JPS6025753B2 - Nuclear reactor core flow rate measuring device - Google Patents

Nuclear reactor core flow rate measuring device

Info

Publication number
JPS6025753B2
JPS6025753B2 JP51030330A JP3033076A JPS6025753B2 JP S6025753 B2 JPS6025753 B2 JP S6025753B2 JP 51030330 A JP51030330 A JP 51030330A JP 3033076 A JP3033076 A JP 3033076A JP S6025753 B2 JPS6025753 B2 JP S6025753B2
Authority
JP
Japan
Prior art keywords
flow rate
pump
recirculation
core
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51030330A
Other languages
Japanese (ja)
Other versions
JPS52113493A (en
Inventor
利勝 根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51030330A priority Critical patent/JPS6025753B2/en
Publication of JPS52113493A publication Critical patent/JPS52113493A/en
Publication of JPS6025753B2 publication Critical patent/JPS6025753B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は‐ジェットポンプとその駆動水を供給するポン
プ(再循環ポンプ)からなる強制循環ループ(再循環ル
ープ)を有する原子炉に関し、特に再循環ポンプの起動
停止の際に炉心流量を鮫正するようにした原子炉の炉心
流量計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear reactor having a forced circulation loop (recirculation loop) consisting of a jet pump and a pump (recirculation pump) that supplies driving water for the jet pump. The present invention relates to a nuclear reactor core flow rate measurement device that corrects the core flow rate at the same time.

沸騰水型原子炉(BWR)は、第1図及び第2図に示す
ように原子炉圧力容器1内に核燃料を装荷した炉心2を
設けると共にこの炉心2を囲むように複数台のジェット
ポンプ3を炉心隔壁2aの下部にセットし、このジェッ
トポンプ3により原子炉圧力容器1上部の給水入口ノズ
ル4を通して供艶脅される水を炉心2の下部へ導き、こ
れが炉心下部から上部に炉心冷却水Fとして流れること
により核燃料の核分裂反応による核分裂ェネルギを吸収
させ、その結果冷却水を沸騰せしめて蒸気を発生させ、
その蒸気を炉心2の上部に設けられた蒸気分離器5、蒸
気乾燥器6によって乾燥しこれを主蒸気Gとして主蒸気
出口ノズル7を通してタービンへ送るようにしてある。
As shown in FIGS. 1 and 2, a boiling water reactor (BWR) includes a reactor core 2 loaded with nuclear fuel in a reactor pressure vessel 1, and a plurality of jet pumps 3 surrounding this core 2. is set at the lower part of the core bulkhead 2a, and this jet pump 3 guides the lubricating water to the lower part of the reactor core 2 through the water supply inlet nozzle 4 at the upper part of the reactor pressure vessel 1, and this flows into the core cooling water F from the lower part of the core to the upper part. By flowing as water, the fission energy from the nuclear fission reaction of the nuclear fuel is absorbed, and as a result, the cooling water is boiled and steam is generated.
The steam is dried by a steam separator 5 and a steam dryer 6 provided in the upper part of the core 2, and is sent as main steam G to the turbine through a main steam outlet nozzle 7.

ところで、炉心2を流れる炉心冷却水F‘ま次のように
して得られるものである。すなわち、給水ポンプによっ
て原子炉圧力容器1内に水Aが供給されていれば、原子
炉圧力容器1の下部において再循環水入口ノズル8およ
び出口ノズル9を介してジェットポンプ3に連結された
再循環ポンプ101こよって循環する再循環水日は再循
環水入口ノズル8からジェットポンプ3の入口上昇管を
通り、ジェットポンプ駆動水Bとなってジェットポンプ
3のノズルから高速で噴出する。このジェットポンプ駆
動水Bにより第3図に示すようにCの吸引流を作り(駆
動水B+吸引流C)がジェットポンプ流Eとなり、原子
炉下部の下部プレナム領域11に流入する。このジェッ
トポンプ流Eの総和は下部プレナム領域11から炉心2
に向って流れ、炉心冷却水Fとなる。炉心2において、
蒸気、水の2相流となった冷却水は上部プレナム頭城1
2に集められ蒸気分離器5によって蒸気と水とに分離さ
れる。蒸気はさらに蒸気乾燥器6によって乾燥した後、
主蒸気Gとしてタービンに送られる。また、蒸気分離器
5により分離された水は給水Aによって冷却されて炉心
隔壁2aの外周部分を下部へ流れ「一部はジェットポン
プ3の吸引流Cとなり、他はDとなって炉心隔壁2aの
外部部分を更に下方へ流れ、再循環水出ロノズル9を出
る再循環水日となる。このような沸騰水型原子炉におい
ては、再循環ループは第2図に示すようにa,bの2系
統あり、再循環ポンプ10の停止等により急激に炉心冷
却水Fの流量が低下することを防ぐようになっている。
By the way, the core cooling water F' flowing through the reactor core 2 is obtained as follows. That is, if water A is supplied into the reactor pressure vessel 1 by the feed water pump, the recirculation water connected to the jet pump 3 through the recirculation water inlet nozzle 8 and outlet nozzle 9 at the lower part of the reactor pressure vessel 1 The recirculated water circulated by the circulation pump 101 passes from the recirculated water inlet nozzle 8 to the inlet rising pipe of the jet pump 3, becomes jet pump driving water B, and is ejected from the nozzle of the jet pump 3 at high speed. The jet pump driving water B creates a suction flow C as shown in FIG. 3 (driving water B+suction flow C), which becomes the jet pump flow E and flows into the lower plenum region 11 at the lower part of the reactor. The sum of this jet pump flow E is from the lower plenum region 11 to the core 2.
, and becomes core cooling water F. In core 2,
The cooling water, which has become a two-phase flow of steam and water, flows into the upper plenum Toucheng 1.
2 and separated into steam and water by a steam separator 5. After the steam is further dried by a steam dryer 6,
It is sent to the turbine as main steam G. In addition, the water separated by the steam separator 5 is cooled by the feed water A and flows to the lower part of the outer circumference of the core bulkhead 2a. The recirculating water flows further downward through the external part of the recirculating water and exits the recirculating water nozzle 9.In such a boiling water reactor, the recirculating loop consists of a and b as shown in Figure 2. There are two systems, and they are designed to prevent the flow rate of core cooling water F from dropping suddenly due to stopping of the recirculation pump 10, etc.

この再循環ポンプ10のa,b2系統のうちいずれかが
停止した場合に、原子炉内の冷却水の流れは第4図に示
すようになる。第4図は例えば再循環ループa側の再循
環ポンプ10が停止した場合を示すものであるが、ここ
では再循環ループaの流れは全くなくなるから再循環ル
ープb側のジェットポンプ流Eの流れの一部がa側のジ
ェットポンプ3内を逆流する流れJとなる。このため炉
心冷却水Fの流量はF=E−J となる。
When either system a or b of the recirculation pump 10 is stopped, the flow of cooling water within the reactor becomes as shown in FIG. 4. FIG. 4 shows a case where, for example, the recirculation pump 10 on the recirculation loop a side stops, but here the flow in the recirculation loop a is completely eliminated, so the flow of the jet pump flow E on the recirculation loop b side A part of this becomes a flow J that flows backward inside the jet pump 3 on the a side. Therefore, the flow rate of core cooling water F becomes F=E-J.

すなわち、2台中1台の再循環ポンプ10が停止した場
合には停止側のジェットポンプに冷却水が逆流し、この
逆流分だけ炉心流量が減少することになる。しかるに従
来の原子炉の炉心流量計測については、ノズルーマノメ
ー夕による蓋圧を検出し、これを差圧伝送器により電気
信号に変換しているため、逆流しても差圧としては正と
出てしまい、従ってポンプの起動/停止状態を判断しな
ければ解らない。
That is, when one of the two recirculation pumps 10 stops, cooling water flows back to the jet pump on the stopped side, and the core flow rate decreases by the amount of this backflow. However, in conventional reactor core flow measurement, the nozzle manometer detects the lid pressure and converts it into an electrical signal using a differential pressure transmitter, so even if there is a reverse flow, the differential pressure will be positive. Therefore, it is impossible to know whether the pump is started or stopped unless it is determined.

一方、差圧そのものは流れの慣性のためポンプ停止後も
急に零にはならず、順次変化し極小となってかり逆流側
に移行する。又起動後に於ても同様である。したがって
ポンプ停止直後に又起動直後に逆流開始或は逆流停止を
するものとすると、逆流補正には誤差が生じる。第5図
はポンプの起動、停止信号と逆流演算回路を示すもので
ある。
On the other hand, the differential pressure itself does not suddenly become zero even after the pump is stopped due to the inertia of the flow, but gradually changes until it reaches a minimum and shifts to the reverse flow side. The same thing also happens after startup. Therefore, if the backflow is started or stopped immediately after the pump is stopped or started, an error will occur in the backflow correction. FIG. 5 shows the pump start and stop signals and a backflow calculation circuit.

第5図において、再循環ループa側のジェットポンプ3
を流れる流量Aを差圧伝送器2川こより電気信号FTa
に変換し、また再循環ループb側のジェットポンプ3を
流れる流量Bを差圧伝送器.21で電気信号FTbに変
換する。差圧信号FTa,FTbは各々開平演算器22
,23に入力されて流量信号Qa,Qbに変換される。
流量信号Qa,Qbは再循環ループa,b側の再循環ポ
ンプ10の運転/停止信号より得られる継電器の接点に
よる論理回路24,25により演算されてその符号が決
められる。符号の演算式は再循環ループa,b側の再循
環ポンプ101こついて運転中を“1”とし、停止中を
“0”とした場合、次のように定められる。
In FIG. 5, jet pump 3 on the side of recirculation loop a
The flow rate A flowing through the differential pressure transmitter 2 is an electric signal FTa.
, and the flow rate B flowing through the jet pump 3 on the side of the recirculation loop b is transmitted to a differential pressure transmitter. 21, it is converted into an electrical signal FTb. The differential pressure signals FTa and FTb are each output by a square root calculator 22.
, 23 and converted into flow rate signals Qa, Qb.
The flow rate signals Qa and Qb are calculated and their signs are determined by logic circuits 24 and 25 using relay contacts obtained from the operation/stop signals of the recirculation pumps 10 on the sides of the recirculation loops a and b. The calculation formula for the sign is determined as follows, where "1" indicates that the recirculation pumps 101 on the sides of recirculation loops a and b are stuck and running, and "0" indicates that they are stopped.

これらの符号を各々の流量信号Qa,Qbに乗じて加算
器26に入力し、結果として流量合計信号Fを得るもの
である。従って、かかる構成の逆流演算回路により再循
環ポンプの運転/停止信号によりジェットポンプの逆流
演算を行なえば、2再循環ループa,bの一方の再循環
ポンプが停止し逆流が発生しても炉心冷却水Fの流量を
正確に求めることができる。
Each of the flow rate signals Qa and Qb is multiplied by these codes and inputted to an adder 26 to obtain a total flow rate signal F as a result. Therefore, if the jet pump backflow calculation is performed using the recirculation pump operation/stop signal using the backflow calculation circuit configured as described above, even if one of the recirculation pumps in the two recirculation loops a and b is stopped and backflow occurs, the core The flow rate of cooling water F can be determined accurately.

ところで、再循環ポンプが停止した場合のジェットポン
プの流量特性は第6図に示すようになる。すなわち再循
環ポンプ10が停止すると流れのもつ慣性のために急に
は逆流とはならず、第6図aのa→bのように徐々に流
量が減少し、ポンプ停止後ら秒後に流量0(C点)とな
り、それから徐々に逆流量が増えc→dのように変化す
る。このとき、ジェットポンプの流量測定用のマノメー
タの差圧の変化は第6図bに示すようになる。ポンプ停
止後e→fのように差圧は減少し、時間ら秒後に差圧0
(g点)となり、それから再びg→hのように差圧が増
加する。このような流量特性に対して前述の炉心流量の
鮫正手段は再循環ポンプの停止により直ちに逆流が開始
されたとするものである。
By the way, the flow rate characteristics of the jet pump when the recirculation pump is stopped are as shown in FIG. That is, when the recirculation pump 10 stops, the flow does not suddenly turn back due to the inertia of the flow, but the flow rate gradually decreases as shown from a to b in Figure 6a, and the flow rate reaches 0 seconds after the pump stops. (point C), and then the backflow amount gradually increases and changes from c to d. At this time, the change in the differential pressure of the manometer for measuring the flow rate of the jet pump becomes as shown in FIG. 6b. After the pump stops, the differential pressure decreases from e to f, and after a few seconds, the differential pressure becomes 0.
(point g), and then the differential pressure increases again from g to h. With respect to such flow rate characteristics, the above-mentioned method for adjusting the core flow rate assumes that the reverse flow starts immediately upon stopping the recirculation pump.

而して、このような手段による流量鮫正の結果は第6図
eに示すようになっている。第6図cからも明らかなよ
うに前述の鮫正手段では流量Qbの処理にあたって次の
ような不具合点がある。
The result of adjusting the flow rate by such means is shown in FIG. 6e. As is clear from FIG. 6c, the above-mentioned shark correction means has the following drawbacks in processing the flow rate Qb.

すなわち、流量Qbの処理にあたって、流量Qbは実際
には図の一点鎖線で示す如くQb,→Qb2→Q広のよ
うに変化するにもかかわらず、前述の鮫正手段によれば
、Qb,→Qb5→Qb6→Qb3のように計算される
。したがって、合計流量としてはF=Qa+Qbである
からFはF,→F5→F6→F3のように計算される。
That is, in processing the flow rate Qb, although the flow rate Qb actually changes as shown by the dashed line in the figure as Qb, → Qb2 → Q wide, according to the above-mentioned same correction method, Qb, → It is calculated as Qb5→Qb6→Qb3. Therefore, since the total flow rate is F=Qa+Qb, F is calculated as F,→F5→F6→F3.

本発明の目的は再循環ポンプの起動、停止に際して逆流
が発生してもその逆流計算をポンプの起動、停止に関連
づけて炉心流量を鮫正することにより炉心冷却水の流量
を正確に求めることができる原子炉の炉0流量計測装置
を得るにある。
The purpose of the present invention is to accurately determine the flow rate of core cooling water even if backflow occurs when a recirculation pump is started or stopped, by correlating the backflow calculation with the start or stop of the pump and correcting the core flow rate. The objective is to obtain a reactor zero flow rate measuring device for a nuclear reactor.

以下図面を参照して本発明の一実施例を説明する。第7
図は再循環ポンプの停止後、逆流開始までの時間to(
一定)を考慮し、to後に逆流切換を行なうようにして
炉心流量を鮫正する装置の構成を示すものである。
An embodiment of the present invention will be described below with reference to the drawings. 7th
The figure shows the time from when the recirculation pump stops until the backflow starts (to(
This figure shows the configuration of a device that corrects the core flow rate by performing reverse flow switching after TO.

第7図に示すように原子炉圧力容器1内に配置されたジ
ェットポンプ3ののど部3aに俵競された高圧側配管2
7は差圧伝送器20のダイアフラムの高圧側に接続され
、一方ジェットポンプ3のディフュザ部3bに接続され
た低圧側配管28は同じく差圧伝送器20のダイアフラ
ムの低圧側に接続される。この蓋圧伝送器20は上記配
管27および28の機械的圧力差(差圧)をダイアフラ
ムの変形等として捕えてこの機械的圧力差を電気信号に
変換するものである。差圧伝送器20‘こより変換され
た電気信号は信号線29を介して電子計算機30のプロ
セス入力装置31‘こ加えられる。プロセス入力装置3
1の出力は演算制御装置32に加えられ、またこの演算
制御装置32の出力は記憶装置33に加えられる。した
がって、上記の差圧伝送器20からの出力信号はプロセ
ス入力装置31を介して演算制御装置32に読込まれ、
また記憶装置33に記憶される。またジェットポンプ3
の駆動のための駆動ポンプ34、ポンプ駆動モ−夕35
の駆動信号、あるいは駆動ポンプ34の出力弁36の開
閉信号も同機に信号線29を介してプロセス入力装置3
1に加えられ演算制御装置32に謙込まれる。このよう
な構成において、炉心流量を計測する場合のタイミング
チャートを示すと第8図のようになる。ここに述べる例
では第2図にもあるようにジェットポンプ3を駆動する
再循環ループが2ループあるものについてである。この
2つのループをa,bとし、上述のポンプ34又はポン
プ駆動モータ35ト又は出口弁36などいずれか再循環
ループに駆動水が流れていることを示す信号をa,bル
ープについてDa,ロbとする。第8図に示すように、
信号ロa,ロbともオフ(ポンプ停止)の状態ではa,
bいずれのループのジェットポンプも順流であるとする
。a,bループが同時にオンした場合にもa,bループ
とも順流であるとする(ケース■)。この場合にループ
a,bがオンの状態からbがオフした時、bループは直
ちに逆流とはせず、to後に逆流とする。ループaがオ
ン、bがオフの状態でループbがオンした場合、t,後
にbループ順流とする。同様にしてa,bループのポン
プの状態信号oa,ロbに対し、時間to,t,等を考
慮して流量をla,lbの信号からla+lb又はla
一lb、又は一la+lbのように求めることによって
、正しい炉心流量を計測する。更にこのto,t,につ
いては予め定めた時間を用いる場合と、電子計算機30
の演算制御装置32によって信号la,lbの変化率値
その他を計算しまた必要に応じて他の信号、定数などを
使い、例えばla,lbの変化率の符号の反転をもって
ら,t,の時間とするなどして予め定めた値の代りに用
いることにより、更に正確に炉心流量を計測できる。な
お、上記では電子計算機30により演算処理を行なう場
合について述べたが、必らずしも電子計算機によらずと
も同等の演算処理を行なう論理回路によっても処理でき
ることは勿論である。
As shown in FIG. 7, the high pressure side piping 2 is connected to the throat 3a of the jet pump 3 placed inside the reactor pressure vessel 1.
7 is connected to the high pressure side of the diaphragm of the differential pressure transmitter 20, while the low pressure side pipe 28 connected to the diffuser section 3b of the jet pump 3 is similarly connected to the low pressure side of the diaphragm of the differential pressure transmitter 20. This lid pressure transmitter 20 captures the mechanical pressure difference (differential pressure) between the pipes 27 and 28 as a deformation of the diaphragm, etc., and converts this mechanical pressure difference into an electrical signal. The electrical signal converted from the differential pressure transmitter 20' is applied to the process input device 31' of the electronic computer 30 via the signal line 29. Process input device 3
1 is applied to an arithmetic and control unit 32, and the output of this arithmetic and control unit 32 is applied to a storage device 33. Therefore, the output signal from the differential pressure transmitter 20 is read into the arithmetic and control unit 32 via the process input device 31,
It is also stored in the storage device 33. Also jet pump 3
A drive pump 34 and a pump drive motor 35 for driving the
The drive signal for the drive pump 34 or the opening/closing signal for the output valve 36 of the drive pump 34 is also sent to the process input device 3 via the signal line 29.
1 and stored in the arithmetic and control unit 32. In such a configuration, a timing chart for measuring the core flow rate is shown in FIG. 8. In the example described here, there are two recirculation loops for driving the jet pump 3, as shown in FIG. These two loops are designated as a and b, and a signal indicating that driving water is flowing to any one of the recirculation loops, such as the pump 34, the pump drive motor 35, or the outlet valve 36, is Da for the a and b loops. b. As shown in Figure 8,
When both signals Loa and Lob are off (pump stopped), a,
b It is assumed that the jet pumps in both loops are forward flow. Even when the a and b loops are turned on at the same time, it is assumed that the a and b loops are both in forward flow (case ■). In this case, when loops a and b turn off from the on state, loop b does not immediately become a reverse flow, but becomes a reverse flow after to. When loop b is turned on while loop a is on and b is off, the forward flow of loop b occurs after t. Similarly, for the status signals oa and b of the pumps in the a and b loops, the flow rate is calculated from the signals la and lb to la+lb or la, taking into consideration the times to, t, etc.
The correct core flow rate is measured by calculating 1 lb or 1 la+lb. Furthermore, for this to, t, there are cases where a predetermined time is used and cases where the electronic computer 30
The arithmetic and control unit 32 calculates the rate of change values of the signals la and lb, and uses other signals, constants, etc. as necessary. By using this instead of a predetermined value, the core flow rate can be measured more accurately. Although the above description has been made regarding the case where the arithmetic processing is performed by the electronic computer 30, it is of course possible to perform the processing by a logic circuit that performs the same arithmetic processing without necessarily using the electronic computer.

他の一実施例として前述のけこついて限時継電器を用い
た場合の論理回路を第9図に示す。すなわち、第9図に
おいて、Xa〜Xdは継電器、Ti〜mは限時継電器で
、これら継電器Xa〜Xh,Ti〜nおよびその出力接
点を第9図aに示すように組合せて論理構成し、その出
力段の継電器Xe,Xf,Xg,Xhを演算回路に第9
図bに示すように組込めば、電子計算機を用いた場合と
同様の演算処理が行ない得、正確に炉心流量の計測を行
なうことができる。また前述の例は再循環ループについ
て2ループを有する場合を例として述べたが、同様の趣
旨でループがいくつであっても適用可能であることはい
うまでもない。
As another embodiment, a logic circuit in which the above-mentioned time-limiting relay is used is shown in FIG. That is, in FIG. 9, Xa to Xd are relays, Ti to m are time-limited relays, and these relays Xa to Xh, Ti to n and their output contacts are combined and logically configured as shown in FIG. 9a. The output stage relays Xe, Xf, Xg, and Xh are connected to the 9th arithmetic circuit.
If it is installed as shown in FIG. b, the same arithmetic processing as using an electronic computer can be performed, and the core flow rate can be measured accurately. Furthermore, although the above-mentioned example has been described as an example in which there are two recirculation loops, it goes without saying that the same idea can be applied to any number of loops.

この他、本発明はその要旨を変更しない範囲内で種々変
形して実施できるものである。以上述べたように本発明
によれば、再循環ポンプの起動、停止に際して、逆流が
発生してもその逆流計算をポンプの起動、停止に関達ず
けて炉0流量を鮫正することにより、炉心冷却水の流量
を正確に求めることができる原子炉が提供できる。
In addition, the present invention can be implemented with various modifications without changing the gist thereof. As described above, according to the present invention, even if backflow occurs when starting and stopping the recirculation pump, the backflow calculation is related to the start and stop of the pump and the zero flow rate of the furnace is corrected. , it is possible to provide a nuclear reactor that can accurately determine the flow rate of core cooling water.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水型原子炉の構成を一部破断して示す斜視
図、第2図は同原子炉において流体の流れを説明するた
めの構成図、第3図はジェットポンプに流入、流出する
流体の流れを説明するための図、第4図は再循環ポンプ
が停止した場合の流体の流れを説明するための図、第5
図は原子炉の炉心流量計測装置の一例を示す逆流演算回
路図、第6図a〜cはジェットポンプの流量特性を示す
図、第7図は本発明の一実施例を示す構成説明図、第8
図は同実施例における順流、逆流判定タイミング図、第
9図a,bは本発明に使用する論理回路および演算回路
の異なる他の実施例を示す図である。 20,21・・・・・・差圧伝送器、22,23・・・
・・・開平演算器、24,25・・・・・・論理回路、
26・…・・加算器、30・・・・・・電子計算機。 第1図 第3図 図 N 船 第4図 第5図 第6図 図 ト 球 図 〇 縦 第9図
Figure 1 is a partially cutaway perspective view of the configuration of a boiling water reactor, Figure 2 is a configuration diagram to explain the flow of fluid in the reactor, and Figure 3 is an inflow and outflow to the jet pump. Figure 4 is a diagram to explain the flow of fluid when the recirculation pump stops, Figure 5 is a diagram to explain the flow of fluid when the recirculation pump is stopped.
The figure is a backflow calculation circuit diagram showing an example of a reactor core flow rate measuring device, Figures 6 a to c are diagrams showing flow characteristics of a jet pump, and Figure 7 is a configuration explanatory diagram showing an embodiment of the present invention. 8th
The figure is a forward flow/reverse flow determination timing diagram in the same embodiment, and FIGS. 9a and 9b are diagrams showing another embodiment with different logic circuits and arithmetic circuits used in the present invention. 20, 21... Differential pressure transmitter, 22, 23...
...square root calculator, 24, 25... logic circuit,
26...adder, 30...electronic computer. Fig. 1 Fig. 3 Fig. N Ship Fig. 4 Fig. 5 Fig. 6 Towball diagram Vertical Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の炉心に冷却水を循環させる複数のジエツト
ポンプと、前記ジエツトポンプに駆動水を供給する少な
くとも2個の再循環ポンプと、前記ジエツトポンプの各
々に設けられ前記各々のジエツトポンプ内に流れる冷却
水の流量を検出する差圧検出器と、この差圧検出器で得
られた検出値の極性を判定する装置とを備え、前記差圧
検出器の各々で検出され極性を付された流量値の和を炉
心流量として計測するものにおいて、前記再循環ポンプ
の起動停止時に他の再循環ポンプが運転中であるときは
、その起動停止した時からある時限経過後に、前記起動
停止した再循環ポンプにより駆動されるジエツトポンプ
の、前記差圧検出器から得られる検出値の極性を反転さ
せるようにしたことを特徴とする原子炉の炉心流量計測
装置。
1. A plurality of jet pumps that circulate cooling water in the core of a nuclear reactor, at least two recirculation pumps that supply driving water to the jet pumps, and a cooling water that is provided in each of the jet pumps and that flows into each of the jet pumps. A differential pressure detector that detects a flow rate and a device that determines the polarity of a detected value obtained by the differential pressure detector are provided, and the sum of the polarized flow values detected by each of the differential pressure detectors is provided. is measured as the core flow rate, and if another recirculation pump is in operation when the recirculation pump starts or stops, the recirculation pump that started or stopped will be driven by the recirculation pump that started or stopped. 1. A nuclear reactor core flow rate measuring device, characterized in that the polarity of the detected value obtained from the differential pressure detector of the jet pump is reversed.
JP51030330A 1976-03-19 1976-03-19 Nuclear reactor core flow rate measuring device Expired JPS6025753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51030330A JPS6025753B2 (en) 1976-03-19 1976-03-19 Nuclear reactor core flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51030330A JPS6025753B2 (en) 1976-03-19 1976-03-19 Nuclear reactor core flow rate measuring device

Publications (2)

Publication Number Publication Date
JPS52113493A JPS52113493A (en) 1977-09-22
JPS6025753B2 true JPS6025753B2 (en) 1985-06-20

Family

ID=12300789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51030330A Expired JPS6025753B2 (en) 1976-03-19 1976-03-19 Nuclear reactor core flow rate measuring device

Country Status (1)

Country Link
JP (1) JPS6025753B2 (en)

Also Published As

Publication number Publication date
JPS52113493A (en) 1977-09-22

Similar Documents

Publication Publication Date Title
US4345438A (en) Deaerator level control
JPS6025753B2 (en) Nuclear reactor core flow rate measuring device
US4842806A (en) Device for measuring recirculating flow rate in a nuclear reactor
JP2006349314A (en) Vacuum controller for condenser, method therefor, and steam turbine plant
US4534320A (en) Method for determining the amount of dissolved oxygen from above and below water level air leakage in a steam power plant
JPS59200094A (en) Liquid supply system
CN106895010B (en) A kind of low-temperature cogeneration working medium pump cavitation detection device and method
JP2880558B2 (en) Control method of once-through boiler and control device of once-through boiler
JPS6139046Y2 (en)
JPH0139078B2 (en)
JPH06331783A (en) Reactor core flow rate measuring equipment
JPS5949400A (en) Cavitation detecting device of jet pump
JP2559293B2 (en) Three-element liquid level control method
JPS60138305A (en) Controller for feedwater to nuclear reactor
JP2007232392A (en) Feed water control system of natural circulation type boiling water reactor, and nuclear power plant
JPH05107386A (en) Reactor core flow measuring apparatus
JPS5810692A (en) Coolant recirculation flow rate measuring device in reactor
JPS6239661B2 (en)
JPS582503A (en) Controller for water level of feedwater heater
JPS61123704A (en) Turbine load reducer
JPH0631774B2 (en) Recirculation flow controller
JPH06337103A (en) Controller for water supply flow rate in water supply pump
JPS59230193A (en) Measuring device for flow rate at core
JPH0566292A (en) Suppressing device for nuclear reactor scram
JPS61213692A (en) Output core flow controller for nuclear power plant