JPS60257516A - Manufacture of amorphous silicon semiconductor thin film - Google Patents

Manufacture of amorphous silicon semiconductor thin film

Info

Publication number
JPS60257516A
JPS60257516A JP11518384A JP11518384A JPS60257516A JP S60257516 A JPS60257516 A JP S60257516A JP 11518384 A JP11518384 A JP 11518384A JP 11518384 A JP11518384 A JP 11518384A JP S60257516 A JPS60257516 A JP S60257516A
Authority
JP
Japan
Prior art keywords
emission intensity
film
plasma
sih
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11518384A
Other languages
Japanese (ja)
Other versions
JPH0740551B2 (en
Inventor
Kenji Yamamoto
憲治 山本
Takehisa Nakayama
中山 威久
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59115183A priority Critical patent/JPH0740551B2/en
Publication of JPS60257516A publication Critical patent/JPS60257516A/en
Publication of JPH0740551B2 publication Critical patent/JPH0740551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To establish speedily and readily conditions for high-speed formation of an a-Si semiconductor thin film, by measuring the SiH emission intensity in a plasma. CONSTITUTION:First, no film formation is carried out, and conditions in which the SiH emission intensity reaches the maximum are set by varying the RF power, the reaction chamber pressure and the overall flow rate under the condition that a material gas has a constant silicon compound content. When such conditions are set, the speed at which an a-Si semiconductor thin film is formed becomes maximum. Therefore, it is possible to establish high-speed film forming conditions simply by monitoring the SiH emission intensity in the plasma without actually forming a film. The SiH emission intensity can be measured simply by examining the emission intensity at 4,100-4,200Angstrom by means of an optical fiber 5 attached to a glass window 3 provided in a reaction chamber 8, a polychrometer 4 and an OMA6.

Description

【発明の詳細な説明】 本発明は、プラズマCVD法によりアモルファスシリコ
ン(以下、a−Siという)系半導体薄膜( a−Si
C半導体薄膜、a−SiN半導体薄膜など)を製造する
にあたり、プラズマ中のSiH発光強度を測定すること
により、a−S i系半導体薄膜の高速製膜条件を短時
間かつ容易に確立する方法および該方法により確立され
た所定の条件下においてa−S を系半導体薄膜を製造
する方法に関する。
Detailed Description of the Invention The present invention provides an amorphous silicon (hereinafter referred to as a-Si) based semiconductor thin film (a-Si
A method for easily establishing high-speed deposition conditions for a-Si semiconductor thin films in a short time by measuring the SiH emission intensity in plasma when manufacturing a-SiN semiconductor thin films, etc.) The present invention relates to a method for producing a-S semiconductor thin films under predetermined conditions established by the method.

[従来技術] 従来、a−S i系半導体薄膜を製造するための条件は
、反応室圧力、RFバワー、ガス分率、合計ガス流量な
どの条件を種々変更して製膜し、その膜厚を測定し、膜
厚と製造条件との関係から最適条件をめている。それゆ
え製膜条件を確立するためには、非常な労力および時間
が必要であるとともに、確立された製膜条件下において
製膜するばあいでも、製膜開始直後などにおいては、製
膜条件が一定になっていないために、所望のa−Si系
半導体i111をうろことができないばあいがあるなど
の欠点を有している。
[Prior art] Conventionally, the conditions for producing a-Si semiconductor thin films were to vary the reaction chamber pressure, RF power, gas fraction, total gas flow rate, etc. The optimum conditions are determined based on the relationship between film thickness and manufacturing conditions. Therefore, establishing film forming conditions requires a great deal of effort and time, and even when forming films under established film forming conditions, the film forming conditions may not be correct immediately after starting film forming. Since it is not constant, it has a drawback that it may not be able to reach the desired a-Si semiconductor i111.

[発明の概要] 本発明は前記のごとき実情に鑑み、a−Si系半導体薄
膜の高速製膜条件を短時間かつ容易に確立する方法およ
び該方法により確立された条件下においてa−S i系
半導体薄膜を製造する方法を確立するためになされたも
のである。
[Summary of the Invention] In view of the above-mentioned circumstances, the present invention provides a method for easily establishing high-speed film forming conditions for a-Si semiconductor thin films in a short time and under the conditions established by the method. This was done to establish a method for manufacturing semiconductor thin films.

すなわち本発明は、プラズマCVD法によりシリコン化
合物を含有するガスからa−S i系半導体薄膜を製造
するにあたり、プラズマ中のSiH発光強度を測定する
ことにより、a−S i系半導体薄膜の高速製膜条件を
短時間かつ容易に確立する方法およびプラズマCVD法
によりシリコン化合物を含有するガスからa−S i系
半導体薄膜を製造するにあたり、プラズマ中のSift
発光強度の最大値[SIH],の90%以上のSi8強
度にて製膜することを特徴とするa−Si系半導体薄膜
の製法に関する。
That is, the present invention enables high-speed production of a-Si based semiconductor thin films by measuring the SiH emission intensity in plasma when producing a-Si based semiconductor thin films from a gas containing a silicon compound by plasma CVD method. When manufacturing a-Si semiconductor thin films from gases containing silicon compounds using a method that easily establishes film conditions in a short time and plasma CVD method, Sift in plasma is
The present invention relates to a method for manufacturing an a-Si semiconductor thin film, characterized in that the film is formed at an Si8 intensity of 90% or more of the maximum emission intensity [SIH].

[発明の実施態様] 本発明に用いるシリコン化合物を含有するガスとは、S
iH,、Si2 16 、SiH(CIt3 ) 3、
Si(CH3 ) 4、Si(Ch ) 2 H2や3
i(CH3 ) 3CIなどのハロゲン化シラン類など
のように、ガス状態で存在するシリコン化合物単独また
はこれらの混合物あるいはこれらシリコン化合物単独ま
たはそれらの混合物とH2、CH4、C2H4、CH2
 = CHCH3、C2)12、CH2 =CH−CH
 =CH2、N2 、NH3、02 、NF3、N20
前記炭化水素のハロゲン誘導体などとの混合ガスのこと
である。
[Embodiments of the invention] The gas containing a silicon compound used in the present invention is S
iH,, Si2 16 , SiH(CIt3) 3,
Si(CH3) 4, Si(Ch)2 H2 and 3
i(CH3) A silicon compound existing in a gas state or a mixture thereof such as halogenated silanes such as 3CI, or a silicon compound alone or a mixture thereof and H2, CH4, C2H4, CH2
=CHCH3,C2)12,CH2=CH-CH
=CH2, N2, NH3,02, NF3, N20
This refers to a gas mixture of the above-mentioned hydrocarbons and halogen derivatives.

前記のごときシリコン化合物を含有するガスが、プラズ
マCVD法によりプラズマ分解され、基板上に堆積せし
められ、a−Si系半導体薄膜が形成される。
A gas containing the silicon compound as described above is plasma-decomposed by plasma CVD and deposited on a substrate to form an a-Si semiconductor thin film.

本発明においては、a−Si系半導体薄膜を形成するに
あたり、まず製膜を行なわずに、シリコン化合物を含有
するガス中のシリコン化合物のガス分率が一定の条件に
て、RFバワー、反応室圧力および全流量を変化させ、
SiH発光強度が最大になる条件を設定する。
In the present invention, when forming an a-Si semiconductor thin film, first, without performing film formation, an RF power is applied to the reaction chamber under conditions where the gas fraction of the silicon compound in the gas containing the silicon compound is constant. Varying the pressure and total flow rate,
Set conditions for the maximum SiH emission intensity.

このようにしてSiH発光強度が最大になる条件を設定
すると、a−Si系半導体薄膜を形成する速度が最大に
なることが、本発明に関する検討の結果から明確になっ
ている。それゆえ本発明の方法を用いると、実際に製膜
をすることなく、プラズマ中のSiH発光強度をモニタ
リングすることのみで高速製膜条件を確立することがで
きる。
It has become clear from the results of studies related to the present invention that by setting conditions in which the SiH emission intensity is maximized in this way, the speed of forming an a-Si semiconductor thin film is maximized. Therefore, when the method of the present invention is used, high-speed film forming conditions can be established only by monitoring the SiH emission intensity in plasma without actually forming a film.

なおSiH発光強度は、第1図に示すように、反応室(
8)に設けられたガラス窓(3)に取り付けた光ファイ
バー(5)、ポリクロメーター(4)、OHA(Opt
ical Haltichannel analize
r) (6)により4100〜4200への発光強度を
調べることにより簡単に測定できる。
Note that the SiH emission intensity is measured in the reaction chamber (as shown in Fig. 1).
8) Optical fiber (5) attached to the glass window (3), polychromator (4), OHA (Opt
ical Haltichannel analize
r) It can be easily measured by examining the emission intensity from 4100 to 4200 according to (6).

ガス分率の異なる条件では、上記RFパワー、反応室圧
力は同じで、全流量が上記5it(発光強度最大の条件
におけるレジデンス・タイム(residence t
ile)rと一致するように全流量を設定すると、他の
ガス分率に対してもsg堆積速度が最大になる条件を設
定することができる。
Under conditions with different gas fractions, the above RF power and reaction chamber pressure are the same, and the total flow rate is 5 it (residence time under the condition of maximum emission intensity).
By setting the total flow rate to match ile)r, it is possible to set the conditions that maximize the sg deposition rate for other gas fractions as well.

つまりSiH発光強度最大のレジデンス タイムは、ガ
ス分率に依存せず一定である。
In other words, the residence time at which the SiH emission intensity is maximum is constant regardless of the gas fraction.

なおレジデンス タイムτは、実験値を用いて下式より
められる。
Note that the residence time τ can be calculated from the following formula using experimental values.

V P−V P−■ (式中、■は反応室体積、Sは排気速度、Pは反応室圧
力、Qは流量である。)プラズマ分解などにより分子数
に変化がおこらないばあい、v P■ −1−一−:=:+++ q が成立する。到達圧力PuよりPが充分大きいばF あ
いには、 1′・ S P = Pi exp(−−t ) (式中、Plはt−oでの圧力、tは時間である)なる
関係が成立し、したがって ln P =: −−t 十〇 ■ (式中、Cは定数である)となり、これに実験からめた
P、tの値を代入して、縦軸をInp 。
V P-V P-■ (In the formula, ■ is the reaction chamber volume, S is the pumping speed, P is the reaction chamber pressure, and Q is the flow rate.) If the number of molecules does not change due to plasma decomposition etc., v P■ -1-1-:=:+++ q holds true. If P is sufficiently larger than the ultimate pressure Pu, then the following relationship holds true: 1' S P = Pi exp (--t) (In the formula, Pl is the pressure at t-o, and t is time) Therefore, ln P =: -t 10■ (in the formula, C is a constant), and by substituting the experimentally determined values of P and t into this, the vertical axis is Inp.

横軸をtとしてプロットしたときの傾きからτがめられ
る。
τ can be determined from the slope when plotted with t as the horizontal axis.

たとえばSi H4のガス分率が小さく、SiH発光強
度がめにくいばあい、8i H4のガス分率の多きな条
件にて反応室圧力、RFパワー、全流量をSIH発光強
度が最大になるように条件を設定し、所定のガス分率に
したばあいにレジデンスタイムが一致するように全流量
を設定すると、SiH発光強度が最大になるように、す
なわち薄膜堆積速度が最大になるように設定することが
できる。
For example, if the SiH4 gas fraction is small and the SiH emission intensity is low, the reaction chamber pressure, RF power, and total flow rate should be adjusted to maximize the SIH emission intensity under conditions where the 8iH4 gas fraction is large. If the total flow rate is set so that the residence time matches when a predetermined gas fraction is set, the SiH emission intensity is maximized, that is, the thin film deposition rate is maximized. Can be done.

つぎに本発明の方法を第1図にもとづき説明する。Next, the method of the present invention will be explained based on FIG.

第1図に示す反応室(8)には、RF%i極(刀および
ヒーター(2が通常のように設置されており、RF電極
(7)にはRF電源(1)が接続されており、また原料
ガス導入ライン(A)が設けられている。一方、反応室
(8)には排気ライン(B) 、S開発光強度をモニタ
リングするためのガラス窓(3)が設けられており、該
ガラス窓(3)にはモニタリング用の光ファイバー(5
)を介してポリクロメーター(4)およびOHA (6
)が取り付けられている。
In the reaction chamber (8) shown in Figure 1, an RF%i electrode (sword and a heater (2) are installed as usual, and an RF power source (1) is connected to the RF electrode (7). In addition, a raw material gas introduction line (A) is provided.On the other hand, the reaction chamber (8) is provided with an exhaust line (B) and a glass window (3) for monitoring the S development light intensity. The glass window (3) is equipped with an optical fiber (5) for monitoring.
) via polychromator (4) and OHA (6
) is attached.

このような装置を用いて、基板を設置しないで、所定の
ガス分率でプラズマ放電をおこし、SiH発光強度(4
13〜428nlの発光強度)が最大になるように、R
Fパワー、反応室圧力および全流量を変化させ、薄膜堆
積条件を設定することにより、短時間かつ容易に、非接
触的な方法で高速製膜条件を設定することができる。
Using such a device, a plasma discharge is generated at a predetermined gas fraction without installing a substrate, and the SiH emission intensity (4
13 to 428 nl) to maximize the R
By changing the F power, the reaction chamber pressure, and the total flow rate and setting the thin film deposition conditions, high-speed film forming conditions can be set easily in a short time and in a non-contact manner.

つぎに前記方法により、プラズマ中のSiH発光強度を
 [818]Hの90%以上の値に設定し、このように
設定したグロー放電分解条件下で製膜するa−3i系半
導体薄膜の製法について説明する。
Next, we will discuss a method for manufacturing an a-3i semiconductor thin film by setting the SiH emission intensity in the plasma to a value of 90% or more of [818]H using the above method, and forming the film under the glow discharge decomposition conditions set in this way. explain.

a−3i系半導体薄膜の形成を、プラズマ中のSiH発
光強度が [SiH]Hの90%以上の条件で行なうと
、堆積速度が速くなる。とくにSiH発光強度が最大と
なる条件で製膜すると、堆積速度が最大となる。
When the a-3i semiconductor thin film is formed under conditions where the SiH emission intensity in the plasma is 90% or more of [SiH]H, the deposition rate becomes faster. In particular, when the film is formed under conditions where the SiH emission intensity is maximized, the deposition rate is maximized.

前記のようにプラズマ中のSiH発光強度測定を、a−
3i系半導体1膜の製造条件の設定に用いるだけでなく
、製膜中もモニタリングをつづけると、放電状態を観察
することができ、製膜条件を製膜中に変更させながら製
膜することもでき、堆積速度の最適化を自由に行なうと
いうようなことも可能となる。
As mentioned above, the SiH emission intensity measurement in plasma was carried out using a-
In addition to being used to set the manufacturing conditions for a single 3i semiconductor film, if you continue monitoring during film formation, you can observe the discharge state, and you can also change the film forming conditions during film formation. It also becomes possible to freely optimize the deposition rate.

つぎに本発明の方法および製法を実施例にもとづき説明
する。
Next, the method and manufacturing method of the present invention will be explained based on Examples.

実施例1 SiH4(1−X) +202”(X)なる混合ガスを
用いて、RFパワー30−1反応室圧力1.5Torr
なる条件で全流量を10〜400secmの範囲で変化
させ、SiH発光強度と薄膜堆積速度との関係を測定し
た。それらの結果を第2図に示す。
Example 1 Using a mixed gas of SiH4(1-X) +202''(X), RF power was 30-1 and reaction chamber pressure was 1.5 Torr.
The total flow rate was varied in the range of 10 to 400 seconds under the following conditions, and the relationship between the SiH emission intensity and the thin film deposition rate was measured. The results are shown in FIG.

なおXは010.3および0.65のそれぞれについて
測定した。x=Oのばあいにはa−8t:H。
Note that X was measured at 010.3 and 0.65, respectively. If x=O, a-8t:H.

x=0.3のばあいにはa−8iCo4:H,x= 0
.65のばあいにはa−3iC:Hが形成された。
When x=0.3, a-8iCo4:H, x=0
.. In the case of 65, a-3iC:H was formed.

0.4 実施例2 SiH4、C2H4混合ガスを用いて、RFパワー30
W、金沢fjk 80sccI11なる条件で、反応室
圧力を第1表のように変化させて、SiH1発光強度と
薄膜堆積速度との関係を測定した。それらの結果を第1
表に示す。
0.4 Example 2 Using SiH4, C2H4 mixed gas, RF power 30
The relationship between the SiH1 emission intensity and the thin film deposition rate was measured under the following conditions: W, Kanazawa fjk 80sccI11, and the reaction chamber pressure was varied as shown in Table 1. those results first
Shown in the table.

第 1 表 実施例3 SiH4、C2H4混合ガスを用いて、反応室圧力1.
5Torr、全流量80sec++なる条件で、RFパ
ワーを第2表のように変化させて、SiH発光強度と薄
膜堆積速度との関係を測定した。
Table 1 Example 3 Using a mixed gas of SiH4 and C2H4, the reaction chamber pressure was 1.
The relationship between the SiH emission intensity and the thin film deposition rate was measured under conditions of 5 Torr and a total flow rate of 80 sec++ while changing the RF power as shown in Table 2.

それらの結果を第2表に示す。The results are shown in Table 2.

第 2 表 実施例1〜3の結果から、SiH発光強度が大きくなる
と薄膜堆積速度が大きくなることがわかる。
From the results of Examples 1 to 3 in Table 2, it can be seen that as the SiH emission intensity increases, the thin film deposition rate increases.

実施例4 SiHa、C2H4混合ガス全流量を20〜400se
cmの範囲で変化させ、先程の圧力と時間との関係から
τをめ、そのときの発光強度との関係をめた。それらの
結果を第3図に示す。
Example 4 SiHa, C2H4 mixed gas total flow rate from 20 to 400 se
The temperature was varied within a range of cm, τ was determined from the relationship between pressure and time, and the relationship with the luminescence intensity at that time was determined. The results are shown in FIG.

第3図からSiH4のガス分率に関係なく、レジデンス
中タイムτ=約4.5SeCにてSiHの発光強度が最
大となることがわかる。つまり異なるガス分率において
もレジデンス・タイムで堆積速度最大となる条件が設定
できることがわかる。
It can be seen from FIG. 3 that the emission intensity of SiH reaches its maximum at the residence time τ=approximately 4.5 SeC, regardless of the gas fraction of SiH4. In other words, it can be seen that conditions can be set to maximize the deposition rate at the residence time even at different gas fractions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に関する説明図、第2図は実施例
1において、全流量をパラメータとして変化させたばあ
いのSiH発光強度とm*堆積速度との関係を示すグラ
フ、第3図は実施例4において、ガスフラクションx=
O10,3,0,65,0,16,0,86のばあいの
レジデンス・タイムτとSiH発光強度との関係を示す
グラフである。 特許出願人 鐘淵化学工業株式会社 神 C八 22図 Δ : χ=0.65 x : X=0.3
FIG. 1 is an explanatory diagram regarding the method of the present invention, FIG. 2 is a graph showing the relationship between SiH emission intensity and m* deposition rate when the total flow rate is changed as a parameter in Example 1, and FIG. In Example 4, gas fraction x=
It is a graph showing the relationship between residence time τ and SiH emission intensity in the case of O10, 3, 0, 65, 0, 16, 0, and 86. Patent applicant Kanekabuchi Chemical Industry Co., Ltd. Figure C822 Δ: χ=0.65 x: X=0.3

Claims (1)

【特許請求の範囲】 1 プラズマCVD法によりシリコン化合物を含有する
ガスからアモルファスシリコン系半導体薄膜を製造する
にあたり、プラズマ中のSIH発光強度を測定すること
により、アモルファスシリコン系半導体薄膜の高速製膜
条件を短時間かつ容易に確立する方法。 2 シリコン化合物を含有するガスが、Siz )16
 、Sj H4に炭化水素、そのハロゲン誘導体、アン
モニア、NF3、N2.021802の少なくとも1種
以上を含むガスである特許請求の範囲第1項記載の方法
。 3 プラズマCVD法によりシリコン化合物を含有する
ガスからアモルファスシリコン系半導体薄膜を製造する
にあたり、プラズマ中のSiH発光強度の最大値[Si
H]+の90%以上のSiH発光強度にて製膜すること
を特徴とすゝるアモルファスシリコン系半導体薄膜の製
法。 4 プラズマ中のSiH発光強度をあらかじめ[SrH
]Hの90%以上に調整したのち製膜する特許請求の範
囲第3項記載の製法。 5 プラズマ中のSiH発光強度が最大となる条件下で
製膜する特許請求の範囲第3項または第4項記載の製法
。 6 プラズマ中の5ift発光強度をモニタリングしな
がら製膜する特許請求の範囲第3項、第4項または第5
項記載の製法。 7 プラズマ中のSiH発光強度を、モニタリングしな
がら、かつかえながら製膜する特許請求の範囲第3項、
第4項、第5項または第6項記載の製法。 8 シリコン化合物を含有するガスが、Si2H6、S
i H4に炭化水素、そのハロゲン誘導体、アンモニア
、NF3、N2.02、N20の少なくとも1種以上を
含むガスである特許請求の範囲第3項、第4項、第5項
、第6項または第7項記載の製法。
[Scope of Claims] 1. In manufacturing an amorphous silicon semiconductor thin film from a gas containing a silicon compound by plasma CVD method, high-speed deposition conditions for the amorphous silicon semiconductor thin film are determined by measuring the SIH emission intensity in the plasma. How to quickly and easily establish 2 The gas containing a silicon compound is Siz)16
, Sj H4 is a gas containing at least one of hydrocarbons, halogen derivatives thereof, ammonia, NF3, and N2.021802. 3 When producing an amorphous silicon-based semiconductor thin film from a gas containing a silicon compound by plasma CVD method, the maximum value of SiH emission intensity in plasma [Si
A method for producing an amorphous silicon-based semiconductor thin film, characterized in that the film is produced at an SiH emission intensity of 90% or more of H]+. 4 The SiH emission intensity in the plasma was determined in advance by [SrH
] The manufacturing method according to claim 3, wherein the film is formed after adjusting H to 90% or more. 5. The manufacturing method according to claim 3 or 4, wherein the film is formed under conditions where the SiH emission intensity in plasma is maximized. 6 Claims 3, 4, or 5 in which the film is formed while monitoring the 5ift emission intensity in plasma.
Manufacturing method described in section. 7 Claim 3, in which the film is formed while monitoring and holding the SiH emission intensity in the plasma;
The manufacturing method according to item 4, item 5, or item 6. 8 The gas containing silicon compounds is Si2H6, S
i H4 is a gas containing at least one of hydrocarbons, halogen derivatives thereof, ammonia, NF3, N2.02, and N20 in claims 3, 4, 5, 6, or The manufacturing method described in Section 7.
JP59115183A 1984-06-04 1984-06-04 Amorphous silicon semiconductor thin film manufacturing method Expired - Fee Related JPH0740551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115183A JPH0740551B2 (en) 1984-06-04 1984-06-04 Amorphous silicon semiconductor thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115183A JPH0740551B2 (en) 1984-06-04 1984-06-04 Amorphous silicon semiconductor thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPS60257516A true JPS60257516A (en) 1985-12-19
JPH0740551B2 JPH0740551B2 (en) 1995-05-01

Family

ID=14656408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115183A Expired - Fee Related JPH0740551B2 (en) 1984-06-04 1984-06-04 Amorphous silicon semiconductor thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0740551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100782A1 (en) * 2009-03-06 2010-09-10 三菱重工業株式会社 Method of producing photoelectric conversion device, and film-forming apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182217A (en) * 1982-04-19 1983-10-25 Oki Electric Ind Co Ltd Thin film forming method
JPS5994810A (en) * 1982-11-22 1984-05-31 Agency Of Ind Science & Technol Production of amorphous silicon film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182217A (en) * 1982-04-19 1983-10-25 Oki Electric Ind Co Ltd Thin film forming method
JPS5994810A (en) * 1982-11-22 1984-05-31 Agency Of Ind Science & Technol Production of amorphous silicon film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100782A1 (en) * 2009-03-06 2010-09-10 三菱重工業株式会社 Method of producing photoelectric conversion device, and film-forming apparatus
JP2010212279A (en) * 2009-03-06 2010-09-24 Mitsubishi Heavy Ind Ltd Method for manufacturing photoelectric conversion device and film forming device
US8394709B2 (en) 2009-03-06 2013-03-12 Mitsubishi Heavy Industries, Ltd. Process for producing photovoltaic device and deposition apparatus

Also Published As

Publication number Publication date
JPH0740551B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
JP3135198B2 (en) Method of depositing silicon oxynitride film by plasma enhanced CVD
Gallagher Some physics and chemistry of hot-wire deposition
JPS5930130B2 (en) Vapor phase growth method
JPS5914543B2 (en) plasma deposition equipment
JPS63145781A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS6347141B2 (en)
JPS6451618A (en) Microcrystalline silicon carbide semiconductor film and manufacture thereof
JPS61234534A (en) Fabrication of silicon nitride coating
Murley et al. Influence of gas residence time on the deposition of nitrogen-rich amorphous silicon nitride
JPS60257516A (en) Manufacture of amorphous silicon semiconductor thin film
Johnson et al. Characterization of a remote hydrogen plasma reactor with electron spin resonance
US3279946A (en) Hydrogen chloride treatment of semiconductor coating chamber
JPS6314421A (en) Plasma chemical vapor deposition method
JPS58190811A (en) Manufacture of photoconductive film of amorphous silicon hydride
Bárdoš et al. Nitrogen activation for plasma chemical synthesis of thin Si3N4 films
Hicks et al. A spectroscopic investigation of growth regimes in silane-ammonia discharges used for plasma nitride deposition
Hamasaki et al. Growth kinetics of amorphous hydrogenated silicon studied by pulsed rf discharge
JPS6273622A (en) Formation of amorphous semiconductor film
JP3071854B2 (en) Diamond film fabrication method and its evaluation method
JP2003007624A (en) Processing monitoring method of thin-film manufacturing apparatus and the thin-film manufacturing apparatus equipped with process monitor
JPS60100675A (en) Formation of deposited film
JPH05121332A (en) Method and apparatus for formation of functional deposition film
JPS637373A (en) Deposited film forming device by plasma cvd method
JPS60131970A (en) Formation of deposited film
JPS6289869A (en) Method for synthesizing hard carbon film in vapor phase

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees