JP4753504B2 - Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy - Google Patents

Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy Download PDF

Info

Publication number
JP4753504B2
JP4753504B2 JP2001279865A JP2001279865A JP4753504B2 JP 4753504 B2 JP4753504 B2 JP 4753504B2 JP 2001279865 A JP2001279865 A JP 2001279865A JP 2001279865 A JP2001279865 A JP 2001279865A JP 4753504 B2 JP4753504 B2 JP 4753504B2
Authority
JP
Japan
Prior art keywords
gas
molten metal
flux
ladle
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001279865A
Other languages
Japanese (ja)
Other versions
JP2003089815A (en
Inventor
淳一 香月
隆 山内
兼次 安彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001279865A priority Critical patent/JP4753504B2/en
Publication of JP2003089815A publication Critical patent/JP2003089815A/en
Application granted granted Critical
Publication of JP4753504B2 publication Critical patent/JP4753504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、精錬条件を調整して高濃度のCrを含む高純度のFe−Cr合金もしくはFe−Cr−Ni合金を製造する方法に関する。
【0002】
【従来の技術】
高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金は耐食性、耐酸化性、加工性に優れた材料として知られている。近年、これらの合金により一層の品質の向上、材料特性の向上が求められてきている。その要求に対応する方法の一つとして耐食性や靭性、加工性に影響を及ぼすC,N,O,Sなどの不純物を低減させて高純度化する方法が挙げられる。また、合金中のCr含有量を高くすることで従来にない耐熱性、耐食性が得られる。しかしながら、Cr含有量が高くなるとCrの相互作用によりC,Nの活量が小さくなり、極低C,Nの材料を溶製することが困難になる。特にフェライト系ステンレス鋼における極低C,N鋼の精錬技術に関してはこれまで数多くの技術開発がなされ、成果が得られてきた。しかしながら、従来のプロセスでは厳しい要求への対応が困難になってきている。
【0003】
【発明が解決しようとする課題】
低C,N鋼を製造するプロセスは一般的にVOD処理が適していると言われている。現状のVODプロセスにおいては極低C,N鋼を得るために減圧下での攪拌強化や反応面積増大効果の利用を中心に対応してきた。しかしながらより一層の極低C,N鋼を経済的に製造しようとすると、さらにはCr含有量が30質量%を超えるFe−Cr合金の極低C,N鋼を製造しようとすると、従来のプロセスでは容易に対応できなかった。
本発明は、このような問題を解消すべく案出されたものであり、高濃度のCrを含むFe−Cr合金やFe−Cr−Ni合金でも極めて低いC,N濃度でしかもO,Sをも極低レベルにした合金を低コストで製造する方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の高純度で高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法は、その目的を達成するため、ガス攪拌手段を有する精錬炉内のFe−Cr−C溶湯あるいはFe−Cr−Ni−C溶湯に対して、ガス攪拌しながらO2吹錬し粗脱炭するとともに脱窒する第一工程、溶湯をシールしつつあるいはシールせずに取鍋内に出湯する第二工程、真空精錬炉において真空下で溶湯をガス攪拌し、および/もしくは真空下で適時O2吹錬し仕上げ脱炭、仕上げ脱窒する第三工程、真空精錬炉内をAr雰囲気としガス攪拌しながらフラックスならびに脱酸剤を用いて脱硫、脱酸の仕上げ精錬を行う第四工程、フラックスで取鍋内溶湯を覆って鋳造を行う第五工程からなることを特徴とする。
【0005】
粗脱炭、脱窒する第一工程の前あるいは同時に高塩基度フラックスを利用した脱窒を行うこともできる。この際の高塩基度フラックスとしては、(質量%CaO)/(質量%SiO2)が1.5以上のもの、あるいはアルカリ金属の酸化物もしくは炭酸塩を5質量%以上含有しているものを使用することが好ましい。
溶湯出湯の際のシールとして、溶湯の熱でCO2ガスを発生する物質および/もしくは溶融、滓化するフラックスを取鍋に入れて行うことが好ましい。
また、真空精錬炉内をAr雰囲気とするためのArガスとして、N2ガス含有量が0.001体積%以下、露点が−40℃以下の高純度乾燥Arガスを使用することが好ましく、さらにN2ガス含有量が0.0002体積%以下、露点が−60℃以下の高純度乾燥Arガスを使用することがより好ましい。
【0006】
【実施の形態】
まず、上底吹転炉やAOD炉等のガス攪拌手段を有する精錬炉を用いて粗脱C、脱Nを行う。攪拌用ガスとしてはArガスやAr+O2の混合ガスあるいは水蒸気を用いる。二重管羽口の場合、冷却ガスとして外管に炭化水素ガスを用いても良い。粗脱炭、脱窒を実施する前の高濃度のCrを含むFe−Cr−C、Fe−Cr−Ni−C溶湯成分はCr含有量8〜65%のものを使用し、C含有量は4%以上のものが好ましい。粗脱CはO2吹錬により、C+O→CO(ガス)の反応を利用して行う。その際、脱炭時のO2吹錬によって生成したCOガスの希釈効果、すなわちCO気泡中で2N→N2(ガス)の反応によりN2が希釈されることを利用して脱Nを行う。なお、XはX成分が溶湯中に溶解していることを示し、[X]は溶湯中のX成分の濃度を示す。粗脱炭後の終点[C]は[C]=0.3〜1.5質量%であり、Cr含有量が高いほど終点[C]は高いほうが良い。なお、粗脱炭期のスラグは出湯時に除滓することが好ましい。
【0007】
この粗脱炭、脱窒工程で脱Nをより一層促進させるためには、高塩基度フラックスを用いることが好ましい。高塩基度フラックスとしては(質量%CaO)/(質量%SiO2)が1.5以上の組成をもつものを使用することが好ましく、さらに2.0以上のものを使用することが望ましい。さらに脱Nを強化するには、高塩基度フラックスにアルカリ金属酸化物、特にリチウム,ナトリウム,バリウムの酸化物,炭酸塩を添加すると良い。フラックスにこれらの化合物が5質量%以上含まれるとフラックスの融点低下と塩基度の大幅な向上により、フラックスと溶湯との反応が大きく促進されるため、大きな脱窒効果が得られる。この高塩基度フラックスによる脱窒工程ではスラグ−メタル反応を十分に促進させるためにArガスやAr+O2混合ガスあるいは水蒸気を用いたガス攪拌は必須である。
脱窒後、フラックスは復Nを避けるために望ましくは粗脱炭処理前に、遅くとも真空処理前には除滓する必要がある。
【0008】
粗脱炭,脱窒後、溶湯を取鍋に出湯する。その際、溶湯中のCr含有量が高いほど、出湯流と大気、溶湯落下地点で巻き込まれた空気気泡と溶湯、取鍋内溶湯表面が大気と反応することによりNのピックアップが生じやすくなるので、溶湯流および取鍋内溶湯表面をシールする必要がある。Nのピックアップを防止するには、溶湯の熱でCO2ガスを発生する物質および/もしくは溶融、滓化するフラックスを取鍋に入れることが好ましい。
CO2ガスを発生する物質としては、熱分解でCO2を発生する炭酸マグネシウムを主成分とする固体物質が好適である。具体的には工業用炭酸マグネシウム(化学式:4MgCO3・Mg(OH)2・4H2O)が安価で入手し易い。また、ドライアイスも利用できる。
溶融、滓化するフラックスとしては、例えば50質量%CaO+50質量%Al23が好適である。
【0009】
溶湯を取鍋に移した後、真空精錬炉において真空下に溶湯をガス攪拌しながら適時O2吹錬し、仕上げ脱炭、仕上げ脱窒を行う。この工程における初期[C]は粗脱炭後の終点[C]値であり、[C]=0.3〜1.5質量%である。初期[C]を高くする理由は、CによりNの活量を高めさせ、脱Nを生じ易くするためである。また、Cは界面活性元素であるOの濃度を低下させるため、脱Nを生じ易くする。
脱Nは真空処理により発生するCO気泡中で2→N2(ガス)の反応によりN2が希釈されて生じると考えられる。従って、[C]は高い方が良く、具体的には[C]≧0.3質量%の領域で真空処理することにより脱Nが促進される。
脱Nを効果的に促進させるためには真空下でのO2吹錬とO2吹錬を止めた真空処理の組み合わせを少なくとも1回は実施し、Cr含有量が高い場合は、この処理を複数回繰り返して脱炭と脱窒を行うことが好ましい。
真空度はO2吹錬時で200Torr以下、O2吹錬を行わない時は1Torr以下とすることが好ましい。
[C]が約0.01質量%に到達すればO2吹錬を止め、真空処理のみによる脱Cを行う。ガス攪拌は主に取鍋底部からArガスを吹き込んで行う。Arガス流量は2〜25NL/min・tが好ましい。
【0010】
仕上げ脱炭、脱窒が終了すると真空排気を止め直ちにArガスを真空精錬炉内に導入して高塩基度フラックを用いた脱酸,脱硫の仕上げ精錬を行う。Ar気圧は大気からのNの侵入を防止するために1atm〜若干の加圧が望ましい。Ar以上0.5atmになるとシール効果が出始める。Arガスは炉内に封じ込めても良いし、精錬中流しつづけても良い。
Arガス中の不純物は低くすることが好ましい。好ましくはN2ガス含有量が0.001体積%以下、露点が−40℃以下の高純度乾燥Arガスを使用する。また、約30質量%以上のCr含有量の材料を溶製する場合は、ArガスからのO,N,Hがピックアップし易くなるので、より一層Arガスの不純物を低くする必要がある。具体的には、N2ガス含有量が0.0002体積%以下、露点が−60℃以下の高純度乾燥Arガスを使用する。
【0011】
さらに、ガス配管の中の水分や配管の接続部からのNの混入もあり得るので精錬の際は前もってArガス洗浄を十分に行っておく。なお、Arガス中にはHeなどの不活性ガスは混ざっていても良い。
仕上げ精錬時の高塩基度フラックス中のCaOとSiO2の質量%比は(CaO/SiO2)は1.5以上が好ましい。2.0以上にするとさらに好ましい。脱酸剤はSi,Al,Mn,Ti,Zr,希土類元素のうち1種もしくは2種以上を組み合わせて用いる。仕上げ精錬時も取鍋底部からのArガス攪拌は続ける。脱硫、脱酸精錬時の攪拌用Arガス純度は上記のものと同様にすることが好ましい。
【0012】
仕上げ精錬を終えた後、フラックスで取鍋内溶湯を覆った状態とする。鋳造場に移送する際、取鍋内溶湯をフラックで覆って大気と遮断すれば大気からのN,Oのピックアップを防止できる。そのため、このフラックスには低融点フラックスを用いる。例えば50質量%CaO+50質量%Al23のフラックスが好適である。
フラックスは十分に溶融させておく必要があるため、溶湯へのフラックス添加は仕上げ脱炭、脱窒後、溶湯の温度が十分確保できる時期に行う。
【0013】
上記のようにArガス等を利用してのガス攪拌状態での脱炭、脱窒、さらにArガス雰囲気下での脱炭、脱窒、脱硫、脱酸の条件を最適な条件としてそれぞれの反応効率を高めるとともに、それらを行う精錬炉から取鍋ないしは鋳造場への移送の段階での復N、復Oを極力防止して、精錬された合金中のC,N,S,O含有量を極めて低いものとすることができる。具体的には[C]+[N]+[S]+[O]を0.02重量%以下にまで低減させた高濃度のCrを含むFe−Cr合金,Fe−Cr−Ni合金を製造することができる。
【0014】
【実施例】
Cr含有量10〜65質量%、C含有量4.5〜6.5質量%の高濃度のCrを含むFe−Cr−C溶湯やFe−Cr−Ni−C溶湯70トンを上底吹転炉に装入し、粗脱炭、脱窒を施した。Crを30質量%以上含有する高濃度の合金においてはCaOとSiO2の質量比(CaO/SiO2)を3.0とし、炭酸リチウムを5質量%含んだ高塩基性フラックスを使用して脱窒精錬を行った。脱窒精錬後、除滓した後、攪拌用としてArガスを5NL/min・tの流量で吹き込みつつ、O2流量:2.05NL/min・t、O2吹錬時間:40分で、フラックスを15kg/t−metal添加して粗脱炭精錬を行った。
【0015】
粗脱炭、脱窒後、溶湯を取鍋に出湯した。その際、Cr含有量が30質量%以上の合金の場合は、Nのピックアップ防止剤として工業用炭酸マグネシウムを取鍋中に入れておいた。溶湯を取鍋に移した後、真空精錬炉において真空下で溶湯をガス攪拌しながらO2吹錬して仕上げ脱炭、仕上げ脱窒を行った。
脱窒を効果的に促進させるために真空下でのO2吹錬とO2吹錬を止めた真空処理の組み合わせを2回実施した。真空度はO2吹錬時で100Torr、O2精錬を行わない時は0.4Torrとした。
[C]が0.11質量%に到達した後、O2吹錬を止め、真空処理のみによる脱炭を行った。ガス攪拌は取鍋底部からArガスを吹き込んで行った。Arガス流量は18NL/min・tとした。
【0016】
仕上げ脱炭、脱窒が終了すると真空排気を止め直ちにArガスを真空精錬炉内に導入して高塩基性フラックスを30kg/t−metal添加して脱酸、脱硫の仕上げ精錬を行った。Ar気圧は1atmとし、流しつづけた。Arガス中のN2含有量は0.0001体積%、露点は−70℃である高純度乾燥Arガスを用いた。
なお、Cr含有量が30質量%以上の合金を精錬する場合、ガス配管の中の水分や配管の接続部からのNの混入を防止するために、事前に2回のArガス洗浄を2回行った。
【0017】
仕上げ精錬時の高塩基性フラックスは、CaOを13kg/t−metal添加して(CaO/SiO2)を2.5とした。脱酸剤としてAlを13kg/t−metal添加した。高塩基度フラックスを添加する際、後工程においてN,Oのピックアップを防止するため50質量%CaO+50質量%Al23のフラックスも添加した。添加量は5kg/t−metalとした。
なお、仕上げ精錬時、取鍋底部から10NL/min・tの流量でArガス攪拌を行った。大気解放前には取鍋内溶湯が極力大気と接することがないようにArガス流量を3NL/min・tに減らした。その後、成分調整を行い、材料の要求される特性に応じてCo,Mo,Nb,Ti,V,W,B,Cu等を必要量添加した。取鍋を鋳造場に移送した。鋳造後得られた素材の成分を表1に示す。
【0018】
比較例として、高濃度のCrを含むFe−Cr−C溶湯を底吹きなしにO2吹錬のみで粗脱炭、脱窒した場合(試験番号7)、仕上げ脱炭、仕上げ脱窒工程において真空にせずAr=1atmの雰囲気下でガス攪拌+O2吹錬とした場合(試験番号8)、仕上げ脱炭、脱窒終了後、Arガスを導入せずにそのまま真空排気を続けながら高塩基度フラックスを用いて脱硫、脱酸仕上げ精錬を行った場合(試験番号9)、脱硫、脱酸仕上げ精錬終了後、フラックスを添加せずにそのまま鋳造場へ取鍋を移送し、鋳造した場合(試験番号10)の各チャージの鋳造後の素材の成分を併せて表1に示す。
【0019】

Figure 0004753504
【0020】
表1に示す結果からもわかるように、本発明の条件で製造した試験番号1〜6の場合、[C]+[N]+[S]+[O]≦0.020質量%であり、極めて不純物含有量の少ない高純度合金が得られた。
これに対して、本発明の条件を外れた試験番号7〜10の場合、C,N,S,O含有量が多く所期の目的を達成できていない。Arガス等による攪拌を行わずに粗脱炭、脱窒を行った試験番号7では、脱炭に伴うCOガスを有効に利用した脱窒が効果的になされず、Nの低減ができていない。真空にせずAr=1atmの雰囲気下で仕上げ脱炭、仕上げ脱硫した試験番号8では、脱炭、脱窒が効果的に進行せず期待したC,Nの低減ができていない。仕上げ脱炭、仕上げ脱窒終了後、Arガスを導入せずそのまま真空下で仕上げ脱硫、脱酸した試験番号9では、大気からのNの侵入が発生したため、復Nし、合金中のN含有量が多くなっている。さらに、精錬終了後溶湯をフラックスで覆わず鋳造場に移送した試験番号10では、移送時に大気から復N、復Oし、合金中のN,O含有量が多くなっている。
【0021】
【発明の効果】
以上に説明したように、精錬炉および取鍋内での脱炭、脱窒処理の、攪拌、吹錬、雰囲気、フラックス使用等の条件をそれぞれの反応が効率よく行えるように組み合わせるとともに、溶湯の出湯、移送の段階で復Nし難い条件を設定することにより、合金中のC,N,S,O含有量が極めて少ない高純度の高濃度のCrを含むFe−Cr合金あるいはFe−Cr−Ni合金を低コストで製造することができた。
(以上 余白)[0001]
[Industrial application fields]
The present invention relates to a method for producing a high-purity Fe—Cr alloy or Fe—Cr—Ni alloy containing a high concentration of Cr by adjusting refining conditions.
[0002]
[Prior art]
Fe—Cr and Fe—Cr—Ni alloys containing a high concentration of Cr are known as materials having excellent corrosion resistance, oxidation resistance, and workability. In recent years, these alloys have been required to further improve quality and material properties. As one of methods for meeting the demand, there is a method of purifying by reducing impurities such as C, N, O, and S that affect corrosion resistance, toughness, and workability. Further, by increasing the Cr content in the alloy, unprecedented heat resistance and corrosion resistance can be obtained. However, when the Cr content is high, the C and N activities are reduced due to the interaction of Cr, and it becomes difficult to melt extremely low C and N materials. In particular, with regard to the refining technology of ultra-low C, N steel in ferritic stainless steel, many technical developments have been made and results have been obtained. However, it is difficult for conventional processes to meet strict requirements.
[0003]
[Problems to be solved by the invention]
It is generally said that VOD treatment is suitable for the process of producing low C, N steel. In the current VOD process, in order to obtain ultra-low C, N steel, the strengthening of stirring under reduced pressure and the use of the effect of increasing the reaction area have been dealt with. However, if an attempt is made to economically produce a further ultra-low C, N steel, and further an Fe-Cr alloy ultra-low C, N steel having a Cr content exceeding 30% by mass, the conventional process will be described. But it was not easy to deal with.
The present invention has been devised to solve such a problem. Even in a Fe—Cr alloy or a Fe—Cr—Ni alloy containing a high concentration of Cr, the O and S are reduced at a very low C and N concentration. Another object of the present invention is to provide a method for producing an alloy having a very low level at a low cost.
[0004]
[Means for Solving the Problems]
In order to achieve the object, the method for producing an Fe—Cr, Fe—Cr—Ni alloy containing high-purity and high-concentration Cr according to the present invention has a Fe—Cr—C molten metal in a refining furnace having gas stirring means. A first step in which the Fe-Cr-Ni-C molten metal is O2 blown and coarsely decarburized and denitrified while stirring the gas, and the second molten metal is discharged into the ladle with or without sealing the molten metal. Process, the third step of stirring the molten metal under vacuum in a vacuum smelting furnace and / or timely O 2 blowing and finishing decarburization and finishing denitrification in a vacuum smelting furnace, Ar gas inside the vacuum smelting furnace with Ar atmosphere However, it is characterized by comprising a fourth step of performing desulfurization and deoxidation finishing refining using a flux and a deoxidizer, and a fifth step of covering the molten metal in the ladle with the flux and casting.
[0005]
It is also possible to perform denitrification using a high basicity flux before or simultaneously with the first step of rough decarburization and denitrification. As the high basicity flux at this time, (mass% CaO) / (mass% SiO 2) having a mass of 1.5 or more, or containing 5 mass% or more of an alkali metal oxide or carbonate is used. It is preferable to do.
It is preferable that the sealing at the time of the molten metal is performed by putting a substance that generates CO 2 gas by the heat of the molten metal and / or a flux that melts and hatches into a ladle.
Moreover, it is preferable to use high-purity dry Ar gas having an N 2 gas content of 0.001% by volume or less and a dew point of −40 ° C. or less as Ar gas for making the vacuum refining furnace an Ar atmosphere. It is more preferable to use high purity dry Ar gas having an N 2 gas content of 0.0002% by volume or less and a dew point of −60 ° C. or less.
[0006]
Embodiment
First, rough de-C and N are performed using a refining furnace having gas stirring means such as an upper-bottom blow converter or an AOD furnace. As the stirring gas, Ar gas, Ar + O 2 mixed gas, or water vapor is used. In the case of a double pipe tuyere, hydrocarbon gas may be used for the outer pipe as the cooling gas. Fe-Cr-C and Fe-Cr-Ni-C molten metal containing high concentration of Cr before carrying out rough decarburization and denitrification use a Cr content of 8 to 65%, and the C content is 4% or more is preferable. Rough decarbonization is performed by O 2 blowing and utilizing a reaction of C + O → CO (gas). At that time, denitrification is performed by utilizing the dilution effect of CO gas generated by O 2 blowing during decarburization, that is, N 2 is diluted by a reaction of 2N → N 2 (gas) in CO bubbles. X indicates that the X component is dissolved in the molten metal, and [X] indicates the concentration of the X component in the molten metal. The end point [C] after rough decarburization is [C] = 0.3 to 1.5% by mass, and the higher the Cr content, the higher the end point [C]. In addition, it is preferable to remove the slag during the rough decarburization period at the time of tapping.
[0007]
In order to further promote de-N in this rough decarburization and denitrification step, it is preferable to use a high basicity flux. As the high basicity flux, it is preferable to use a flux having a composition of (mass% CaO) / (mass% SiO 2 ) of 1.5 or more, and more preferably 2.0 or more. In order to further enhance the de-N, an alkali metal oxide, particularly an oxide of lithium, sodium, barium, or carbonate may be added to the high basicity flux. When these compounds are contained in the flux in an amount of 5% by mass or more, the reaction between the flux and the molten metal is greatly promoted due to the lowering of the melting point of the flux and the substantial improvement of the basicity, so that a great denitrification effect is obtained. In the denitrification process using the high basicity flux, in order to sufficiently promote the slag-metal reaction, gas stirring using Ar gas, Ar + O 2 mixed gas or water vapor is essential.
After denitrification, the flux should be removed before the rough decarburization treatment and at the latest before the vacuum treatment to avoid recovery N.
[0008]
After rough decarburization and denitrification, pour molten metal into a ladle. At that time, the higher the Cr content in the molten metal, the easier it is for N pick-up to occur due to the reaction between the tapping stream and the atmosphere, the air bubbles and molten metal caught at the molten metal falling point, and the molten metal surface in the ladle. It is necessary to seal the molten metal flow and the molten metal surface in the ladle. In order to prevent N from being picked up, it is preferable to put a substance that generates CO 2 gas by the heat of the molten metal and / or a flux that melts and hatches into a ladle.
As the substance that generates CO 2 gas, a solid substance mainly composed of magnesium carbonate that generates CO 2 by thermal decomposition is suitable. Specifically, industrial magnesium carbonate (chemical formula: 4MgCO 3 · Mg (OH) 2 · 4H 2 O) is inexpensive and easily available. Dry ice can also be used.
As a flux that melts and hatches, for example, 50 mass% CaO + 50 mass% Al 2 O 3 is suitable.
[0009]
After the molten metal is transferred to the ladle, the molten metal is blown with O 2 in a vacuum in a vacuum smelting furnace as needed, and finish decarburization and final denitrification are performed. The initial [C] in this step is the end point [C] value after rough decarburization, and [C] = 0.3 to 1.5 mass%. The reason why the initial [C] is increased is that the activity of N is increased by C to facilitate de-N. Further, since C lowers the concentration of O, which is a surface active element, it facilitates denitrification.
It is considered that N removal is caused by dilution of N 2 by a reaction of 2 N → N 2 (gas) in CO bubbles generated by vacuum treatment. Therefore, [C] should be high. Specifically, de-N is promoted by vacuum treatment in the region of [C] ≧ 0.3 mass%.
In order to effectively promote de-N, at least one combination of O 2 blowing under vacuum and O 2 blowing stopped is performed at least once. If the Cr content is high, this treatment is performed. It is preferable to perform decarburization and denitrification by repeating a plurality of times.
Degree of vacuum 200Torr or less when O 2 blowing, when not performing the O 2 blowing is preferably set to 1Torr or less.
When [C] reaches about 0.01% by mass, O 2 blowing is stopped and de-C is performed only by vacuum treatment. Gas agitation is performed mainly by blowing Ar gas from the bottom of the ladle. The Ar gas flow rate is preferably 2 to 25 NL / min · t.
[0010]
When finish decarburization and denitrification are completed, the vacuum exhaust is stopped and Ar gas is immediately introduced into the vacuum refining furnace to perform deoxidation and desulfurization finish refining using high basicity flack. Ar pressure is preferably 1 atm to slight pressurization in order to prevent intrusion of N from the atmosphere. When Ar is 0.5 atm or more, the sealing effect starts to appear. Ar gas may be contained in the furnace, or may continue to flow during refining.
It is preferable to reduce the impurities in the Ar gas. Preferably, high purity dry Ar gas having an N 2 gas content of 0.001% by volume or less and a dew point of −40 ° C. or less is used. In addition, when melting a material having a Cr content of about 30% by mass or more, O, N, and H from Ar gas can be easily picked up, so that it is necessary to further reduce the Ar gas impurities. Specifically, high purity dry Ar gas having an N 2 gas content of 0.0002% by volume or less and a dew point of −60 ° C. or less is used.
[0011]
Furthermore, since water in the gas pipe and N from the pipe connection may be mixed, the Ar gas is sufficiently cleaned in advance before refining. Note that an inert gas such as He may be mixed in the Ar gas.
High basicity CaO mass% ratio of SiO 2 in the flux of the finish refining (CaO / SiO 2) is preferably 1.5 or more. More preferably, it is 2.0 or more. The deoxidizer is used alone or in combination of two or more of Si, Al, Mn, Ti, Zr, and rare earth elements. Ar gas stirring from the bottom of the ladle is continued during finishing refining. The purity of Ar gas for stirring during desulfurization and deoxidation refining is preferably the same as described above.
[0012]
After finishing refining, the molten metal in the ladle is covered with flux. When transporting to the foundry, the molten metal in the ladle is covered with a flack and cut off from the atmosphere, so that pickup of N and O from the atmosphere can be prevented. Therefore, a low melting point flux is used for this flux. For example, a flux of 50% by mass CaO + 50% by mass Al 2 O 3 is suitable.
Since the flux needs to be sufficiently melted, the flux should be added to the molten metal at a time when the molten metal temperature can be sufficiently secured after finish decarburization and denitrification.
[0013]
As described above, decarburization and denitrification in a gas stirring state using Ar gas or the like, and further, each reaction under the conditions of decarburization, denitrification, desulfurization, and deoxidation in an Ar gas atmosphere as optimum conditions In addition to increasing the efficiency, the N, S and O contents in the refined alloy are reduced by preventing recovery N and recovery O as much as possible at the stage of transfer from the smelting furnace to the ladle or foundry. It can be very low. Specifically, Fe-Cr alloys and Fe-Cr-Ni alloys containing high concentrations of Cr with [C] + [N] + [S] + [O] reduced to 0.02 wt% or less are manufactured. can do.
[0014]
【Example】
Top-bottomed 70 tons of Fe-Cr-C and Fe-Cr-Ni-C melts containing high concentrations of Cr with a Cr content of 10 to 65 mass% and a C content of 4.5 to 6.5 mass% The furnace was charged and subjected to rough decarburization and denitrification. In a high-concentration alloy containing 30% by mass or more of Cr, the mass ratio of CaO to SiO 2 (CaO / SiO 2 ) is set to 3.0, and desorption is performed using a high basic flux containing 5% by mass of lithium carbonate. Nitrogen refining was performed. After denitrification refining, after Jokasu while blowing Ar gas as a stirring rate of 5NL / min · t, O 2 flow rate: 2.05NL / min · t, O 2 blowing time: 40 minutes, flux The crude decarburization refining was performed by adding 15 kg / t-metal.
[0015]
After rough decarburization and denitrification, the molten metal was poured into a ladle. At that time, in the case of an alloy having a Cr content of 30% by mass or more, industrial magnesium carbonate was placed in a ladle as an N pick-up inhibitor. After the molten metal was transferred to the ladle, it was subjected to finish decarburization and finish denitrification by O 2 blowing while stirring the molten metal under vacuum in a vacuum refining furnace.
In order to effectively promote denitrification, a combination of O 2 blowing under vacuum and vacuum treatment with O 2 blowing stopped was performed twice. The degree of vacuum 100Torr in a time O 2 blowing, when not performing the O 2 refining was 0.4 Torr.
After [C] reached 0.11% by mass, O 2 blowing was stopped and decarburization was performed only by vacuum treatment. Gas stirring was performed by blowing Ar gas from the bottom of the ladle. The Ar gas flow rate was 18 NL / min · t.
[0016]
After finishing decarburization and denitrification, the vacuum exhaust was stopped and Ar gas was immediately introduced into the vacuum refining furnace, and high basic flux was added at 30 kg / t-metal, and final refining of deoxidation and desulfurization was performed. The Ar pressure was set to 1 atm and kept flowing. A high-purity dry Ar gas having an N 2 content of 0.0001% by volume and a dew point of −70 ° C. in the Ar gas was used.
In addition, when refining an alloy having a Cr content of 30% by mass or more, two Ar gas cleanings are performed twice in advance in order to prevent moisture in the gas pipe and N from entering the pipe connection. went.
[0017]
The high basic flux at the time of final refining was adjusted to (CaO / SiO 2 ) of 2.5 by adding 13 kg / t-metal of CaO. Al was added at 13 kg / t-metal as a deoxidizer. When adding a high basicity flux, a flux of 50% by mass CaO + 50% by mass Al 2 O 3 was also added in order to prevent N and O pickup in the subsequent process. The amount added was 5 kg / t-metal.
At the time of finish refining, Ar gas was stirred from the bottom of the ladle at a flow rate of 10 NL / min · t. Before the atmosphere was released, the Ar gas flow rate was reduced to 3 NL / min · t so that the molten metal in the ladle would not contact the atmosphere as much as possible. Thereafter, the components were adjusted, and necessary amounts of Co, Mo, Nb, Ti, V, W, B, Cu and the like were added according to the required characteristics of the material. The ladle was transferred to the foundry. Table 1 shows the components of the raw material obtained after casting.
[0018]
As a comparative example, in the case of rough decarburization and denitrification by only O 2 blowing without bottom blowing of Fe-Cr-C molten metal containing high concentration Cr (test number 7), in the final decarburization and final denitrification processes In the case of gas stirring and O 2 blowing in an atmosphere of Ar = 1 atm without applying a vacuum (Test No. 8), after completion of decarburization and denitrification, high basicity while continuing evacuation without introducing Ar gas When desulfurization and deoxidation finish refining is performed using flux (test number 9), after desulfurization and deoxidation finish refining, the ladle is transferred to the foundry without adding flux and cast (test) Table 1 shows the components of the material after casting of each charge of No. 10).
[0019]
Figure 0004753504
[0020]
As can be seen from the results shown in Table 1, in the case of test numbers 1 to 6 manufactured under the conditions of the present invention, [C] + [N] + [S] + [O] ≦ 0.020 mass%, A high purity alloy with very low impurity content was obtained.
On the other hand, in the case of test numbers 7 to 10 that deviate from the conditions of the present invention, the C, N, S, and O contents are large and the intended purpose cannot be achieved. In test number 7 in which rough decarburization and denitrification were performed without stirring with Ar gas or the like, denitrification using CO gas effectively accompanying decarburization was not effective, and N could not be reduced. . In Test No. 8 in which decarburization and final desulfurization were performed in an atmosphere of Ar = 1 atm without applying vacuum, decarburization and denitrification did not proceed effectively, and the expected C and N could not be reduced. After finishing decarburization and finish denitrification, in test No. 9 where final desulfurization and deoxidation were performed under vacuum without introducing Ar gas, N intrusion from the atmosphere occurred. The amount is increasing. Further, in test No. 10 in which the molten metal was transferred to the foundry without being covered with flux after refining, the N and O contents in the alloy increased due to recovery from the atmosphere during recovery.
[0021]
【The invention's effect】
As explained above, the conditions of decarburization and denitrification treatment in the smelting furnace and ladle are combined so that each reaction can be efficiently performed, and the molten metal Fe-Cr alloy or Fe-Cr- containing high-purity and high-concentration Cr with extremely low C, N, S, O content in the alloy by setting conditions that make it difficult to recover N at the stage of tapping and transfer Ni alloy could be manufactured at low cost.
(More margins)

Claims (8)

ガス攪拌手段を有する精錬炉内の高濃度のCrを含むFe−Cr−C溶湯あるいはFe−Cr−Ni−C溶湯に対して、ガス攪拌しながらO2吹錬し粗脱炭するとともに脱窒する第一工程、溶湯を取鍋内に出湯する第二工程、真空精錬炉において真空下で溶湯をガス攪拌し、および/もしくは真空下で適時O2吹錬し仕上げ脱炭、仕上げ脱窒する第三工程、真空精錬炉内をAr雰囲気としガス攪拌しながらフラックスならびに脱酸剤を用いて脱硫、脱酸の仕上げ精錬を行う第四工程、フラックスで取鍋内溶湯を覆って鋳造を行う第五工程からなることを特徴とする高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。 A Fe-Cr-C or Fe-Cr-Ni-C molten metal containing a high concentration of Cr in a smelting furnace having a gas stirring means is subjected to rough decarburization and denitrification by O 2 blowing with gas stirring. The first step to perform, the second step to discharge the molten metal into the ladle, the gas stirring of the molten metal under vacuum in a vacuum smelting furnace, and / or the final decarburization and final denitrification by O 2 blowing in a timely manner under vacuum 3rd process, 4th process of desulfurization and deoxidation finish refining using flux and deoxidizer while stirring in gas with Ar atmosphere in vacuum smelting furnace, casting with covering the molten metal in ladle with flux A method for producing a Fe—Cr, Fe—Cr—Ni alloy containing a high concentration of Cr, comprising five steps. ガス攪拌手段を有する精錬炉内の高濃度のCrを含むFe−Cr−C溶湯あるいはFe−Cr−Ni−C溶湯をガス攪拌しながら高塩基度フラックスにより脱窒した後、除滓する第一工程、溶湯をガス攪拌しながらO2吹錬し粗脱炭するとともに脱窒する第二工程、溶湯を取鍋内に出湯する第三工程、真空精錬炉において真空下で溶湯ガス攪拌し、および/もしくは真空下で適時O2吹錬し仕上げ脱炭、仕上げ脱窒する第四工程、真空精錬炉内をAr雰囲気としガス攪拌しながらフラックスならびに脱酸剤を用いて脱硫、脱酸の仕上げ精錬を行う第五工程、フラックスで取鍋内溶湯を覆って鋳造を行う第六工程からなることを特徴とする高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。First, denitrifying the Fe—Cr—C molten metal or Fe—Cr—Ni—C molten metal containing high-concentration Cr in the smelting furnace having the gas stirring means with high basicity flux while stirring the gas. A process, a second process in which the molten metal is blown with O 2 and coarsely decarburized and denitrified, a third process in which the molten metal is discharged into a ladle, a molten gas is stirred in a vacuum smelting furnace under vacuum, and / Or 4th step of finish decarburization and finish denitrification by O 2 blowing in time, under vacuum, and desulfurization and deoxidation finish refining using flux and deoxidizer while stirring the gas in the vacuum refining furnace with Ar atmosphere A method for producing an Fe—Cr, Fe—Cr—Ni alloy containing high-concentration Cr, comprising a fifth step of performing a casting and a sixth step of covering the molten metal in the ladle with a flux and casting. ガス攪拌手段を有する精錬炉内の高濃度のCrを含むFe−Cr−C溶湯あるいはFe−Cr−Ni−C溶湯に高塩基度フラックスを添加しガス攪拌しながらO2吹錬し粗脱炭、脱窒する第一工程、溶湯を取鍋内に出湯する第二工程、真空精錬炉において真空下で溶湯ガス攪拌し、および/もしくは真空下で適時O2吹錬し仕上げ脱炭、仕上げ脱窒する第三工程、真空精錬炉内をAr雰囲気としガス攪拌しながらフラックスならびに脱酸剤を用いて脱硫、脱酸の仕上げ精錬を行う第四工程、フラックスで取鍋内溶湯を覆って鋳造を行う第五工程からなることを特徴とする高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。Coarse decarburization by adding high basicity flux to Fe-Cr-C molten metal containing high concentration Cr or Fe-Cr-Ni-C molten metal in a smelting furnace having gas stirring means and blowing O 2 while stirring the gas. 1st step of denitrification, 2nd step of pouring molten metal into the ladle, stirring of molten gas under vacuum in a vacuum smelting furnace, and / or timely O 2 blowing under vacuum to finish decarburization, final decarburization The third step of nitriding, the fourth step of performing desulfurization and deoxidation finishing refining using flux and deoxidizing agent while stirring the gas in the vacuum refining furnace with Ar atmosphere, covering the molten metal in the ladle with the flux and casting The manufacturing method of the Fe-Cr and Fe-Cr-Ni alloy containing high concentration Cr characterized by including the 5th process to perform. 第一工程で使用する高塩基度フラックスの(質量%CaO)/(質量%SiO2)が1.5以上である請求項2または3に記載の高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。The high basicity flux (mass% CaO) / (mass% SiO 2 ) used in the first step is 1.5 or more. Fe-Cr, Fe- containing high concentration Cr according to claim 2 or 3 A method for producing a Cr-Ni alloy. 第一工程で使用する高塩基度フラックスが5質量%以上のアルカリ金属の酸化物もしくは炭酸塩を含有しているものである請求項2〜4のいずれか1に記載の高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。The high basicity flux used in the first step contains 5% by mass or more of an alkali metal oxide or carbonate, containing the high-concentration Cr according to any one of claims 2 to 4. A method for producing an Fe-Cr, Fe-Cr-Ni alloy. 溶湯を取鍋内に出湯する際、溶湯の熱でCO2ガスを発生する物質および/もしくは溶融、滓化するフラックスを取鍋に入れ、溶湯をシールする請求項1〜5のいずれか1に記載の高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。When the molten metal is discharged into the ladle, the substance that generates CO 2 gas by the heat of the molten metal and / or the flux that melts and hatches is placed in the ladle, and the molten metal is sealed. The manufacturing method of the Fe-Cr and Fe-Cr-Ni alloy containing high concentration Cr of description. 真空精錬炉内をAr雰囲気とするためのArガスとして、N2ガス含有量が0.001体積%以下、露点が−40℃以下の高純度乾燥Arガスを使用する請求項1〜6のいずれか1に記載の高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。7. The high purity dry Ar gas having an N2 gas content of 0.001% by volume or less and a dew point of -40 [deg.] C. or less is used as an Ar gas for making the inside of the vacuum refining furnace an Ar atmosphere. The manufacturing method of the Fe-Cr and Fe-Cr-Ni alloy containing high concentration Cr of 1. 真空精錬炉内をAr雰囲気とするためのArガスとして、N2ガス含有量が0.0002体積%以下、露点が−60℃以下の高純度乾燥Arガスを使用する請求項1〜6のいずれか1に記載の高濃度のCrを含むFe−Cr,Fe−Cr−Ni合金の製造方法。7. The high purity dry Ar gas having an N2 gas content of 0.0002% by volume or less and a dew point of -60 [deg.] C. or less is used as Ar gas for making the vacuum refining furnace an Ar atmosphere. The manufacturing method of the Fe-Cr and Fe-Cr-Ni alloy containing high concentration Cr of 1.
JP2001279865A 2001-09-14 2001-09-14 Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy Expired - Lifetime JP4753504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279865A JP4753504B2 (en) 2001-09-14 2001-09-14 Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279865A JP4753504B2 (en) 2001-09-14 2001-09-14 Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy

Publications (2)

Publication Number Publication Date
JP2003089815A JP2003089815A (en) 2003-03-28
JP4753504B2 true JP4753504B2 (en) 2011-08-24

Family

ID=19103962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279865A Expired - Lifetime JP4753504B2 (en) 2001-09-14 2001-09-14 Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy

Country Status (1)

Country Link
JP (1) JP4753504B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA104595C2 (en) 2008-08-04 2014-02-25 Ньюкор Корпорейшн method for making a steel with low carbon low sulphur low nitrogen using conventional steelmaking Equipment
EP3147376B1 (en) * 2008-08-04 2018-10-17 Nucor Corporation Low cost making of a low carbon, low sulfur, and low nitrogen steel using conventional steelmaking equipment
JP5696271B2 (en) * 2008-11-06 2015-04-08 スーパーピュアメタル合同会社 Austenitic high-purity iron alloy with excellent high-temperature strength characteristics
JP5493061B2 (en) * 2008-11-06 2014-05-14 スーパーピュアメタル合同会社 Austenitic high-purity iron alloy with excellent radiation damage resistance
JP5493060B2 (en) * 2008-11-06 2014-05-14 スーパーピュアメタル合同会社 Austenitic high-purity iron alloy
US8523977B2 (en) 2011-01-14 2013-09-03 Nucor Corporation Method of desulfurizing steel
JP6582904B2 (en) * 2015-11-12 2019-10-02 東洋インキScホールディングス株式会社 Hot melt adhesive sheet for electromagnetic induction heating, adhesive structure using the same, and method for producing adhesive structure
CN107574285B (en) * 2017-08-09 2021-06-22 新疆八一钢铁股份有限公司 Method for controlling nitrogen content through smelting process of LF (ladle furnace) refining furnace
WO2019040704A1 (en) 2017-08-24 2019-02-28 Nucor Corporation Improved manufacture of low carbon steel
CN110846550B (en) * 2019-12-02 2021-08-24 抚顺特殊钢股份有限公司 Intermediate frequency furnace smelting process for nitrogen-containing and niobium-containing high-temperature alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222518A (en) * 1983-05-30 1984-12-14 Nisshin Steel Co Ltd Production of cr steel containing low phosphorus
JPH01215951A (en) * 1988-02-24 1989-08-29 Kawasaki Steel Corp Method for refining chromium-containing steel
JPH03153814A (en) * 1989-11-10 1991-07-01 Kawasaki Steel Corp Smelting method for dead soft, extra-low nitrogen high chromium steel
JP3220233B2 (en) * 1992-06-26 2001-10-22 川崎製鉄株式会社 Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel

Also Published As

Publication number Publication date
JP2003089815A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
CN108330245B (en) High-purity smelting method for stainless steel
CN102071287B (en) Method for melting high-temperature-resistance and high-pressure-resistance alloy steel
CN102199684B (en) Production method of ultralow-oxygen titanium-containing ferrite stainless steel
JPS6237687B2 (en)
JP4753504B2 (en) Method for producing high purity Fe-Cr, Fe-Cr-Ni alloy
CN112899437A (en) Oxygen content control method of aluminum-free low-alloy non-oriented silicon steel
JP3428628B2 (en) Stainless steel desulfurization refining method
JP3922181B2 (en) Melting method of high clean steel
JP4079097B2 (en) Melting method of high clean steel
JP5047477B2 (en) Secondary refining method for high Al steel
JPS6159376B2 (en)
JP2590626B2 (en) Fe-Ni alloy cold rolled sheet excellent in cleanliness and etching piercing properties and method for producing the same
JPS58151416A (en) Dephosphorizing and desulfurizing method of molten ferro-alloy containing chromium
JPH10140227A (en) Production of high alloy steel by joining two molten steels
KR100887860B1 (en) Method for manufacturing the ferrite stainless steel
CN106811566B (en) Phosphorus alloying method for phosphorus-containing steel
JPH0841530A (en) Production of low aluminum and low sulfur stainless steel
JPH04354853A (en) Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its production
JP2607337B2 (en) Method for dephosphorizing chromium-containing steel
JPH11279624A (en) Refining method of high-nitrogen stainless steel
JPH07316631A (en) Deoxidizing and cleaning method of molten steel
JPS6025486B2 (en) Method for manufacturing clean steel with low oxygen, sulfur, and nitrogen content
WO2024085002A1 (en) Fe-Cr-Ni-BASED ALLOY HAVING EXCELLENT SURFACE PROPERTIES, AND METHOD FOR MANUFACTURING SAME
JPH0788553B2 (en) Method for producing Fe-high Ni alloy steel
KR100423448B1 (en) A METHOD FOR MANUFACTURING Mn ADDED ULTRA LOW CARBON BLACK PLATE

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4753504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term