JPS60257360A - Method for analyzing oxygen in metal of titanium group or alloy thereof - Google Patents

Method for analyzing oxygen in metal of titanium group or alloy thereof

Info

Publication number
JPS60257360A
JPS60257360A JP59113762A JP11376284A JPS60257360A JP S60257360 A JPS60257360 A JP S60257360A JP 59113762 A JP59113762 A JP 59113762A JP 11376284 A JP11376284 A JP 11376284A JP S60257360 A JPS60257360 A JP S60257360A
Authority
JP
Japan
Prior art keywords
sample
nickel
titanium
oxygen
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59113762A
Other languages
Japanese (ja)
Other versions
JPH0511262B2 (en
Inventor
Masayoshi Okamura
岡村 正義
Kiyoshi Matsuda
清 松田
Hiromichi Yamada
山田 弘通
Hiromi Umeda
梅田 裕美
Masami Tomimoto
冨本 雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59113762A priority Critical patent/JPS60257360A/en
Priority to US06/739,271 priority patent/US4673655A/en
Publication of JPS60257360A publication Critical patent/JPS60257360A/en
Priority to US07/003,614 priority patent/US4746617A/en
Publication of JPH0511262B2 publication Critical patent/JPH0511262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To improve the accuracy of analyzing oxygen by allowing nickel of 7-17 times the weight of a sample for analysis of titanium to coexist in the sample then melting the sample. CONSTITUTION:Nickel of 7-17 times the weight of the sample for analysis of titanium is allowed to coexist in the sample in a method for analyzing quantitatively the oxygen in the titanium by heating and melting the titanium in an inert gaseous atmosphere with a graphite crucible at a prescribed temp. and bringing the oxygen therein into reaction with carbon monoxide. The nickel is made to coexist in the sample in the form of forming the same into a plate shape, enclosing the sample with the plate-shaped nickel and uniting the nickel and the sample. The adequate molten bath is thus formed in an early period and the extraction of gaseous carbon monoxide is accelerated.

Description

【発明の詳細な説明】 本発明はチタン族金属又はその合金に含まれる酸素の分
析法に関し、特に同金属合金を不活性ガス雰囲気下で高
温溶解することによりこれらに含壕れる酸素を炭素と反
応させ、−酸化炭素として抽出2分析することにより酸
素を定量化する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for analyzing oxygen contained in titanium group metals or alloys thereof, and in particular to a method for analyzing oxygen contained in titanium group metals or their alloys, in particular by melting the metal alloys at high temperature in an inert gas atmosphere to convert the oxygen contained therein into carbon. This invention relates to a method for quantifying oxygen by reacting it and extracting and analyzing it as carbon oxide.

周知のように例えばチタン中に不純物として含まれる酸
素は窒素と同様にチタンの結晶格子間に固溶し1強度等
の機械的性質に著しい影響を及はすものでその含有量に
ついては材料規格にも明記されるところである。
As is well known, for example, oxygen contained as an impurity in titanium, like nitrogen, dissolves between the crystal lattices of titanium and has a significant effect on mechanical properties such as strength, and its content is determined by material standards. This is also clearly stated.

従って、チタン中の酸素含有量の調整、制御に係る製造
技術の進歩が望まれる一方、同酸素の分析技術について
も極めて重要な役割を果すものである。
Therefore, while progress is desired in manufacturing technology for adjusting and controlling the oxygen content in titanium, oxygen analysis technology also plays an extremely important role.

従来、チタンの酸素分析は、一般に分析試料(以下、試
料という)を黒鉛製のルツボに入れ、He等の不活性ガ
ス雰囲気下に高温で加熱、溶融し。
Conventionally, oxygen analysis of titanium has generally been carried out by placing an analysis sample (hereinafter referred to as a sample) in a graphite crucible and heating and melting it at high temperature in an inert gas atmosphere such as He.

下式(1)の反応により生成した一酸化炭素を抽出した
後、これを赤外線吸収法あるいは熱伝導度法で定量化す
る方法が採用されている。
A method has been adopted in which carbon monoxide produced by the reaction of formula (1) below is extracted and then quantified by an infrared absorption method or a thermal conductivity method.

なお、同式中元素記号の下線は同元素が溶融チタン中罠
固溶していることを示す。
Note that the underlined symbol of an element in the same formula indicates that the same element is trapped in molten titanium as a solid solution.

c+o−co(−一)・・二・・・・・・・・・・・・
・・・・・・fl、1カ ところで、チタンは酸素と親木−よ強く、−酸化炭素と
して完全に抽出することが困難であり、さらにチタンは
黒鉛ルツボと濡れ性が良いために溶融すると黒鉛中に浸
透してし1い、結局実際の含有量の1%以下の量しか抽
出できないという問題がある。
c+o-co(-1)・・2・・・・・・・・・・・・
・・・・・・fl、1 By the way, titanium is strong in oxygen and parent wood, and it is difficult to completely extract it as carbon oxide.Furthermore, titanium has good wettability with graphite crucibles, so it is difficult to melt when melted. There is a problem that it penetrates into graphite, and in the end only 1% or less of the actual content can be extracted.

こうした問題を解決するため、チタンの試料と同時に白
金を溶融する方法(白金浴法)が提案。
To solve these problems, a method was proposed in which platinum was melted at the same time as the titanium sample (platinum bath method).

実施されている。It has been implemented.

この白金浴法は、(1)溶融白金中への酸素の溶解度が
小さく、抽出時に前記反応が促進される。(2]チタン
と白金の融点がほぼ等しい(チタン: 1670℃、白
金: 1773℃)ため浴の形成が容易である、及び(
3)溶融白金中への炭素の溶解度も小さく黒鉛ルツボを
浸蝕しない1等の理由から分析精度。
In this platinum bath method, (1) the solubility of oxygen in molten platinum is low, and the reaction is accelerated during extraction. (2) Since the melting points of titanium and platinum are almost the same (titanium: 1670°C, platinum: 1773°C), it is easy to form a bath, and (
3) Analysis accuracy is high because the solubility of carbon in molten platinum is small and does not corrode the graphite crucible.

再現性に優れているため現在ではこの方法が推奨され、
広く採用されている。
This method is currently recommended due to its excellent reproducibility.
Widely adopted.

しかしながら、この白金浴法は白金が極めて高価である
ことから経済上の不利を伴なう欠点を有する。
However, this platinum bath method has the disadvantage of being economically disadvantageous because platinum is extremely expensive.

本発明者等は上記欠点を解消し、かつ白金浴法と同等の
精度、再現性を備えた新しいチタン中の酸素分析法の確
立を0差して鋭7意研究、検討を重ねた結果、従来の白
金に代えてニッケルを特定条件下で使用した場合でも白
金浴法に劣らぬ精度。
The present inventors have conducted extensive research and study to establish a new oxygen analysis method in titanium that eliminates the above drawbacks and has the same accuracy and reproducibility as the platinum bath method. Accuracy comparable to platinum bath method even when nickel is used in place of platinum under specific conditions.

再現性の得られる事実を確認し、ここに本発明の完成を
みるに至った。
It was confirmed that reproducibility could be obtained, and the present invention was completed.

すなわち、かかる本発明とは、チタンを黒鉛ルツボによ
り不活性ガス雰囲気下で溶解し、同チタン中の酸素を一
酸化炭素に反応させて抽出し、これを定量分析する方法
において、チタンの分析試以下、本発明を実験結果を中
心に詳述することにする。
That is, the present invention is a method in which titanium is dissolved in a graphite crucible under an inert gas atmosphere, oxygen in the titanium is extracted by reacting with carbon monoxide, and this is quantitatively analyzed. Hereinafter, the present invention will be explained in detail focusing on experimental results.

まず、ニッケルの共存下でチタンの試料を溶解させる方
式ではニッケル自体前述の白金と同様に酸素及び窒素に
対して溶解度が小さく酸素を一酸化炭素として抽出する
効率が高く、又ルツボの浸蝕が少ないといった利点があ
るが一方、ニッケルの融点(1455℃)はチタンの融
点(1670℃)より約200℃低いだめ両者を通常の
方法では同時に溶解し難いという問題がある。本発明者
等はこの問題を克服できなければこのニッケル浴法を実
用化することは無理と考え、この点に着眼して種々の実
験を繰返したところ、目的とする分析精度や再現性を得
るためには特に添加するニッケルの形態並びに試料とニ
ッケルの配合割合が極めて重要な要素と々ることを知見
した。
First, in the method of dissolving a titanium sample in the coexistence of nickel, nickel itself has low solubility in oxygen and nitrogen, similar to the aforementioned platinum, and is highly efficient in extracting oxygen as carbon monoxide, and there is less corrosion of the crucible. However, since the melting point of nickel (1455°C) is about 200°C lower than the melting point of titanium (1670°C), there is a problem that it is difficult to melt both at the same time using normal methods. The inventors believed that it would be impossible to put this nickel bath method into practical use unless this problem could be overcome, and by repeating various experiments with this point in mind, they were able to achieve the desired analytical precision and reproducibility. It was found that the form of the nickel added and the mixing ratio of the sample and nickel are extremely important factors.

すなわち、ニッケルの形状については高純度ニッケル(
純度99%以上)を粉、線及び板の3種の形態で試料と
共に黒鉛ルツボに同時に入れることを試みた。
In other words, the shape of nickel is high purity nickel (
An attempt was made to simultaneously introduce three types of graphite (with purity of 99% or higher) into a graphite crucible together with a sample: powder, wire, and plate.

第1表はあらかじめ白金浴法で酸素含有量をめた標準試
料(0;0.187%)約α1りに対してニッケルの粉
(20メツシユ)、線(直径1mmを試料を巻いたもの
)及び板(厚さQ、 4 m mのもので試料を包んだ
もの)をそれぞれその試料重量の10倍の配合割合で試
料と共にルツボに入れて2700〜3000℃に加熱、
溶解し、生成した一酸化炭素を抽出し、これを赤外線吸
収法により試料中の酸素を定量した結果を示している。
Table 1 shows the standard sample (0; 0.187%) whose oxygen content was determined in advance using the platinum bath method. Nickel powder (20 meshes) and wire (sample wound with a diameter of 1 mm) and a plate (thickness Q, 4 mm wrapped around the sample) were placed in a crucible together with the sample at a mixing ratio of 10 times the weight of the sample and heated to 2700 to 3000°C.
The graph shows the results of quantifying the amount of oxygen in the sample by extracting the dissolved and produced carbon monoxide and using an infrared absorption method.

なお、同表にはニッケルを添加しなかった場合について
も併せて示した。
Note that the same table also shows the case where nickel was not added.

第1表 ニッケル形状別による酸素分析結果(抽出温度
2700〜3000℃) 第2表 ニッケルの形状別酸素の抽出完了時間(抽出温
度2700〜3000℃) 又、第2表は同溶解2分析時に生成した一酸化炭素の抽
出完了時間を測定した結果である。
Table 1 Oxygen analysis results by nickel shape (extraction temperature 2700-3000℃) Table 2 Oxygen extraction completion time by nickel shape (extraction temperature 2700-3000℃) In addition, Table 2 is generated during the same dissolution 2 analysis These are the results of measuring the time taken to complete the extraction of carbon monoxide.

これらの結果から明らかなように、ニッケル無添加(試
料単独)のものは論外であるが、使用したニッケルが粉
状のものでは標準値に比して著しく低く、バラツキもか
なり大きいし、線状のものでは粉状に較べると標準値に
近く、バラツキも少なくなっているもののやはり十分に
満足しうるものでは々い。
As is clear from these results, a sample with no nickel added (sample alone) is out of the question, but when the nickel used is in powder form, it is significantly lower than the standard value, the variation is quite large, and the linear Compared to powdered powder, the value is closer to the standard value and there is less variation, but it is still not completely satisfactory.

更に抽出時間についても粉及び線状の場合は長時間を要
しかつ不安定となっていることが分る。
Furthermore, it can be seen that the extraction time is long and unstable in the case of powder and linear products.

とれに対し2て、板状を使用したものは粉、線状に比し
、著しく精度が高く、又バラツキも極めて小さく更に抽
出時間も短かく安定していることが判明する。
In contrast, it has been found that the plate-shaped one has significantly higher precision than the powder or linear ones, has extremely small variations, and is stable with a short extraction time.

従って、ニッケルを試料と共に溶解するに際しては板状
のものを用い、これで試料を包んて一体化1〜だ形態が
適正な溶融浴の早期形成並びにCOガスの抽出促進の上
で最も好しいものと考えられる。このニッケル板で包む
形態としては試料を完全に密封すると空気の混入が懸念
されるため、むしろ適度な通気孔を保持させた半密封の
状態が好しい。そして、具体的には更に分析作業の簡易
性を考慮して第1図に示すパイプ状のカプセルを利用す
ることを推奨する。すなわち、棒状の試料(1)の径、
長さに合せて製作したニッケルパイプ(2)に試料(1
)を挿入しくa)、パイプの両端をかしめて両者を一体
化させるω)。このかしめの際には管端を密着させずに
ガス抜きのため通気孔(3)を図の通り残すようにする
Therefore, when melting nickel together with the sample, use a plate-shaped plate and wrap the sample in one piece.The most preferable form is to quickly form an appropriate molten bath and promote the extraction of CO gas. it is conceivable that. When wrapping the sample with the nickel plate, there is a concern that air may enter if the sample is completely sealed, so a semi-sealed state with adequate ventilation holes is preferable. Specifically, it is recommended to use the pipe-shaped capsule shown in FIG. 1 in consideration of the simplicity of the analysis work. That is, the diameter of the rod-shaped sample (1),
Sample (1) is placed on a nickel pipe (2) made to match the length.
), insert the pipe a) and crimp both ends of the pipe to integrate the two. During this caulking, the ends of the tubes are not brought into close contact with each other, leaving vent holes (3) as shown in the diagram for venting gas.

このようなカプセルタイプを使用すると、試料の作成、
取扱いが簡単となり作業性に優れると同時に、試料(1
)の長さくe、)あるいけニッケルパイプ(2)の長さ
く e 2) ?e適宜変えることにより両者の配合割
合を任意の値に調整できる利点がある。
Using such a capsule type allows for sample preparation,
It is easy to handle and has excellent workability, and at the same time, the sample (1
) Length e,) Length of the nickel pipe (2) e 2) ? eThere is an advantage that the blending ratio of both can be adjusted to an arbitrary value by changing it appropriately.

次に、試料とニッケルの配合割合について上記カプセル
の特性を利用し0.17の試料を種々異なる長さのニッ
ケルパイプに挿入して試料とニッケルの重量比を変えて
同試料の酸素分析を行なった結果(・印)と同様にして
試料と白金の重量比を変えた白金浴法を用いた結果(○
印)を第2図に示した。なお、同試料の酸素の標準値は
760ppm(図中破線)である。又、このときの溶解
Next, using the characteristics of the capsule mentioned above regarding the mixing ratio of the sample and nickel, 0.17 samples were inserted into nickel pipes of various lengths, and the weight ratio of the sample and nickel was changed to conduct oxygen analysis of the same sample. The results obtained using the platinum bath method (○
) is shown in Figure 2. Note that the standard value of oxygen in the same sample is 760 ppm (dashed line in the figure). Also, the melting at this time.

抽出温度は2700〜3000℃であった。The extraction temperature was 2700-3000°C.

同図から、ニッケルを添加、共存させた場合ニッケルの
試料に対する重量割合が小さ過ぎたり大き過ぎたりする
と白金浴法に比べて著しく精度が低下する事実が分り、
従って白金浴法と遜色のない分析精度を確保するにはニ
ッケルの配合割合を適正範囲に維持することが肝要であ
る。特に、ニッケルと試料の重量比が7未満及び17を
超える々標準値よりかなり低い値となる傾向が明らかに
認められ実用上困難と判断されることから本発明では前
記重量比を7〜17の範囲とすること、つまり共存させ
るニッケルの配合割合をその重量で試料の7〜17倍の
範囲に調整することを必須不可欠の条件とした。
From the same figure, it is clear that when nickel is added or coexisted, if the weight ratio of nickel to the sample is too small or too large, the accuracy decreases significantly compared to the platinum bath method.
Therefore, in order to ensure analytical accuracy comparable to that of the platinum bath method, it is important to maintain the blending ratio of nickel within an appropriate range. In particular, when the weight ratio of nickel to the sample is less than 7 or more than 17, it is clearly recognized that the weight ratio tends to be much lower than the standard value, and it is judged to be difficult in practice. In other words, the essential condition was to adjust the blending ratio of nickel to be within the range of 7 to 17 times the weight of the sample.

第3表はこのニッケルの配合条件を沸足する種々の値の
酸素を含む試料について本発明法でめた分析結果と白金
浴法でめた結果を整理したものであるが両者の結果は非
常によく一致しており本発明法が白金浴法と同等の分析
精度を備えていることが判明する。
Table 3 summarizes the analysis results obtained using the method of the present invention and the results obtained using the platinum bath method for samples containing various values of oxygen that meet the mixing conditions of nickel, but the results of both are very different. It is found that the method of the present invention has analytical accuracy equivalent to that of the platinum bath method.

又、第4表はニッケルと白金のブランク値を分析、比較
したものであるがニッケルの酸素の値は白金のそれと同
等若しくはそれ以下でありブランクの影響も極めて少な
いことが知れる。
Furthermore, Table 4 analyzes and compares the blank values of nickel and platinum, and it can be seen that the oxygen value of nickel is equal to or lower than that of platinum, and that the influence of the blank is extremely small.

さて、ニッケルを共存古せて溶解する本発明の実施に当
って該ニッケルの形態及び配合割合が重要であることは
上述してきた通りであるが、更に溶解、抽出の温度につ
いても十分に注意を払う必要がある。すなわち、ニッケ
ルとチタンの溶融浴をすみやかに形成させると共にCO
ガスの抽出を効率的に促進させること等、分析の精度、
迅速性を考慮すると同温度を2000℃以上とすること
が有利であり特に2400〜3000℃の範囲に保持す
ることが好しい。゛ すなわち、第3図は酸素が1870ppmのチタン標準
試料をニッケルパイプに挿入して種々の温度で溶解、抽
出後酸素分析を行ない、その時の溶解、抽出温度と酸素
の抽出率の関係をまとめたものであるが、2000℃で
もその抽出率は75%と比較的高く実用に供することが
分り、更に2400℃では100%の抽出率が得られて
いる。
As mentioned above, when implementing the present invention in which nickel coexists and is dissolved, the form and blending ratio of the nickel are important, but furthermore, sufficient attention must be paid to the melting and extraction temperatures. need to pay. That is, a molten bath of nickel and titanium is quickly formed, and CO
Analytical accuracy, such as efficiently promoting gas extraction,
In consideration of rapidity, it is advantageous to set the temperature to 2000°C or higher, and it is particularly preferable to maintain the temperature in the range of 2400 to 3000°C.゛In other words, Figure 3 shows a titanium standard sample containing 1870 ppm oxygen inserted into a nickel pipe, dissolved at various temperatures, extracted and then analyzed for oxygen, and summarized the relationship between the dissolution and extraction temperature and the oxygen extraction rate. However, even at 2000°C, the extraction rate was found to be relatively high at 75% for practical use, and furthermore, at 2400°C, an extraction rate of 100% was obtained.

しかし、3000℃を越える温度でけルツボの浸蝕が激
しくなり、抽出が不安定に々るため実用上好しくない。
However, if the temperature exceeds 3000° C., the crucible becomes severely eroded and extraction becomes unstable, which is not practical.

第4表 ニッケルと白金のブランク値 以上、詳述したように本発明によると従来の白金浴法に
比較して経済的に癌かに有利な方法により同法に劣らぬ
優れた精度、再現性のもとにチタン等に脩まれる酸素を
分析、定量化できるものでその工業的価値の高い発明で
ある。
Table 4 Blank values for nickel and platinum As detailed above, according to the present invention, the method is economically more advantageous than the conventional platinum bath method and has excellent accuracy and reproducibility comparable to that method. It is an invention with high industrial value as it allows the analysis and quantification of oxygen absorbed into titanium, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用されるチタンの試料及びニッケル
の形態を説明する概要図、第2図はチタンの試料とニッ
ケルの重量比を変えた場合の酸素分析値及び同試料と白
金の重量比を変えた場合の同酸素分析値を、第3図は溶
解、抽出温度と酸素の抽出率の関係をそれぞれ示す。 特許出願人株式会社神戸製鋼所 l獣 弁理よ 梶 良之
Figure 1 is a schematic diagram explaining the morphology of the titanium sample and nickel applied to the present invention, and Figure 2 is the oxygen analysis value and the weight of the same sample and platinum when the weight ratio of the titanium sample and nickel is changed. Figure 3 shows the oxygen analysis values when the ratio is changed, and the relationship between the dissolution and extraction temperatures and the oxygen extraction rate. Patent applicant: Kobe Steel, Ltd. Yoshiyuki Kaji, Patent Attorney

Claims (1)

【特許請求の範囲】[Claims] チタン族の金属又は合金を黒鉛ルツボによシネ活性雰囲
気下で溶解し、同チタン中の酸素を炭素と反応させて一
酸化炭素として抽出しこれを定量分析する方法において
、チタンの分析試料を該試料重量の7〜17倍の重量の
ニッケルを共存させて溶解することを特徴とするチタン
族の金属又はその合金の酸素分析法。
In this method, a titanium group metal or alloy is dissolved in a graphite crucible under a cine-activated atmosphere, and oxygen in the titanium is reacted with carbon to extract carbon monoxide, which is then quantitatively analyzed. A method for oxygen analysis of titanium group metals or alloys thereof, characterized by dissolving nickel in the presence of 7 to 17 times the weight of the sample.
JP59113762A 1984-06-01 1984-06-01 Method for analyzing oxygen in metal of titanium group or alloy thereof Granted JPS60257360A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59113762A JPS60257360A (en) 1984-06-01 1984-06-01 Method for analyzing oxygen in metal of titanium group or alloy thereof
US06/739,271 US4673655A (en) 1984-06-01 1985-05-30 Method of analyzing oxygen or nitrogen contained in titanium group metal or alloy thereof
US07/003,614 US4746617A (en) 1984-06-01 1987-01-15 Method of analyzing nitrogen contained in titanium group metal or alloy thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113762A JPS60257360A (en) 1984-06-01 1984-06-01 Method for analyzing oxygen in metal of titanium group or alloy thereof

Publications (2)

Publication Number Publication Date
JPS60257360A true JPS60257360A (en) 1985-12-19
JPH0511262B2 JPH0511262B2 (en) 1993-02-15

Family

ID=14620496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113762A Granted JPS60257360A (en) 1984-06-01 1984-06-01 Method for analyzing oxygen in metal of titanium group or alloy thereof

Country Status (1)

Country Link
JP (1) JPS60257360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114755A (en) * 1987-10-28 1989-05-08 Horiba Ltd Method for measuring oxygen in oxide ceramics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANALYTICA CHIMICA ACTA=1977 *
ANALYTICAL CHEMISTRY=1974 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114755A (en) * 1987-10-28 1989-05-08 Horiba Ltd Method for measuring oxygen in oxide ceramics

Also Published As

Publication number Publication date
JPH0511262B2 (en) 1993-02-15

Similar Documents

Publication Publication Date Title
JPH03133593A (en) Production of ni-based heat-resistant alloy welding wire
JPS60257360A (en) Method for analyzing oxygen in metal of titanium group or alloy thereof
JPH0511261B2 (en)
US4130416A (en) Method of preparing a furnace charge when smelting refractory metals and alloys
JPS6034615B2 (en) Copper alloy for leads of semiconductor equipment
JP3910263B2 (en) Alumina dispersion strengthened copper alloy and method for producing the same
US4673655A (en) Method of analyzing oxygen or nitrogen contained in titanium group metal or alloy thereof
Hansen et al. Platinum-Flux Technique for Determining Oxygen in Titanium
CN111299901B (en) Brazing alloy, brazing filler metal, preparation method and application of brazing filler metal and prepared brazing product
US3976477A (en) High conductivity high temperature copper alloy
US4746617A (en) Method of analyzing nitrogen contained in titanium group metal or alloy thereof
JPH0427838A (en) Gas analyzing method and ni capsule for gas analysis
Grau Liquidus Temperatures in the TiO2-Rich Side of the FeO–TiO2 System
JP2006272422A (en) Manufacturing method of copper material and copper material
JPS5947016B2 (en) Manufacturing method for metal oxide dispersion strengthened copper alloy
US4329868A (en) Method for the determination of hydrogen content in inorganic materials
RU2219279C2 (en) Nickel-base amorphous alloy
Blanchette A quick and reliable fusion method for silicon and ferrosilicon
SU1245612A1 (en) Alloying composition
JPS63230295A (en) Method for welding ni-ti alloys
RU2009251C1 (en) Columbium-base alloy and method for production thereof
JPH02253160A (en) Analysis of oxygen in aluminum oxide
JP2003055709A (en) Method for manufacturing high-nitrogen steel
SU836178A1 (en) Method of smelting copper-cadmium alloy
CN115404368A (en) Preparation method of low-melting-point tin-based alloy