JP2003055709A - Method for manufacturing high-nitrogen steel - Google Patents

Method for manufacturing high-nitrogen steel

Info

Publication number
JP2003055709A
JP2003055709A JP2001244470A JP2001244470A JP2003055709A JP 2003055709 A JP2003055709 A JP 2003055709A JP 2001244470 A JP2001244470 A JP 2001244470A JP 2001244470 A JP2001244470 A JP 2001244470A JP 2003055709 A JP2003055709 A JP 2003055709A
Authority
JP
Japan
Prior art keywords
nitrogen
steel
molten steel
atmosphere
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001244470A
Other languages
Japanese (ja)
Inventor
Takefumi Sugiyama
岳文 杉山
Kazuho Suzuki
寿穂 鈴木
Tomoki Shibata
智樹 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001244470A priority Critical patent/JP2003055709A/en
Publication of JP2003055709A publication Critical patent/JP2003055709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture steel containing nitrogen in high concentration without contamination of impurities in a short time. SOLUTION: In the process wherein steel is melted in a gaseous-nitrogen atmosphere by the use of a pressurized induction furnace to add nitrogen to the resultant molten steel from the atmosphere, a crucible used in the above pressurized induction furnace is constituted of a refractory having a composition consisting of CaO as a principal component with other inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高窒素鋼の製造方
法に関し、さらに詳しくは、窒素含有量の多い鋼を不純
物の混入無しに高純度で、しかも、短時間で効率よく製
造することが可能な方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-nitrogen steel, and more specifically, it is possible to efficiently produce steel having a high nitrogen content in a high purity without mixing impurities and in a short time. Regarding possible methods.

【0002】[0002]

【従来の技術】高窒素鋼は、例えばオーステナイト系や
マルテンサイト系のステンレス鋼の窒素含有量を高め
て、硬度と耐食性を向上させたものである。そして、そ
の用途はエアシャフト、ボールベアリング、軸受鋼、工
具鋼のほか生体材料など多岐にわたっている。とくに、
生体材料においては、人体にとって好ましくない元素で
あるNiに代わる元素として窒素を含有させることで硬
度と耐食性を維持できるという利点がある。
2. Description of the Related Art High-nitrogen steel is, for example, an austenitic or martensitic stainless steel whose nitrogen content is increased to improve hardness and corrosion resistance. Its applications are diverse, including air shafts, ball bearings, bearing steel, tool steel, and biomaterials. Especially,
Biomaterials have the advantage that hardness and corrosion resistance can be maintained by incorporating nitrogen as an element in place of Ni, which is an unfavorable element for the human body.

【0003】このような高窒素鋼の製造方法としては、
従来、加圧ESR炉、加圧プラズマ炉および加圧誘導炉
などを使用した方法が採用されている。
As a method for producing such high nitrogen steel,
Conventionally, a method using a pressure ESR furnace, a pressure plasma furnace, a pressure induction furnace, or the like has been adopted.

【0004】[0004]

【発明が解決しようとする課題】加圧ESR炉を使用し
た方法は、ESR炉のチャンバー内を加圧窒素雰囲気に
して鋼の溶解を行い、溶鋼中に窒化合金を投入すること
により窒素添加を行う方法であり、スラグを用いるため
に清浄度が高いという利点を有するが、母電極の溶製が
不可欠であるために製造コストが上昇するという問題が
ある。
The method using a pressurized ESR furnace is one in which the nitrogen is added by melting the steel in a pressurized nitrogen atmosphere in the chamber of the ESR furnace and introducing a nitriding alloy into the molten steel. This method has the advantage that the cleanliness is high because slag is used, but there is a problem that the manufacturing cost rises because melting of the mother electrode is essential.

【0005】また、加圧プラズマ炉を使用した方法は、
プラズマ炉のチャンバー内を加圧窒素雰囲気にして鋼の
溶解を行い、雰囲気ガスとしての窒素ガスから窒素を添
加する方法であり、上記の加圧ESR炉と同様に母電極
の溶製が不可欠であることと、操業性が不安定であると
いう問題がある。さらに、誘導炉を使用した方法は、チ
ャンバー内を加圧窒素雰囲気下とし、その状態で窒化合
金あるいは窒素雰囲気ガスにて窒素添加を行う方法であ
る。
Further, the method using the pressure plasma furnace is
This is a method of melting steel in a chamber of a plasma furnace in a pressurized nitrogen atmosphere and adding nitrogen from a nitrogen gas as an atmosphere gas. As in the above pressurized ESR furnace, it is essential to melt the mother electrode. There is a problem that operability is unstable. Further, the method using an induction furnace is a method in which the inside of the chamber is under a pressurized nitrogen atmosphere and nitrogen is added with a nitride alloy or a nitrogen atmosphere gas in that state.

【0006】この方法により清浄度を高めようとした場
合、窒素添加前に脱酸を目的として減圧下での真空精錬
工程を実施する、もしくは、加圧窒素雰囲気下でAl,
Ca,Ca合金等を添加する必要がある。真空精錬工程
を実施する場合には製造時間が長く、また、目的とする
合金成分によっては脱酸が十分に行われないといった問
題がある。さらに、Al,Ca,Ca合金等を添加する
場合は、溶鋼中にこれらの成分が混入してしまい、清浄
度が低下するという問題がある。
When the cleanliness is to be increased by this method, a vacuum refining step under reduced pressure is carried out for the purpose of deoxidizing before adding nitrogen, or Al under a pressurized nitrogen atmosphere.
It is necessary to add Ca, Ca alloy, etc. When carrying out the vacuum refining process, there is a problem that the production time is long and deoxidation is not sufficiently performed depending on the intended alloy component. Furthermore, when adding Al, Ca, Ca alloy, etc., there exists a problem that these components will mix in molten steel and a cleanliness will fall.

【0007】このように、現状における高窒素鋼の製造
方法はいずれも満足すべきものではない。したがって、
本発明は不純物の混入を避けて、高純度の高窒素鋼を効
率よく製造する方法を提供することを目的とする。
As described above, none of the current methods for producing high-nitrogen steel is satisfactory. Therefore,
An object of the present invention is to provide a method for efficiently producing high-purity high-nitrogen steel while avoiding the inclusion of impurities.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために加圧誘導炉を使用した高窒素鋼の製
造工程に着目し、特定の材質のルツボを使用したとき
に、理由は必ずしも明らかではないが、溶鋼中の酸素濃
度を低く抑えることができ、精錬工程を必要とせずに、
清浄度の高い高窒素鋼を得ることができるという事実を
見出した。
Means for Solving the Problems The present inventors have focused their attention on the manufacturing process of high-nitrogen steel using a pressure induction furnace in order to achieve the above object, and when a crucible of a specific material is used, , The reason is not always clear, but the oxygen concentration in the molten steel can be suppressed to a low level, and without a refining step,
We have found the fact that it is possible to obtain high nitrogen steel with high cleanliness.

【0009】さらに、そのようなルツボを使用した場
合、鋼中への窒素の吸収速度が増大するという付加的な
効果があることを確認して本発明を完成した。すなわ
ち、本発明の高窒素鋼の製造方法は、加圧誘導炉を使用
し、窒素ガス雰囲気中で鋼を溶解することにより、雰囲
気から溶鋼中に窒素を添加する工程を含み、この加圧誘
導炉において使用されるルツボがCaOおよびその他の
不可避不純物からなる耐火物により構成されているもの
である。
Furthermore, the present invention has been completed by confirming that the use of such a crucible has the additional effect of increasing the absorption rate of nitrogen into the steel. That is, the method for producing high nitrogen steel of the present invention includes the step of adding nitrogen from the atmosphere to the molten steel by melting the steel in a nitrogen gas atmosphere using a pressure induction furnace. The crucible used in the furnace is made of a refractory made of CaO and other unavoidable impurities.

【0010】なお、上記の溶鋼の成分が質量%で、C:
0.15%未満,Cr:12.0〜18.0%未満,Si:0.1〜1.0
%,Mn:0.10〜2.0%,およびS:0.010%以下を含有
するものであることが好ましい。さらに、溶鋼への雰囲
気ガスからの窒素添加とともに、必要に応じて窒化合金
の投入により窒素を添加することもできる。
The composition of the above molten steel is% by mass, and C:
Less than 0.15%, Cr: 12.0 to less than 18.0%, Si: 0.1 to 1.0
%, Mn: 0.10 to 2.0%, and S: 0.010% or less. Further, it is possible to add nitrogen from the atmosphere gas to the molten steel and, if necessary, add nitrogen by adding a nitriding alloy.

【0011】[0011]

【発明の実施の形態】本発明の高窒素鋼の製造方法は、
加圧誘導炉を用いた誘導溶解法により、雰囲気ガスとし
ての窒素の加圧雰囲気下で鋼の溶解を行うものである。
加圧誘導炉としては、一般に使用されているものを用い
ることができるが、溶解を行うルツボとしてカルシア
(CaO)を主成分とし、その他不可避不純物からなる
耐火物により構成されているものを使用することが必要
である。このルツボにおいて、CaOの含有率は90質
量%以上であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing high nitrogen steel according to the present invention comprises:
By the induction melting method using a pressure induction furnace, steel is melted in a pressurized atmosphere of nitrogen as an atmosphere gas.
As the pressurizing induction furnace, a commonly used one can be used, but a crucible for melting, which contains calcia (CaO) as a main component and is composed of a refractory made of other unavoidable impurities is used. It is necessary. In this crucible, the CaO content is preferably 90% by mass or more.

【0012】そして、本発明方法で窒素を積極的に添加
すべき対象となる鋼種は、特に限定されるものではない
が、例えば、成分元素として、質量%でC:0.15%未
満,Cr:12.0〜18.0%未満,Si:0.1〜1.0%,M
n:0.10〜2.0%,およびS:0.010%以下を含有するオ
ーステナイト系またはマルテンサイト系のステンレス鋼
に適用した際に特に有用である。上記の成分元素のう
ち、SiはCaOと反応することにより脱酸に資する成
分であり、鋼中に通常のレベルで存在していればよい
が、必要に応じて、外部から例えばフェロシリコンなど
の合金として添加することもできる。
The type of steel to which nitrogen is to be positively added in the method of the present invention is not particularly limited. For example, as the constituent elements, C: less than 0.15% by mass%, Cr: 12.0%. ~ 18.0%, Si: 0.1-1.0%, M
It is particularly useful when applied to austenitic or martensitic stainless steel containing n: 0.10 to 2.0% and S: 0.010% or less. Of the above component elements, Si is a component that contributes to deoxidation by reacting with CaO and may be present in the steel at a normal level, but if necessary, from the outside, for example, ferrosilicon, etc. It can also be added as an alloy.

【0013】以下に本発明の製造工程を順次説明する。
まず、誘導炉内に雰囲気ガスとして窒素ガスを導入し、
この窒素ガス加圧下で鋼の溶解を行う。この場合の雰囲
気ガスとしては窒素ガスのみでも、あるいは、窒素ガス
と例えばArガスなどの不活性ガスの混合ガスを使用し
てもよい。この雰囲気ガス中の窒素分圧は1.013×102kP
a(1気圧)以上とすることが好ましい。
The manufacturing process of the present invention will be sequentially described below.
First, introduce nitrogen gas as an atmosphere gas into the induction furnace,
The steel is melted under the pressure of nitrogen gas. As the atmosphere gas in this case, only nitrogen gas may be used, or a mixed gas of nitrogen gas and an inert gas such as Ar gas may be used. The nitrogen partial pressure in this atmosphere gas is 1.013 × 10 2 kP
It is preferably a (1 atm) or more.

【0014】また、後述するように、鋼に含有させる窒
素量は鋼種と加圧雰囲気中の窒素分圧により決定される
ので、使用する鋼にどのくらいの量の窒素を含有させる
かにより、窒素分圧を決定することが好ましい。一般
に、窒素を含有する雰囲気と鋼の溶湯との間にみられる
平衡窒素濃度は、鋼の化学組成との関係で「学振の式」
と呼ばれる下記の式: log[N]eq=-518/T-1.063+0.046[Cr]-0.00028[Cr]2+0.02[Mn]-0.007[Ni]- 0.048[Si]+0.012[O]-0.13[C]+0.011[Mo]-0.059[P]-0.007[S] (1) (なお、式(1)中、 [N]eq:1気圧での平衡窒素濃度(単位:wt%), [ ] :溶鋼中の各元素の溶解量(単位:wt%), T :溶鋼の温度(単位:K) をそれぞれ表す。)で示される。
As will be described later, the amount of nitrogen contained in the steel is determined by the type of steel and the nitrogen partial pressure in the pressurized atmosphere. Therefore, the nitrogen content depends on how much nitrogen is contained in the steel used. It is preferred to determine the pressure. In general, the equilibrium nitrogen concentration found between the atmosphere containing nitrogen and the molten metal of the steel is the "Gakushin formula" in relation to the chemical composition of the steel.
The following formula called: log [N] eq = -518 / T-1.063 + 0.046 [Cr] -0.00028 [Cr] 2 +0.02 [Mn] -0.007 [Ni] -0.048 [Si] +0.012 [O]- 0.13 [C] +0.011 [Mo] -0.059 [P] -0.007 [S] (1) (In the formula (1), [N] eq : equilibrium nitrogen concentration at 1 atm (unit: wt%), []: Amount of each element dissolved in molten steel (unit: wt%), T: temperature of molten steel (unit: K), respectively).

【0015】一方で、特開平12-212631号公報には、溶
鋼の平衡窒素濃度と、溶解時の雰囲気窒素分圧との関係
(「Sievertsの法則」)が開示されており、それは次式: [N]Patm=KP1/2=[N]eq×P1/2 (2) (なお、式(2)中、 [N]Patm:雰囲気窒素分圧P気圧での窒素溶解度(単
位:wt%) P :雰囲気ガス中の窒素分圧(単位:気圧) K :係数 [N]eq:1気圧での平衡窒素濃度(単位:wt%) をそれぞれ表す。)で示される。
On the other hand, Japanese Unexamined Patent Publication No. 12-212631 discloses the relationship between the equilibrium nitrogen concentration of molten steel and the atmospheric nitrogen partial pressure during melting ("Sieverts'law"), which is expressed by the following equation: [N] Patm = KP 1/2 = [N] eq × P 1/2 (2) (In the formula (2), [N] Patm : nitrogen solubility at atmospheric nitrogen partial pressure P atmosphere (unit: wt %) P: partial pressure of nitrogen in atmospheric gas (unit: atmospheric pressure) K: coefficient [N] eq : equilibrium nitrogen concentration (unit: wt%) at 1 atmospheric pressure).

【0016】上記の式(1)、(2)から、溶鋼中に添加しう
る窒素の量は、鋼の組成、加圧雰囲気中の窒素分圧によ
り決定されることが明らかである。また、式(2)から
は、窒素分圧が4倍になれば、2倍量の窒素が溶解する
ことが分かる。次に、本発明において鋼の溶解にCaO
ルツボを使用することによって付加的に発生する効果に
ついて述べる。一般に、溶鋼中の酸素濃度と雰囲気中か
らの溶鋼への窒素の溶解速度との間には相関がある。つ
まり、溶鋼中の酸素濃度が低いほど窒素の溶解速度を増
大させることが可能である。換言すれば、溶鋼中の酸濃
度が低いほど、短時間で窒素を添加することができる。
From the above formulas (1) and (2), it is clear that the amount of nitrogen that can be added to the molten steel is determined by the composition of the steel and the nitrogen partial pressure in the pressurized atmosphere. Further, from the formula (2), it can be seen that when the nitrogen partial pressure becomes four times, twice the amount of nitrogen dissolves. Next, in the present invention, CaO is used for melting steel.
The effect additionally generated by using the crucible will be described. Generally, there is a correlation between the oxygen concentration in molten steel and the dissolution rate of nitrogen from the atmosphere into molten steel. That is, the lower the oxygen concentration in the molten steel, the higher the dissolution rate of nitrogen can be increased. In other words, nitrogen can be added in a shorter time as the acid concentration in the molten steel is lower.

【0017】そこで、本発明者らは、下記の試験1およ
び試験2を行い、溶解時に用いるルツボの材料と、得ら
れる溶鋼中の酸素濃度および窒素濃度との関係を調べ
た。 <試験1>溶鋼成分として、質量%で、C:0.15%未
満,Cr:12.0〜18.0%未満,Si:0.1〜1.0%,M
n:0.10〜2.0%,およびS:0.010%以下のものを用
い、加圧誘導炉内で溶解を行った。ルツボの材質はCa
O(CaO>98wt%)および(MgO>98wt%)の
2種類を用意し、CaOルツボで6回、MgOルツボで
7回それぞれ溶解試験を行った。溶鋼重量はいずれも5
0kgとした。なお、溶解は窒素分圧1気圧を超えるガ
ス雰囲気下で行い、装入材料がすべて溶け落ちたことを
確認してから窒素ガスを再度導入し、所定の圧力まで加
圧した。所定の圧力に到達後、5分間隔で試料を採取
し、溶鋼中の酸素濃度と窒素濃度をそれぞれ測定し、得
られた試験結果から式(3)を用いて物質移動係数を算出
した。
Therefore, the present inventors conducted the following tests 1 and 2 to investigate the relationship between the material of the crucible used during melting and the oxygen concentration and nitrogen concentration in the obtained molten steel. <Test 1> As a molten steel component, in mass%, C: less than 0.15%, Cr: 12.0 to less than 18.0%, Si: 0.1 to 1.0%, M
Using n: 0.10 to 2.0% and S: 0.010% or less, melting was performed in a pressure induction furnace. The material of the crucible is Ca
Two types of O (CaO> 98 wt%) and (MgO> 98 wt%) were prepared, and dissolution tests were conducted 6 times with the CaO crucible and 7 times with the MgO crucible, respectively. Molten steel weight is 5
It was set to 0 kg. The melting was carried out in a gas atmosphere having a nitrogen partial pressure of more than 1 atm, and after confirming that all of the charging material had melted down, nitrogen gas was reintroduced and pressurized to a predetermined pressure. After reaching the predetermined pressure, samples were taken at 5 minute intervals, the oxygen concentration and the nitrogen concentration in the molten steel were measured, and the mass transfer coefficient was calculated from the obtained test results using the formula (3).

【0018】 D[N]/dt=F/V×k×([N]S-[N]) (3) (但し、式中、 F:気相−液相界面の界面積 V:溶鋼の体積 k:物質移動係数 [N]s:溶鋼の平衡窒素濃度 [N]:溶鋼の実際の窒素濃度を表す。) 以上の結果から、溶鋼中の酸素濃度と物質移動係数との
関係を図1に示した。図1からも明らかなように、CaOル
ツボを使用した場合は、MgOルツボを使用した場合に比
べて低酸素鋼を得ることが可能であり、結果として、物
質移動係数を増大させる、つまり、溶鋼中への窒素吸収
速度を増大させることができる。
D [N] / dt = F / V × k × ([N] S- [N]) (3) (where, F: interfacial area of vapor-liquid interface V: molten steel Volume k: mass transfer coefficient [N] s : equilibrium nitrogen concentration in molten steel [N]: actual nitrogen concentration in molten steel.) From the above results, the relationship between oxygen concentration in molten steel and mass transfer coefficient is shown in Fig. 1. It was shown to. As is clear from FIG. 1, when using the CaO crucible, it is possible to obtain a low oxygen steel compared to when using the MgO crucible, and as a result, the mass transfer coefficient is increased, that is, the molten steel. The rate of nitrogen uptake into the can be increased.

【0019】<試験2>SUS304ステンレス鋼を上
記の試験1と同様の加圧誘導炉内で溶製した。ルツボと
して上記と同様のCaOおよびMgOを用い、窒素1気圧(1.
013×102kPa)雰囲気下で溶解した。すべての材料が溶
解した後、窒素圧力を4気圧(4.052×102kPa)まで高
め、窒素濃度が0.3質量%になった後、5分間隔で各ルツ
ボから溶鋼をサンプリングし、溶鋼中の窒素濃度を測定
した。なお、溶鋼温度はサンプリング中1600℃に保
持した。得られた結果を図2に示した。
<Test 2> SUS304 stainless steel was melted in the same pressure induction furnace as in Test 1 above. CaO and MgO similar to the above were used as crucibles, and nitrogen was 1 atm (1.
013 × 10 2 kPa) It was melted under an atmosphere. After all the materials were melted, the nitrogen pressure was increased to 4 atm (4.052 × 10 2 kPa), and after the nitrogen concentration reached 0.3 mass%, the molten steel was sampled from each crucible at 5 minute intervals, and the nitrogen in the molten steel was sampled. The concentration was measured. The molten steel temperature was maintained at 1600 ° C during sampling. The obtained results are shown in FIG.

【0020】図2から明らかなように、CaOルツボ内
で溶解した鋼は、MgOルツボ内で溶解した鋼に比べて
約15分速く、本試験で目標とする窒素濃度、例えば、
0.4質量%に達していることが確認された。なお、本発
明の製造方法においては鋼塊溶解時の雰囲気ガスから溶
鋼中に窒素を添加するが、それと同時に溶解後に窒化合
金を投入して窒素を添加する工程を追加してもよい。窒
化合金としては例えば、フェロクロム窒素、窒化ケイ
素、窒化マンガンなどを使用することができる。
As is clear from FIG. 2, the steel melted in the CaO crucible was about 15 minutes faster than the steel melted in the MgO crucible, and the nitrogen concentration targeted in this test, for example,
It was confirmed that the amount reached 0.4% by mass. In the manufacturing method of the present invention, nitrogen is added to the molten steel from the atmosphere gas at the time of melting the steel ingot, but at the same time, a step of adding a nitride alloy and adding nitrogen after melting may be added. As the nitriding alloy, for example, ferrochrome nitrogen, silicon nitride, manganese nitride or the like can be used.

【0021】[0021]

【実施例】溶鋼成分として、質量%で、C:0.15%未
満,Cr:12.0〜18.0%未満,Si:0.1〜1.0%,M
n:0.10〜2.0%,およびS:0.010%以下のものを用
い、加圧誘導炉内で溶解を行った。ルツボ材質はCaO(C
aO>98質量%)、MgO(MgO>98質量%)およびMgO-Al2O
3(MgO:65〜75質量%、Al2O3:25〜35質量%)の3種
類を使用した。
[Example] As a molten steel component, in mass%, C: less than 0.15%, Cr: 12.0 to less than 18.0%, Si: 0.1 to 1.0%, M
Using n: 0.10 to 2.0% and S: 0.010% or less, melting was performed in a pressure induction furnace. The crucible material is CaO (C
aO> 98% by mass), MgO (MgO> 98% by mass) and MgO-Al 2 O
3 (MgO: 65 to 75 wt%, Al 2 O 3: 25~35 wt%) were used three.

【0022】溶解は窒素分圧6気圧(6.08×102kPa)の
ガス雰囲気下で、それぞれ90分間行い、装入材料がす
べて溶け落ちたことを確認してから15分後に出鋼し、鋼
塊中の酸素濃度(ppm)および窒素濃度(質量%)をそ
れぞれ測定した。上記の溶解試験を各ルツボに対して5
回ずつ実施し、得られた結果を表1に示した。
Melting was carried out in a gas atmosphere with a nitrogen partial pressure of 6 atm (6.08 × 10 2 kPa) for 90 minutes each, and 15 minutes after it was confirmed that all of the charging materials had melted down, the steel was tapped. The oxygen concentration (ppm) and nitrogen concentration (mass%) in the mass were measured, respectively. Perform the above dissolution test for each crucible 5
The results obtained are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1の結果からも明らかなとおり、ルツボ
材質にCaOを用いた本発明の高窒素鋼の製造方法によれ
ば、溶鋼中の酸素濃度を低減できるので、真空精錬のよ
うな長時間の工程を必要とせず、また、溶鋼中に脱酸元
素を添加することも必要がないため、不純物の混入を避
けることができる。したがって、短時間で純度の高い高
窒素鋼を製造することが可能である。
As is clear from the results shown in Table 1, according to the method for producing a high-nitrogen steel of the present invention using CaO as the crucible material, the oxygen concentration in the molten steel can be reduced, so that the time required for vacuum refining can be reduced. Since it is not necessary to add the deoxidizing element to the molten steel, it is possible to avoid the inclusion of impurities. Therefore, it is possible to produce high-purity high-nitrogen steel in a short time.

【0025】さらに、上記のように酸素濃度を低減した
ことにより、鋼中への窒素の吸収速度を増大することが
できるので、結果として、短時間で高濃度の窒素を溶鋼
中に含有させることが可能となる。
Furthermore, since the absorption rate of nitrogen in the steel can be increased by reducing the oxygen concentration as described above, as a result, a high concentration of nitrogen is contained in the molten steel in a short time. Is possible.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、CaOルツボを使用することにより不純物が混
入することなく、清浄度の高い高窒素鋼を得ることがで
き、しかも精錬工程を必要としないため製造効率を向上
させることができる。さらに、CaOルツボを使用するこ
とにより、鋼中の酸素濃度を低減でき、結果として窒素
の吸収速度が増大するという付加的な効果もある。
As is apparent from the above description, according to the present invention, by using a CaO crucible, it is possible to obtain a high-nitrogen steel having a high cleanliness without contamination of impurities, and a refining process. Since it is not necessary, manufacturing efficiency can be improved. Moreover, the use of CaO crucibles has the additional effect of reducing the oxygen concentration in the steel and consequently increasing the rate of nitrogen absorption.

【0027】したがって、例えば、エアシャフト、ボー
ルベアリング、軸受鋼、工具鋼あるいは生体材料などの
製造分野において極めて有用であり、その工業的価値は
高い。
Therefore, it is extremely useful in the manufacturing field of air shafts, ball bearings, bearing steels, tool steels, biomaterials, etc., and its industrial value is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】ルツボ材質を変えて鋼の溶解を行った場合の、
鋼中の酸素濃度と窒素の鋼中への吸収速度を示すグラフ
である。
[Fig. 1] When melting steel by changing the crucible material,
It is a graph which shows the oxygen concentration in steel, and the absorption rate of nitrogen in steel.

【図2】ルツボ材質を変えてSUS304の溶解を行っ
た場合の、鋼中の窒素濃度の経時変化を示すグラフであ
る。
FIG. 2 is a graph showing changes with time in nitrogen concentration in steel when SUS304 was melted by changing the crucible material.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 1/00 F27D 1/00 N (72)発明者 芝田 智樹 愛知県名古屋市南区大同町二丁目30番地 大同特殊鋼株式会社技術開発研究所内 Fターム(参考) 4K013 AA02 BA18 4K046 AA01 BA01 CB00 CC03 CD02 4K051 AA00 AB03 AB05 BE00 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F27D 1/00 F27D 1/00 N (72) Inventor Tomoki Shibata 2-30, Daido-cho, Minami-ku, Aichi Prefecture Daido Special Steel Engineering Co., Ltd. Technology Development Laboratory F-term (reference) 4K013 AA02 BA18 4K046 AA01 BA01 CB00 CC03 CD02 4K051 AA00 AB03 AB05 BE00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加圧誘導炉を使用し、窒素ガス雰囲気中
で鋼を溶解することにより、雰囲気から溶鋼中に窒素を
添加する工程を含む高窒素鋼の製造方法において、前記
加圧誘導炉において使用されるルツボがCaOを主成分
とし、これとその他の不可避不純物からなる耐火物によ
り構成されていることを特徴とする高窒素鋼の製造方
法。
1. A method for producing high-nitrogen steel, comprising the step of using a pressure induction furnace to melt the steel in a nitrogen gas atmosphere to add nitrogen from the atmosphere to the molten steel. The method for producing a high-nitrogen steel, wherein the crucible used in 1. is composed of a refractory material containing CaO as a main component and other inevitable impurities.
【請求項2】 前記溶鋼の成分が質量%で、C:0.15%
未満,Cr:12.0〜18.0%未満,Si:0.1〜1.0%,M
n:0.10〜2.0%,およびS:0.010%以下を含有するも
のである請求項1に記載の製造方法。
2. The composition of the molten steel is% by mass, C: 0.15%
Less than, Cr: 12.0 to less than 18.0%, Si: 0.1 to 1.0%, M
2. The production method according to claim 1, which contains n: 0.10 to 2.0% and S: 0.010% or less.
【請求項3】 前記溶鋼への雰囲気ガスからの窒素添加
とともに、窒化合金の投入による窒素の添加工程を含む
請求項1または2に記載の製造方法。
3. The manufacturing method according to claim 1, further comprising adding nitrogen from an atmospheric gas to the molten steel and adding nitrogen by introducing a nitriding alloy.
JP2001244470A 2001-08-10 2001-08-10 Method for manufacturing high-nitrogen steel Pending JP2003055709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244470A JP2003055709A (en) 2001-08-10 2001-08-10 Method for manufacturing high-nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244470A JP2003055709A (en) 2001-08-10 2001-08-10 Method for manufacturing high-nitrogen steel

Publications (1)

Publication Number Publication Date
JP2003055709A true JP2003055709A (en) 2003-02-26

Family

ID=19074389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244470A Pending JP2003055709A (en) 2001-08-10 2001-08-10 Method for manufacturing high-nitrogen steel

Country Status (1)

Country Link
JP (1) JP2003055709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063643A (en) * 2005-09-01 2007-03-15 Daido Steel Co Ltd Method for producing high-nitrogen steel
JP2010144195A (en) * 2008-12-16 2010-07-01 Nisshin Steel Co Ltd Method for manufacturing high nitrogen-containing stainless steel
CN107619984A (en) * 2017-09-30 2018-01-23 徐州众工精密模锻有限公司 A kind of production method of high pressure smelting high-nitrogen steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291358A (en) * 1990-04-09 1991-12-20 Sumitomo Metal Ind Ltd Duplex stainless steel excellent in toughness and hot workability and its production
JP2000212631A (en) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Production of high nitrogen steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291358A (en) * 1990-04-09 1991-12-20 Sumitomo Metal Ind Ltd Duplex stainless steel excellent in toughness and hot workability and its production
JP2000212631A (en) * 1999-01-22 2000-08-02 Daido Steel Co Ltd Production of high nitrogen steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063643A (en) * 2005-09-01 2007-03-15 Daido Steel Co Ltd Method for producing high-nitrogen steel
JP2010144195A (en) * 2008-12-16 2010-07-01 Nisshin Steel Co Ltd Method for manufacturing high nitrogen-containing stainless steel
CN107619984A (en) * 2017-09-30 2018-01-23 徐州众工精密模锻有限公司 A kind of production method of high pressure smelting high-nitrogen steel

Similar Documents

Publication Publication Date Title
KR100922061B1 (en) Method of manufacturing ultra low carbon ferritic stainless steel
WO2023062856A1 (en) Ni-based alloy having excellent surface properties and production method thereof
JP4753504B2 (en) Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy
JP2003055709A (en) Method for manufacturing high-nitrogen steel
EP2738281B1 (en) High si-content austenitic stainless steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP2016141879A (en) Method of refining stainless steel
JPH03223414A (en) Production of iron-nickel-cobalt-base alloy minimal in respective contents of sulfur, oxygen, and nitrogen
JPH10237533A (en) Production of hic resistant steel
JPH03236434A (en) Nickel-base alloy in which each content of sulfur, oxygen and nitrogen extremely low
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
RU2563403C1 (en) Method of production of carbon-free foundry heat resisting nickel-based alloys
RU2385948C2 (en) Method of receiving of stainless austenitic steel
JPS6263626A (en) Production of low oxygen ti alloy
JPH0673464A (en) Production of high purity stainless steel
JP2002194497A (en) Si KILLED STEEL AND ITS PRODUCTION METHOD
JP2003221615A (en) Method for manufacturing high-nitrogen steel
JPH0366374B2 (en)
JP4202967B2 (en) Method for melting ultra-low oxygen iron and iron alloys
JP3444255B2 (en) Cast article and method of manufacturing the same
JP3877826B2 (en) Method for producing high Ni molten steel
JPS6159367B2 (en)
JPS594484B2 (en) Goukintetsunodatsurin Datsutanhouhou
RU2583220C1 (en) Method for production of unstabilised austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110323