] As is well known, an alternator is a charging device used as a power source for various electrical devices in an automobile, and a three-phase alternating current generator is used.

自動車の一内燃機関は周知のようにその回転域は、1 
、00Or、p、m、 〜6.0OOr、l)、m、程
度とかなり広い範囲にわたっているため、例えばプーリ
ー比が1対1の場合、内燃機関(エンジン)の出力によ
って回転駆動されるオルタネータも1,000 r、p
、m、 〜6 、 OOOr、l]、m、にわたって回
転覆ることとなる。従って高回転域にJ′3いて影響が
増大する遠心力によってオルタネータの回転子が飛散し
ないような工夫が従来より種々試みられている3゜第8
図はこのような従来技術の1例で゛ある実開昭59−3
44.80号公報掲載に係る提案を図示したものである
。該提案の概要は以下のようである。すなわち円筒状ヨ
ーク1と一体化した爪付界磁鉄心3の連体部に前記ヨー
ク外周に接Jるように前記界磁鉄心内側に渦2を形成し
、かつ該鉄心3に該溝と干渉する貫通穴4を配置し、該
鉄心3と爪付界磁鉄心5とで界磁コイル7を挟持するよ
うにしている。
As is well known, the internal combustion engine of an automobile has a rotation range of 1
, 00 Or, p, m, ~ 6.0 O Or, l), m, which covers a fairly wide range, so for example, if the pulley ratio is 1:1, the alternator that is rotationally driven by the output of the internal combustion engine will also 1,000 r,p
, m, ~6, OOOr,l], m. Therefore, various attempts have been made to prevent the alternator rotor from flying off due to the centrifugal force that increases in the high rotation range.
The figure shows an example of such conventional technology.
This is an illustration of the proposal published in Publication No. 44.80. The outline of the proposal is as follows. That is, a vortex 2 is formed inside the field core so as to be in contact with the outer periphery of the yoke in the continuous portion of the field core 3 with claws integrated with the cylindrical yoke 1, and the vortex 2 is formed in the core 3 to interfere with the groove. A through hole 4 is arranged so that the field coil 7 is sandwiched between the iron core 3 and the field iron core 5 with claws.

上記のごとき構成において、前記界磁コイル7に励磁電
流を給電するためにブラシ9がハウジング10に設けら
れている。
In the above configuration, a brush 9 is provided in the housing 10 in order to feed excitation current to the field coil 7.

ところで近時のように小型で高性能な各種車両機器類が
要求されるようになると、車両に搭載されるオルタネー
タも可能な限り小型化せざるを得ない。そこで例えば回
、転子に永久磁石を配設して界磁極とし、摩耗や摩擦に
よる騒音発生源ともなっているブラシ等を除去すること
で危機の部品点数を減らすと共に機器を小型化すること
が考えられる。
By the way, as there has been a recent demand for various types of compact and high-performance vehicle equipment, alternators installed in vehicles have no choice but to be made as small as possible. Therefore, for example, it is possible to reduce the number of dangerous parts and downsize the equipment by installing permanent magnets on the rotors and trochanters to serve as field poles and removing brushes, etc., which are a source of noise due to wear and friction. It will be done.

しかしながら上記のごとき考案にあっては、永久磁石を
界磁極としているので該永久磁石により形成される磁気
回路の磁束密度は常時一定である。
However, in the above-mentioned invention, since the permanent magnet is used as the field pole, the magnetic flux density of the magnetic circuit formed by the permanent magnet is always constant.

そのためエンジンが低回転域にあるときにはオルタネー
タの発電量は非常に小さなものとなり、又エンジンが高
回転域にあるときにはオルタネータの発電量は必要以上
に膨大なものとなる。
Therefore, when the engine is in a low speed range, the amount of power generated by the alternator is very small, and when the engine is in a high speed range, the amount of power generated by the alternator is much larger than necessary.

従って、エンジンの全回転域にわたって安定した発電量
が得られないだけでなく、機器類の耐圧性を必要以上大
きくしな(プればならず、又高電圧がかかることによる
機器類の耐久性の低下、或いは損傷を招来するという問
題点があった。
Therefore, not only is it not possible to obtain a stable amount of power generation over the entire rotation range of the engine, but the pressure resistance of the equipment must be made larger than necessary, and the durability of the equipment due to the high voltage applied must be increased. There has been a problem in that this may lead to a decrease in performance or damage.

従って本発明は従来の技術の」二記問題点を改包するも
ので、その目的は、エンジンの全回転域にわたって安定
した発電量が得られると共に機器類の耐久性の低下や損
傷を防止づることが可能なオルタネータを提供すること
にある、。
Therefore, the present invention is aimed at resolving the two problems of the prior art.The purpose of the present invention is to obtain a stable amount of power generation over the entire rotation range of the engine, and to prevent deterioration in durability and damage to equipment. Our goal is to provide an alternator that is capable of.

[構成] 上記目的を達成するだめの本発明の特徴は、永久磁石を
界1i11極とするオルタネータにおいて、前記永久磁
石により形成される磁気回路の磁束密度を変化させる磁
束密度可変機構と、該可変機構を内燃機関の回転数に応
じ一〇制御する制御手段とを設(ブたごときオルタネー
タにある。
[Structure] The features of the present invention to achieve the above object are that, in an alternator in which a permanent magnet has 1 and 11 poles, a magnetic flux density variable mechanism that changes the magnetic flux density of a magnetic circuit formed by the permanent magnet; A control means is provided to control the mechanism according to the rotational speed of the internal combustion engine (located in the alternator).

[作用] 上記のごとき構成において、内燃機関の回転数が高回転
域にあるときには制御手段は磁気回路の磁束密度を減少
すべく磁束密度可変機構を制御し、又内燃機関の回転数
が低回転域にあるときには制御手段は磁気回路の磁束密
度を増加すべく前記可変機構を制御するものである。
[Function] In the above configuration, when the rotational speed of the internal combustion engine is in a high rotational speed range, the control means controls the magnetic flux density variable mechanism to reduce the magnetic flux density of the magnetic circuit, and when the rotational speed of the internal combustion engine is in a low rotational speed range, the control means controls the magnetic flux density variable mechanism to reduce the magnetic flux density of the magnetic circuit. When the magnetic flux density is within the range, the control means controls the variable mechanism to increase the magnetic flux density of the magnetic circuit.

[実施例] 以下図面により本発明の詳細な説明する。[Example] The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の第1の実施例に従うオルタネータの側
断面図、第2図は本発明の第1の実施例に従うオルタネ
ータの部分斜視図、第3図は本発明の第1の実施例に従
う全体斜視図、第4図は本発明の第1の実施例に従う永
久磁石、ヨークと磁気回路どの関係を示す斜視図、第5
図は本発明の第1の実施例に従うオルタネータに形成さ
れる磁気回路の等価回路を示した図、第6図は本発明の
12の実施例に従うオルタネータの側断面図、第7図は
本発明の第2の実施例に従うオルタネータの正面図であ
る。なお第1図〜第8図において、参照番号が同符号の
ものは同一物を示す。
FIG. 1 is a side sectional view of an alternator according to a first embodiment of the present invention, FIG. 2 is a partial perspective view of an alternator according to a first embodiment of the present invention, and FIG. 3 is a first embodiment of the present invention. FIG. 4 is a perspective view showing the relationship between the permanent magnet, the yoke, and the magnetic circuit according to the first embodiment of the present invention; FIG.
The figure shows an equivalent circuit of the magnetic circuit formed in the alternator according to the first embodiment of the present invention, FIG. 6 is a side sectional view of the alternator according to the twelfth embodiment of the present invention, and FIG. 7 is a diagram illustrating the present invention. FIG. 3 is a front view of an alternator according to a second embodiment of the invention. In FIGS. 1 to 8, the same reference numbers indicate the same parts.

第1図〜第5図は本発明の第1の実施例に従うオルタネ
ータを図示したものである。
1 to 5 illustrate an alternator according to a first embodiment of the present invention.

第1図において、ロータ2は保持力の高い永久磁石4を
界磁極として備え、支持軸6によって回転自在に軸支さ
れている。電機子8は前記永久磁石4に対向してハウジ
ング15に固定されている。
In FIG. 1, a rotor 2 is equipped with a permanent magnet 4 having a high holding force as a field pole, and is rotatably supported by a support shaft 6. The armature 8 is fixed to the housing 15 facing the permanent magnet 4.

前記永久磁石4は、第2図の上側Cは電機子8側をN極
に、その反対側をS極に着磁され、その起磁力により、
透磁率の高い月利で形成されたハウジング15との間に
環状溝12の可変によって磁束密度が変化する磁気回路
10bと、磁束密度が一定の磁気回路10aとからなる
磁気回路10を形成する。図中◎印は紙面の表に向う磁
束の方向を、又×印は紙面の裏に向う磁束の方向を示す
ものである。
The permanent magnet 4 is magnetized with the armature 8 side at the N pole and the opposite side at the S pole on the upper side C in FIG.
A magnetic circuit 10 consisting of a magnetic circuit 10b whose magnetic flux density changes by changing the annular groove 12 and a magnetic circuit 10a whose magnetic flux density is constant is formed between the magnetic circuit 10 and the housing 15 formed of a high magnetic permeability material. In the figure, the ◎ marks indicate the direction of magnetic flux towards the front of the paper, and the x marks indicate the direction of magnetic flux towards the back of the paper.

前記ハウジング15の磁束が貴く位置には外側から環状
溝12が形成されている。該環状K 12に対向して第
3図にて図示するごどぎ形状の例えば磁気バルブヘッド
のごとき透磁率の高い月利で形成されるリング1/Iが
設(プられている。前記磁気バルブヘッド14は、例え
ば磁気バルブニ]−りのごときリングプレート16に固
定され、該リングプレート16ずなわち磁気バルブヨー
ク16は磁気バルブ用ピン18によって第2図左右方向
に摺動自在に支持きれている。
An annular groove 12 is formed from the outside at a position of the housing 15 where the magnetic flux is high. Opposed to the annular ring K 12 is a ring 1/I formed of a magnetic valve head with high magnetic permeability, such as a magnetic valve head, which has a circular shape as shown in FIG. 3. The valve head 14 is fixed to a ring plate 16, such as a magnetic valve yoke, for example, and the ring plate 16, that is, the magnetic valve yoke 16 is supported by a magnetic valve pin 18 so as to be slidable in the left and right direction in FIG. ing.

仮りに磁気バルブヨーク16が第2図右方向に移動する
と、磁気バルブヘッド14は前記環状溝12に嵌合し、
又前記バルブヨーク16が第2図左方向に移動すると、
前記バルブヘッド14は該環状@12から離間するよう
に構成されている。
If the magnetic valve yoke 16 moves to the right in FIG. 2, the magnetic valve head 14 will fit into the annular groove 12,
Also, when the valve yoke 16 moves to the left in FIG.
The valve head 14 is configured to be spaced apart from the annular @12.

前記磁気バルブヘッド14、磁気バルブヨーク16、磁
気バルブ用ビン18と、後述するダイヤフラム装置23
とで磁束密度の可変機構が構成される。磁束密度は磁束
の通過する物質の透磁率によって決定されるので、前記
ダイヤフラム装置23の駆動によって磁気バルブヘッド
14が環状溝12から離間すると、間隙に透磁率の低い
空気層が形成され、磁束密度を小さくすることができる
からである。
The magnetic valve head 14, the magnetic valve yoke 16, the magnetic valve bottle 18, and the diaphragm device 23 described later.
A magnetic flux density variable mechanism is constructed. The magnetic flux density is determined by the magnetic permeability of the material through which the magnetic flux passes, so when the magnetic valve head 14 is separated from the annular groove 12 by driving the diaphragm device 23, an air layer with low magnetic permeability is formed in the gap, and the magnetic flux density increases. This is because it is possible to make it smaller.

前述したダイヤフラム装置23は、ダイヤフラム22、
該タイヤフラム22により区画、形成される圧力室26
とで構成されている。前記タイヤフラム22は、ロッド
24に連結し該コンビ24を介して磁気バルブヨーク1
6に固定されている。
The diaphragm device 23 described above includes the diaphragm 22,
A pressure chamber 26 defined and formed by the tire flam 22
It is made up of. The tire flamm 22 is connected to a rod 24 and connected to the magnetic valve yoke 1 via the combination 24.
It is fixed at 6.

前記圧力室26には圧力制御回路28からの制御圧が導
かれる。
Control pressure from a pressure control circuit 28 is introduced into the pressure chamber 26 .

圧力制御回路28は例えばフイク[1コンビ−ュータ等
で構成され、エンジン回転数を検出づ−る回転数センサ
30からの検出信号に基づぎ、回転数が上昇すると磁束
密度が減少づ−るように前記圧力室26内の圧力を減少
(tしめ、又回転数が減少すると磁束密度が増加するよ
うに前記圧力室26内の圧力を増加せしめるべく制御づ
る。該制御回路28を構成するマイクロコンビコータの
メモリにtit、例えばエンジン回転数と圧力室26内
の空気FE二との関係を示づごときデータが予め内蔵さ
れている。
The pressure control circuit 28 is composed of, for example, a Fukui computer, etc., and based on a detection signal from a rotation speed sensor 30 that detects the engine rotation speed, the magnetic flux density decreases as the rotation speed increases. The pressure inside the pressure chamber 26 is controlled to decrease (t), and when the rotation speed decreases, the pressure inside the pressure chamber 26 is increased so that the magnetic flux density increases. The memory of the combi coater contains data such as tit, which indicates the relationship between the engine speed and the air FE2 in the pressure chamber 26, in advance.

ICレギュレータ20は電機子8に発生した3相誘導起
電力即ち3相交流電圧を整流しで各秤車両機器及びバッ
テリに給電づるもので、前記ハウジング15の外側に取
りイq(プられCいる。
The IC regulator 20 rectifies the three-phase induced electromotive force, that is, the three-phase AC voltage, generated in the armature 8 and supplies power to each scale vehicle equipment and battery. .

上述したような構成のオルタネータの外観は、第4図に
て図示Jること込ものである。
The external appearance of the alternator constructed as described above is shown in FIG.

上記構成の作用を第4図、第5図をVI用して以下に説
明ザる。
The operation of the above configuration will be explained below using FIGS. 4 and 5 as VI.

永久磁石4により第4図のごとく磁気回路10がロータ
2からハウジング15にかりて形成される。エンジンが
駆動を開始するとこれに伴ないロータ2は回転を開始す
る。ロータ2が回転することにより電機子81該ロータ
2の回転数と、環状溝12の幅の大きさによって可変す
る磁束密度とによって大ぎさが決定される3相誘導起電
力が発生する。該3相誘導起電力即ち3相交流電圧はI
Cレギコレータ20によって整流され各種車両機器及び
バッテリに給電される。
A magnetic circuit 10 is formed by the permanent magnets 4 from the rotor 2 to the housing 15 as shown in FIG. When the engine starts driving, the rotor 2 starts rotating accordingly. As the rotor 2 rotates, a three-phase induced electromotive force is generated whose magnitude is determined by the rotational speed of the armature 81 and the magnetic flux density which varies depending on the width of the annular groove 12. The three-phase induced electromotive force, that is, the three-phase AC voltage is I
It is rectified by the C regulator 20 and supplied to various vehicle equipment and batteries.

圧力制御回路28は、回転数センサ30から与えられる
検出信号によりエンジン回転数を認識づる。該制御回路
28は回転数センサ30から与えられた検出信号により
例えばエンジン回転数が1゜000 r、p、m、以下
であると認識したときは、圧力室26内の空気圧を大気
圧とずべく圧力室26内の空気圧が制御される。このた
め永久磁石4の吸引力にJ:り磁気バルブヨーク16は
ハウジング15に引き寄せられハウジング15に(=I
着する。これにより磁気回路10の磁束密度は増加する
ため発生づる起電力は犬ぎくなる。
The pressure control circuit 28 recognizes the engine speed based on the detection signal provided from the rotation speed sensor 30. When the control circuit 28 recognizes, for example, that the engine speed is 1°000 r, p, m or less based on a detection signal given from the rotation speed sensor 30, it sets the air pressure in the pressure chamber 26 to atmospheric pressure. The air pressure within the pressure chamber 26 is controlled accordingly. Therefore, the magnetic valve yoke 16 is attracted to the housing 15 by the attractive force of the permanent magnet 4 (=I
wear it. As a result, the magnetic flux density of the magnetic circuit 10 increases, so that the generated electromotive force becomes more severe.

圧力制御回路28は前記回転数センサ30から与えられ
た検出信号によりエンジン回転数が上昇するに従い圧力
室26内の空気圧をそのエンジン回転数に見合った負圧
ど覆べく該制御回路28は、例えば吸気マニホルドと連
通する弁機構(図示しない)を開成覆る等所定の操作を
行なう。圧力室26内の空気圧はエンジン回転数の上昇
に伴2Zい負圧となるため、タイヤフラム22にJ、る
磁気バルブヨーク1Gの第5図左方向への駆動力が永久
磁石4の吸引力に打勝ら、バルブヘッド17′Iどハウ
ジング15どの間に環状渦12が形成される。3これに
より磁気回路1oの磁束密度は減少覆るため発生する起
電力は小さくなる。
The pressure control circuit 28 uses a detection signal given from the rotation speed sensor 30 to control the air pressure in the pressure chamber 26 to a negative pressure commensurate with the engine rotation speed as the engine rotation speed increases, for example. Predetermined operations such as opening and closing a valve mechanism (not shown) communicating with the intake manifold are performed. Since the air pressure in the pressure chamber 26 becomes negative as the engine speed increases, the driving force of the magnetic valve yoke 1G to the left in FIG. As a result, an annular vortex 12 is formed between the valve head 17'I and the housing 15. 3. As a result, the magnetic flux density of the magnetic circuit 1o is reduced, so that the generated electromotive force becomes smaller.

以上のようにして圧力制御回路28はエンジンの回転数
に応じて環状溝12の間隙を適宜調節覆るため、オルタ
ネータの発電量を広い回転数領域にわたって略一定に制
御することが出来る。
As described above, the pressure control circuit 28 appropriately adjusts and closes the gap between the annular grooves 12 according to the engine speed, so that the amount of power generated by the alternator can be controlled to be substantially constant over a wide range of speeds.

以」二説明したごとき内容を第5図にて図示する磁気回
路10の等価回路に基づいて説明J−るど以下のように
なる。
The contents described above will be explained as follows based on the equivalent circuit of the magnetic circuit 10 shown in FIG.

覆なわち環状溝12によって隔てられているハウジング
15と磁気バルブヘッド1/Iとの間に形成される磁気
回路10を夫々″IOa、10bどし、磁気バルブヘッ
ド14の磁気抵抗をRV、環状溝12による磁気抵抗を
RA、永久磁石4自体の磁気抵抗をRg、磁束がハウジ
ング15を横切る際の磁気抵抗をr、ハウジング15中
の磁気抵抗をRHとし、永久磁石4の起磁jノを[とづ
れば、第5図にて図示するような等価回路が形成される
The magnetic circuits 10 formed between the housing 15 and the magnetic valve head 1/I, which are separated by an annular groove 12, are called IOa and 10b, respectively, and the magnetic resistance of the magnetic valve head 14 is called RV, annular. The magnetic resistance due to the groove 12 is RA, the magnetic resistance of the permanent magnet 4 itself is Rg, the magnetic resistance when the magnetic flux crosses the housing 15 is r, the magnetic resistance inside the housing 15 is RH, and the magnetism j of the permanent magnet 4 is [In other words, an equivalent circuit as shown in FIG. 5 is formed.

−Ih述した磁気抵抗のうち、Rp、r、In+及びR
Vはオルタネータ設計時に決定される定数である。
-Ih Of the magnetoresistances mentioned above, Rp, r, In+ and R
V is a constant determined when designing the alternator.

上記のごとき回路において、前記圧ツノ制御回路28に
より環状溝12が可変されるとRAの大きさは可変する
ため磁気回路1o])を通過刀−る磁束歪2の大きさは
変化する。従って磁束歪2ど磁気回路10aを通過する
磁束東1との和である磁束も変化することとなるためオ
ルタネータの出力が変化づることとなる。
In the above circuit, when the annular groove 12 is varied by the pressure horn control circuit 28, the magnitude of RA is varied, so the magnitude of the magnetic flux strain 2 passing through the magnetic circuit 1o changes. Therefore, the magnetic flux, which is the sum of the magnetic flux distortion 2 and the magnetic flux east 1 passing through the magnetic circuit 10a, also changes, so the output of the alternator changes.

第6図、第7図は本発明の第2の実施例に従うオルタネ
ータを図示したものである、1第6図におい−C電機了
8は、断面が図のとどく′心証の受話器のような形状を
して[13す、鉄心32に接乙されている。鉄心32は
、例えばグイ糸鋼板のごどき素材で渦巻状に積層おれ、
]−クアーマブr□ 30に支持されている。該ヨーク
アーマチャ36は、ガイド軸40に接して該軸方向に移
動するプレー1−ガイド38に取りイNj(うられてい
る。ハウジンク15には、前記プレー1〜ガイド3 F
’3の第6図6方向への移動に伴って移動する前記鉄心
32の移動量に対応した幅の切欠溝34が形成されてい
る。前記電機子8には、取り出し「1に図示覆ることき
Rがつけられている電機子取り出し線42が接続されて
いる。前記Rは、電機子E3が鉄心32どと−しに移動
Jる移動量に見合った太ささてつ(JられCa2す、該
電機子取り出し線42には、電機子8の軸方向への移動
によって切断しイ1い程度の口径の銅線が使用されてい
る。
Figures 6 and 7 illustrate an alternator according to a second embodiment of the present invention. [13] is connected to iron core 32. The iron core 32 is made of a material similar to, for example, a wire steel plate and is laminated in a spiral shape.
] - supported by Kuamab r□ 30. The yoke armature 36 is mounted on the play 1-guide 38 that touches the guide shaft 40 and moves in the axial direction.
A cutout groove 34 is formed with a width corresponding to the amount of movement of the iron core 32 as it moves in the direction of FIG. 6 of '3. An armature take-out line 42 is connected to the armature 8, and the armature take-out line 42 is marked with an R shown in the drawing. The armature lead-out wire 42 is made of copper wire with a diameter commensurate with the amount of movement. .

上記のとどき描成にa−3いて、機関の運転状態(機関
回転数並びにml、18にかかる負荷の人込さ)に応じ
てプレートガイド38を所定の移動量/、k +J万イ
ド1i1140方向に移動させ、電機子8を移動さ已る
ものである。これにより該電機子8と永久磁石4どの間
に形成される間隙幅を調整し、前記永久磁石4から電機
子8に力目ノで形成dれる磁気回路の磁束密度を可変し
て発電効率の向上を図る。
In the above-mentioned drawing, move the plate guide 38 by a predetermined amount /, k + J million id 1i 1140 direction according to the operating state of the engine (engine speed and ml, load density applied to 18). The armature 8 is then moved. As a result, the width of the gap formed between the armature 8 and the permanent magnet 4 is adjusted, and the magnetic flux density of the magnetic circuit formed from the permanent magnet 4 to the armature 8 is varied, thereby improving power generation efficiency. Try to improve.

な、13第7図は、第6図にて図示したAルタネータの
正面図を示したものである。
13. FIG. 7 shows a front view of the A alternator shown in FIG. 6.

以上説明したように本実施例にd3いては、前記第1の
実施例が電機子8を固定したままぐ磁気バルジヘッド1
4を軸6方向に移動させることにより磁束密度を可変し
たのに対して、本実施例においては電機子8をガイド軸
40方向に移動させることで磁束密度を可変したもので
ある。なd5上述した内容はあくまで本発明に従う第1
、第2の実施例に関づるものであって、本発明が上記内
容にのみ限定されることを意味するbのではない。
As explained above, in d3 of this embodiment, the magnetic bulge head 1 is moved while the armature 8 is fixed in the first embodiment.
Whereas the magnetic flux density was varied by moving the armature 4 in the direction of the guide shaft 6, in this embodiment the magnetic flux density was varied by moving the armature 8 in the direction of the guide shaft 40. d5 The above-mentioned content is limited to the first part according to the present invention.
, is related to the second embodiment, and does not mean that the present invention is limited only to the above content.

[効果] 以上説明したように本発明によれば、永久磁石により形
成される磁気回路の磁束密度を変化させる磁束密度ri
lJ変機構全機構燃機関の回転数に応じT N1 ′/
i+1−d−2−1上らt:+、r−ので Tンジンの
全回転時にわたって安定した発電量が得られると共に態
器類の耐久性の低下や損傷を防止−けることが可能4「
オルタネータを提供−りることか℃ぎる。。
[Effect] As explained above, according to the present invention, the magnetic flux density ri changes the magnetic flux density of the magnetic circuit formed by the permanent magnet.
lJ variable mechanism All mechanisms T N1 '/according to the rotational speed of the combustion engine
Since i+1-d-2-1 above t: +, r-, it is possible to obtain stable power generation over the entire rotation of the engine and to prevent a decrease in durability and damage to the mechanical equipment.
Provide an alternator - it's too much. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に従うΔ−ルタネータの
側断面図、第2図は本発明の第1の実施例に従うオルタ
ネータの部分斜視図、第3図は本発明の第1の実施例に
従う全体斜視図、第4図は本発明の第1の実施例に従う
永久磁石、ヨークと磁気回路との関係を承り斜視図、第
5図)ま本発明の第1の実施例に従うオルタネータに形
成される磁気回路の等価回路を示した図、第6図は本発
明の第2の実施例に従うオルタネータの側断面図、第7
図は本発明の第2の実施例に従うオルタネータの正面図
、第8図は従来技術に従うオルタネータの側半断面図C
ある。 2・・・ロータ 8・・・電機子 4・・・永久磁石 10・・・磁気回路12・・・環状
溝 30・・・回転数センサ32・・・鉄心 14・・
・磁気ハルブヘッド15・・・ハウジング 34・・・
切欠溝16・・・磁気バルブ 36・・・ヨークアーマ
チャヨーク 38・・・プレー1〜ガイド 22・・・ダイヤフラム /1. O・・・ガイド軸2
4・・・ロッド 7′I2・・・電機子取り出し線26
・・・圧力室 28・・・圧力制御回路 代理人 弁理士 ヨ 好 保 男 第1図 第3図 第4図 第5図 第6図 42 vPS7図 5
FIG. 1 is a side sectional view of a Δ-alternator according to a first embodiment of the present invention, FIG. 2 is a partial perspective view of an alternator according to the first embodiment of the present invention, and FIG. FIG. 4 is a perspective view of the relationship between the permanent magnet, yoke, and magnetic circuit according to the first embodiment of the present invention; FIG. 5 is an overall perspective view of the alternator according to the first embodiment of the present invention. FIG. 6 is a side sectional view of the alternator according to the second embodiment of the present invention, and FIG.
FIG. 8 is a front view of an alternator according to a second embodiment of the present invention, and FIG. 8 is a side half-sectional view C of an alternator according to the prior art.
be. 2... Rotor 8... Armature 4... Permanent magnet 10... Magnetic circuit 12... Annular groove 30... Rotation speed sensor 32... Iron core 14...
・Magnetic hub head 15...housing 34...
Notch groove 16...Magnetic valve 36...Yoke armature yoke 38...Play 1 to guide 22...Diaphragm /1. O...Guide shaft 2
4... Rod 7'I2... Armature lead wire 26
...Pressure chamber 28...Pressure control circuit agent Patent attorney Yoshiyasu YoYoshiyasu Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 42 vPS7 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 永久磁石を界磁極と覆−るオルタネータにおいて、前記
永久磁石により形成される磁気回路の磁束密度を変化さ
せる磁束密度可変機構ど、該可変機構を内燃機関の回転
数に応じて制御Jる制御手段とを設(プたことを特徴と
するオルタネータ。
In an alternator in which a permanent magnet is used as a field pole, a magnetic flux density variable mechanism that changes the magnetic flux density of a magnetic circuit formed by the permanent magnet, etc., and a control means that controls the variable mechanism according to the rotational speed of an internal combustion engine. An alternator characterized by the following.
JP11068884A 1984-06-01 1984-06-01 Alternator Pending JPS60257751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11068884A JPS60257751A (en) 1984-06-01 1984-06-01 Alternator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11068884A JPS60257751A (en) 1984-06-01 1984-06-01 Alternator

Publications (1)

Publication Number Publication Date
JPS60257751A true JPS60257751A (en) 1985-12-19

Family

ID=14541923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11068884A Pending JPS60257751A (en) 1984-06-01 1984-06-01 Alternator

Country Status (1)

Country Link
JP (1) JPS60257751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713172A1 (en) * 2004-02-06 2006-10-18 Yamaha Hatsudoki Kabushiki Kaisha Vehicle
JP2007068389A (en) * 2005-08-05 2007-03-15 Yamaha Motor Co Ltd Rotating electric machine
EP2256909A3 (en) * 2004-12-09 2013-04-24 Yamaha Hatsudoki Kabushiki Kaisha Rotary electrical machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713172A1 (en) * 2004-02-06 2006-10-18 Yamaha Hatsudoki Kabushiki Kaisha Vehicle
EP1713172A4 (en) * 2004-02-06 2012-02-01 Yamaha Motor Co Ltd Vehicle
EP2592731A1 (en) * 2004-02-06 2013-05-15 Yamaha Hatsudoki Kabushiki Kaisha Electrically powered vehicle
EP2256909A3 (en) * 2004-12-09 2013-04-24 Yamaha Hatsudoki Kabushiki Kaisha Rotary electrical machine
JP2007068389A (en) * 2005-08-05 2007-03-15 Yamaha Motor Co Ltd Rotating electric machine

Similar Documents

Publication Publication Date Title
US5821710A (en) Brushless motor having permanent magnets
US5001412A (en) Alternator starter
US5543676A (en) Rotating electrical machine with magnetic inserts
US5825116A (en) AC generator for vehicle having combined structure of field coil and permanent magnet
EP0310426B1 (en) Turbocharger with rotary electric machine
US5350031A (en) Plural generator apparatus for an electric hybrid automobile
JP3709582B2 (en) Vehicle alternator
US7589449B2 (en) Electric rotating machine
US20070194649A1 (en) Electric camshaft adjuster comprising a pancake motor
US6724115B2 (en) High electrical and mechanical response structure of motor-generator
JP2768162B2 (en) Inductor type alternator
JPS63198558A (en) Adjustable permanent magnet ac machine
US20030178909A1 (en) Rotary electric machine
JPS60257751A (en) Alternator
EP1071193B1 (en) Rotary electric machine
JP2002136012A (en) Rotating electric machine of permanent magnet type
US6362550B1 (en) Electric machine, especially a three-phase generator, with an exciter
US4355251A (en) Tachometric generator
GB2317997A (en) Relatively adjustaable rotor in a brushless machine
US6967417B2 (en) Variable winding generator
JPH07107718A (en) Permanent magnet generator
CN2273470Y (en) Disc type permanent magnet motor capable of realizing weak magnetic control
JPH04197065A (en) Generator for automobile
JPH05336700A (en) Ac motor for driving electric car
JPH04251534A (en) Rotating machine