JPS60257218A - Orientated article of polyester family resin and manufacture thereof - Google Patents

Orientated article of polyester family resin and manufacture thereof

Info

Publication number
JPS60257218A
JPS60257218A JP11220284A JP11220284A JPS60257218A JP S60257218 A JPS60257218 A JP S60257218A JP 11220284 A JP11220284 A JP 11220284A JP 11220284 A JP11220284 A JP 11220284A JP S60257218 A JPS60257218 A JP S60257218A
Authority
JP
Japan
Prior art keywords
temperature
resin
film
melting point
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11220284A
Other languages
Japanese (ja)
Other versions
JPH0379176B2 (en
Inventor
Toshiya Mizuno
斌也 水野
Naohiro Murayama
村山 直廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP11220284A priority Critical patent/JPS60257218A/en
Publication of JPS60257218A publication Critical patent/JPS60257218A/en
Publication of JPH0379176B2 publication Critical patent/JPH0379176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the transparent molded product of polyester resin having no surface unevenness or inner microvoid and high strength and toughness by orientating the resin so as to obtain specified melting property and birefringence index. CONSTITUTION:The melting curve obtained at the temperature elevating speed of 8 deg.C/min, using a differential scanning calorimeter, must have its crystal melting point at higher temperature side, by at least 7 deg.C or more, than the crystal melting point in the melting curve in which the temperature is lowered from said molten state at the temperature lowering speed of 8 deg.C/min, and again the temperature is elevated at the same temperature elevating speed. Further, the birefringence index must be equal to or higher than 35X10<-3>. Such polyester family resin orientated article is produced by following method. That is to say, polyester family resin is fusion-extruded without melt fracture at the temperature equal to or lower than the decomposition temperature of said resin, and the resin is cooled, while drafting it at the draft ratio equal to 50% or more from said fusion-extruded condition.

Description

【発明の詳細な説明】 11斑1 本発明は、内部にミクロボイドを有さず、表面の平滑性
に優れ、且つ透明なポリエーテル系樹脂配向成形物及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 11 Mottling 1 The present invention relates to an oriented polyether resin molded product that has no internal microvoids, has an excellent surface smoothness, and is transparent, and a method for producing the same.

11且遣 従来、ポリエーテル系樹脂、特にポリオキシメチレン樹
脂は、その結晶性に基因した硬さ、耐摩耗性などの特性
を生かし、エンジニアリングプラスチックとして用いら
れ、例えばインジエクシブン成形により種々の電子部品
材料やそれに付随する歯車などの製造に使用されている
。これらのポリエーテル系樹脂成形品はいずれも高結晶
性に伴う球晶の発達から白色不透明なものである。
11. Traditionally, polyether resins, especially polyoxymethylene resins, have been used as engineering plastics due to their properties such as hardness and abrasion resistance due to their crystallinity. It is used to manufacture parts materials and associated gears. All of these polyether resin molded products are white and opaque due to the development of spherulites associated with high crystallinity.

さらに、これらのポリエーテル系樹脂を、フィルム状ま
たは糸状に押出し成形しても、そのままでは白色不透明
であり、かつ球晶の発達によって極めてもろいフィルム
或いは糸にしかなり得なかった。また、このような白色
不透明のフィルムあるいは糸を融点以下の温度で加熱延
伸すれば、−軸配向したフィルム或いは糸を得ることが
できるが、これらは球晶の破壊によって得られたもので
ある故、かくして得られたフィルム或いは糸の表面には
凹凸が著しく、また内部にもミクロボイドを含む場合が
多い。
Furthermore, even when these polyether resins are extruded into a film or thread, the resulting film or thread remains white and opaque and is extremely brittle due to the development of spherulites. Furthermore, if such a white opaque film or thread is heated and stretched at a temperature below its melting point, a -axis-oriented film or thread can be obtained, but since these are obtained by the destruction of spherulites. The surface of the film or thread thus obtained has significant irregularities, and often contains microvoids inside.

このような表面あるいは内部欠陥は、ポリエーテル樹脂
配向物の各種用途、特に、電気的用途への利用に対する
重要な障害となっている。例えば電子材料用フィルムと
して用いようとした場合、電界下でミクロ放電を生じか
ねない。またコンデンサーフィルムに用いる時、フィル
ム内部のミクロボイドはボイド内部でのミクロ放電を生
じ、フィルムの破壊につながることは明らかであり、こ
のようなフィルムは信頼性あるコンデンサーフィルムと
は到底なり得なかった。また、ポリエーテル樹脂の糸状
物も上述のフィルムの場合と同様の欠点を内在させるほ
か、各種用途に利用するために充分な強度および靭性を
有するものが得られていなかった。
Such surface or internal defects are an important obstacle to the use of oriented polyether resin products in various applications, particularly in electrical applications. For example, when attempting to use it as a film for electronic materials, microdischarge may occur under an electric field. Furthermore, when used in a capacitor film, it is clear that microvoids inside the film cause microdischarge inside the voids, leading to film destruction, and such a film could never be a reliable capacitor film. In addition, filamentous polyether resins have the same drawbacks as the above-mentioned films, and have not yet been produced with sufficient strength and toughness for use in various applications.

発」Lす」L偵 この発明の目的は、このような表面の凹凸や内部のミク
ロボイドがなく、その結果、高強度、靭性を有し、且つ
透明なポリエーテル系樹脂成形物及びその製造方法を提
供することにある。
The object of the present invention is to provide a polyether resin molded product that is free from such surface irregularities and internal microvoids, has high strength and toughness, and is transparent, and a method for producing the same. Our goal is to provide the following.

4岨L11 本発明者等は、を述の目的で研究した結果、特定の融解
特性と複屈折率を有するように配向したポリエーテル樹
脂配向物は、表面ならびに内部の欠陥が少なく良好な強
度、靭性ならびに透明性を有する成形物となることを見
出した。
4岨L11 As a result of research for the purpose described above, the present inventors have found that oriented polyether resins that are oriented to have specific melting characteristics and birefringence have good strength, few surface and internal defects, and It has been found that a molded product having toughness and transparency can be obtained.

本発明のポリエーテル系樹脂配向物は、このような知見
に基づくものであり、より詳しくは、下記(イ)および
(ロ)の特性を有することを特徴とするものである。
The oriented polyether resin material of the present invention is based on such knowledge, and more specifically, it is characterized by having the following characteristics (a) and (b).

(イ)差動走査型熱量計において8℃/分の昇温速度で
めた融解曲線が、その溶融状態から8°C/分の降温速
度で冷却し、再び上記A温速度で昇温したときの融解曲
線における結晶融点よりも少なくとも7°C以」二高温
側に結晶融点を有すること、および (ロ)複屈折率が35 X I O−1以上であること
(B) The melting curve obtained using a differential scanning calorimeter at a heating rate of 8°C/min was obtained by cooling from the molten state at a cooling rate of 8°C/min, and then raising the temperature again at the above temperature rate A. and (b) have a birefringence of 35 X I O-1 or more.

また、このような配向物は、ポリエーテル系樹脂の溶融
押出し物を、一定以」二のドラフト率でドラフトしつつ
冷却することにより得られることも見出された。すなわ
ち、本発明のポリエーテル系樹脂配向物の製造方法は、
ポリエーテル系樹脂をその樹脂の分解温度以下でメルト
フラクチャーを生ずることなく溶融押出し、その溶融押
出状態から、ドラフト率50以」二でドラフトしつつ冷
却することを特徴とするものである。
It has also been found that such an oriented product can be obtained by cooling a melt extruded product of polyether resin while drafting it at a draft rate of at least a certain level. That is, the method for producing an oriented polyether resin material of the present invention is as follows:
This method is characterized by melt-extruding a polyether resin at a temperature below the decomposition temperature of the resin without causing melt fracture, and cooling the melt-extruded state while drafting at a draft ratio of 50 or more.

・ = 1 この発明でポリエーテル系樹脂とは、エーテル結合を主
鎖中に含む線状分子であって、かかるエーテル結合を有
する七ツマ一単位からなる単一重合体または共重合体を
含むポリエーテルに加えて、これらポリエーテルの少な
くとも1種を70重量%以上含む他の混合成形可能な樹
脂との組成物を包含するものとする。代表的にはポリオ
キシメチレン、ポリアセトアルデヒド、ポリエチレンオ
キシド、ポリプロピレンオキシド、ポリシクロオキサブ
タン、3,3−ジクロルメチルオキサシクロブタン等が
用いられる。
・ = 1 In this invention, the polyether resin is a linear molecule containing an ether bond in the main chain, and is a polyether containing a homopolymer or copolymer consisting of a single unit having such an ether bond. In addition to this, the composition includes a composition containing at least one of these polyethers in an amount of 70% by weight or more and other resins that can be mixed and molded. Typically, polyoxymethylene, polyacetaldehyde, polyethylene oxide, polypropylene oxide, polycyclooxabutane, 3,3-dichloromethyloxacyclobutane, etc. are used.

この発明のポリエーテル系樹脂配向物は、差動走査型熱
量計(D S C)において8℃/分の昇温速度でめた
融解曲線が、その溶融状態から8℃/分の降温速度で冷
却し、再び上記昇温速度で昇温したときの融解曲線にお
ける結晶融点よりも少なくとも7°C以上高温側に結晶
融点を有することを特徴とする。ここで結晶融点とは融
解吸熱ピークを示す温度を指す。
The oriented polyether resin of the present invention has a melting curve determined by a differential scanning calorimeter (DSC) at a temperature increase rate of 8°C/min, which changes from its molten state at a cooling rate of 8°C/min. It is characterized by having a crystal melting point that is at least 7° C. higher than the crystal melting point in the melting curve when it is cooled and then heated again at the above temperature increase rate. Here, the crystal melting point refers to the temperature at which a melting endothermic peak occurs.

一例としてポリオキシメチレンについて述べると、従来
知られているポリオキシメチレンは159℃に結晶融点
を有する。この様なポリオキシメチレンそのものの性質
を有する成形体は、本発明の目的とする強度ならびに透
明性の要求を満たし得ない。これに対し、この発明の目
的を達成するポリオキシメチレン配向物は、例えば16
9℃近傍に別の結晶融点を有する。この結晶融点は上記
した様な条件で、溶融冷却後再昇温したとき(すなわち
、その樹脂本来の融解曲線)には認められない配向によ
り生ずる特異な構造に基づくものである。この結晶融点
は、ポリエーテル系樹脂を構成する主たる樹脂の種類に
より異なるが、」二記した条件で溶融冷却後再昇温した
ときにも認められる結晶融点より7°C以上高温側にあ
ることが必要である。
Taking polyoxymethylene as an example, conventionally known polyoxymethylene has a crystalline melting point of 159°C. A molded article having such properties of polyoxymethylene itself cannot satisfy the requirements for strength and transparency targeted by the present invention. On the other hand, the oriented polyoxymethylene that achieves the object of the present invention is, for example, 16
It has another crystalline melting point around 9°C. This crystal melting point is based on a unique structure caused by an orientation that is not observed when the temperature is raised again after melting and cooling under the conditions described above (that is, the original melting curve of the resin). This crystal melting point varies depending on the type of main resin that makes up the polyether resin, but it must be 7°C or more higher than the crystal melting point that is observed even when the temperature is raised again after melting and cooling under the conditions described in 2. is necessary.

また、この発明のポリエーテル系樹脂配向物は、複屈折
率が35 X I O−”以上であることを別の特徴と
する。複屈折率が大きければ大Sい程好ましく、好適に
は45 X 10−3以」−1より好ましくは60 X
 10−3以上の状態に形成される。この様に、本発明
のポリエーテル系樹脂配向物は、高度に配向されている
ことを一つの主要な特徴とするが、その形状はフィルム
、糸に限られず、例えばチューブ状物など高度に一軸配
向した一般の成形体であってもよい。
Another feature of the oriented polyether resin of the present invention is that it has a birefringence of 35 X I O-'' or more. X 10-3"-1 or more preferably 60
It is formed in a state of 10-3 or more. As described above, one of the main characteristics of the oriented polyether resin of the present invention is that it is highly oriented, but its shape is not limited to films and threads, but is highly uniaxial, such as tube-shaped objects. It may be a general oriented molded body.

この様なポリエーテル系樹脂配向物は、好ましくは、本
発明の方法に従い、以下の様にして製造される。
Such an oriented polyether resin product is preferably produced according to the method of the present invention as follows.

原料ポリエーテル系樹脂の溶融粘度は、大きすぎればメ
ルトフラクチャーを呈し、均一成形ができないが、溶融
粘度が小さすぎてもドラフト後の配向緩和が起こり、目
的とするものが得られにくい。ドラフト後に配向緩和が
起こりにくい程度に急冷すれば、ある程度溶融粘度の小
さいものも用いられるが、糸やフィルムの様に薄物でな
いと冷却にも限度がある。この様な点から、好ましくは
メル]・インデックスが0.02g/分〜5g/分、よ
り好ましくは0.05g/分〜3g/分の範囲の値を有
するポリエーテル系樹脂が用いられる。
If the melt viscosity of the raw polyether resin is too high, melt fracture will occur and uniform molding will not be possible, but if the melt viscosity is too low, orientation relaxation will occur after drafting, making it difficult to obtain the desired product. If the melt viscosity is low to some extent, it is possible to use a material with a relatively low melt viscosity if the material is rapidly cooled to such an extent that orientation relaxation is difficult to occur after drafting, but there is a limit to cooling unless it is a thin material such as a thread or film. From this point of view, it is preferable to use a polyether resin having a mel index in the range of 0.02 g/min to 5 g/min, more preferably 0.05 g/min to 3 g/min.

ポリエーテル系樹脂を溶融押出する際の樹脂温度は樹脂
の分解温度を上限とする。分解温度は主に樹脂の種類、
重合条件、配合処方、成形滞留時間等によって異なるの
で一律に定められない。また樹脂温度の下限はメルトフ
ラクチャーを生じない摺度に定められる。メルトフラク
チャーは周知の通り、樹脂の溶融粘度と流速により影響
されるので、樹脂温度の下限も=−律に定められない。
The upper limit of the resin temperature when melt-extruding the polyether resin is the decomposition temperature of the resin. The decomposition temperature mainly depends on the type of resin,
It cannot be determined uniformly because it varies depending on polymerization conditions, compounding recipe, molding residence time, etc. Further, the lower limit of the resin temperature is determined by the degree of sliding that does not cause melt fracture. As is well known, melt fracture is affected by the melt viscosity and flow rate of the resin, and therefore the lower limit of the resin temperature is not strictly defined.

−例として、ポリオキシメチレンの場合、一般的には、
170℃〜260℃、特ニ200〜240 ”Cの範囲
が好適に用いられる。
- For example, in the case of polyoxymethylene, generally:
A temperature range of 170°C to 260°C, particularly 200 to 240''C, is preferably used.

この様な溶融押出のためには、T−グイ法、インフレー
ション法等の公知方法が採用さi′る0本発明のポリエ
ーテル樹脂の製造方法は、この様な溶融押出状態からド
ラフト率を50以上としてドラフトしつつ冷却すること
を主要な特徴とする。
For such melt extrusion, known methods such as the T-Guy method and the inflation method are adopted. As mentioned above, the main feature is cooling while drafting.

ここでトラフi・率とは、押出線速度(Sl)に対する
引き取り線速度(S2)の比S 2 / S 1を云う
。ドラフト率が大きい程好ましく、好適には100以−
」−1より好ましくは300以上、特に好ましくは50
0以上が用いられる。
Here, the trough i ratio refers to the ratio S 2 /S 1 of the drawing line speed (S2) to the extrusion line speed (Sl). The higher the draft rate, the better it is, preferably 100 or more.
”-1, preferably 300 or more, particularly preferably 50
0 or more is used.

更に得られる配向物がフィルム或いは糸の場合には厚さ
くあるいは太さ)が50gm以下、好ましくは1〜20
km、より好ましくは2〜lopLmとなる様にドラフ
ト率を選ぶのが望ましい。
Furthermore, when the obtained oriented material is a film or thread, the thickness (thickness or thickness) is 50 gm or less, preferably 1 to 20 gm.
It is desirable to select the draft rate so that it becomes km, more preferably 2 to lopLm.

押出し直後にドラフトをかけながら、好ましくは強制風
冷によりできるだけ急冷することにより、透明性の優れ
た成形物、特にフィルムあるいは糸が得られる。
Immediately after extrusion, a molded product, particularly a film or thread, with excellent transparency can be obtained by cooling as quickly as possible, preferably by forced air cooling, while applying a draft.

このようにして得られる本発明のポリエーテル配向物は
1例えば厚さ311.mのフィルムとして形成された際
の波長500mkの光によるモ行光線透過率が70%以
上、より好ましくは75%以」二の透明性を有する。
The oriented polyether of the present invention thus obtained has a thickness of, for example, 311 mm. When formed as a film having a wavelength of 500 mK, the film has a transparency of 70% or more, more preferably 75% or more.

免艶豊差】 」二連したように、本発明によれば表面の凹凸や内部の
ミクロボイドがなく高強度、靭性を有するポリエーテル
系樹脂の配向成形物が得られる。また、本発明のポリエ
ーテル系樹脂配向物は、光学顕微鏡、電子顕微鏡で観察
する限り、球晶が認められず、透明性に優れる。この様
な特性を有する故、工業用資材として広く用いられ得る
が、特に耐電圧特性の改善されたコンデンサー用フィル
ムとして好適に用いられる。
As mentioned above, according to the present invention, an oriented molded product of polyether resin having high strength and toughness without surface irregularities or internal microvoids can be obtained. Further, the oriented polyether resin of the present invention has excellent transparency, with no spherulites observed when observed with an optical microscope or an electron microscope. Because it has such characteristics, it can be widely used as an industrial material, and is particularly suitable for use as a film for capacitors with improved voltage resistance characteristics.

丸蓋1 インフレーション用タイ(直径30mmφ、リップクリ
アランス2mm)を有する35φの押出機から、ポリオ
キシメチレン(メルトインデックス Ig/分)を、グ
イ温度230℃、押出速度60g/分゛で」三方に押出
した。この押出チューブをドラフト率800でドラフト
しつつ、ダイの」二部的5cmの位置に取りつけたエア
ーリングにて冷風を吹きかけ、冷却固化させた。この時
のチューブ状フィルムのチューブ径はおおよそ30mm
φであり、フィルム厚さは2〜3pmであり、−軸方向
に大きく配向し、複屈折率は64×10−3であった。
Round lid 1 Polyoxymethylene (melt index Ig/min) is extruded in three directions from a 35φ extruder equipped with an inflation tie (diameter 30mmφ, lip clearance 2mm) at a stick temperature of 230°C and an extrusion speed of 60g/min. did. While drafting this extruded tube at a draft rate of 800, cold air was blown through an air ring attached at a position 5 cm from the second part of the die to cool and solidify it. The tube diameter of the tubular film at this time is approximately 30 mm.
φ, the film thickness was 2 to 3 pm, it was largely oriented in the -axis direction, and the birefringence was 64×10 −3 .

このフィルムのDSCによる8℃/分の昇温速度でめた
融解曲線を第1図(a)に、結晶化後の同じ昇温速度で
の再融解曲線を第1図(b)に示す。なお中間の結晶化
は、8℃/分の降温速度で行なった。またこのフィルム
の応力−歪曲線を第2図に曲線Aとして示す。これによ
れば配向方向の引張破断強度は15kg/mm2.破断
伸度(歪)は45%であり、ヤング率は530kg/ 
m m 2であった6尚[111定条件は試長Loom
m、引張速度100mm/分、常温である。
The melting curve of this film determined by DSC at a heating rate of 8° C./min is shown in FIG. 1(a), and the remelting curve after crystallization at the same heating rate is shown in FIG. 1(b). Note that the intermediate crystallization was performed at a cooling rate of 8° C./min. The stress-strain curve of this film is shown as curve A in FIG. According to this, the tensile strength at break in the orientation direction is 15 kg/mm2. The elongation at break (strain) is 45%, and the Young's modulus is 530 kg/
m m 26 [111 constant conditions are test length Loom
m, tensile speed 100 mm/min, and room temperature.

更にX線小角散乱によればミクロボイドは認められず、
顕微鏡下でフィルムの表面は極めて滑らかであることが
認められ、光線透過率は波長500m川の光で80%で
あった。
Furthermore, no microvoids were observed by small-angle X-ray scattering.
Under a microscope, the surface of the film was found to be extremely smooth, and the light transmittance was 80% at a wavelength of 500 m.

血較1 実施例と同一条件下で押出し、ドラフト率が約20とな
るようにドラフトしたところ、厚さ約100gmのフィ
ルムが得られた。このフィルムは白色不透明であった。
Comparison 1 When extruded under the same conditions as in Example and drafted at a draft rate of about 20, a film with a thickness of about 100 gm was obtained. This film was white and opaque.

また、このフィルムの応力−歪曲線は第2図に曲線Bに
示す通りであった。
The stress-strain curve of this film was as shown by curve B in FIG.

第2図の曲線AとBを対比すれば、本発明によるフィル
ムは破断強度だけでなく、靭性(すなわち、破断に至ま
での応力と歪の積)が従来のものに比べて著しく向上し
ていることが分る。
Comparing curves A and B in Figure 2, the film according to the present invention has significantly improved not only the breaking strength but also the toughness (i.e., the product of stress and strain up to breakage) compared to the conventional film. I know that there is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は実施例のDSCによる融解曲線、第1図
(b)は結晶化後の再融解曲線、である。また、fiS
2図は各種フィルムの応力−歪特性測定結果であり1曲
線AおよびBはそれぞれ実施例および比較例のフィルム
についての応力−歪曲線である。
FIG. 1(a) is a DSC melting curve of the example, and FIG. 1(b) is a remelting curve after crystallization. Also, fiS
Figure 2 shows the stress-strain characteristic measurement results of various films, and curves A and B are stress-strain curves for the films of Examples and Comparative Examples, respectively.

Claims (1)

【特許請求の範囲】 1、下記(イ)8よび(ロ)の特性を有することを特徴
とするポリエーテル系樹脂配向物。 (イ)差動走査型熱量計において8℃/分のy温速度で
めた融解曲線が、その溶融状態から8°C/分の降温速
度で冷却し、再び」二記只温速度で昇温したときの融解
曲線における結晶融点よりも少なくとも7°C以」−高
温側に結晶融点を有すること、および (ロ)複屈折率が35 X 10−”以上であること。 2、ポリエーテル系樹脂をその樹脂の分解温度以下でメ
ルトフラクチャーを生ずることなく溶融押出し、その溶
融押出状態から、ドラフト率50以」―でドラフトしつ
つ冷却することを特徴とするポリエーテル系樹脂配向物
の製造方法。
[Claims] 1. An oriented polyether resin material having the following properties (a), 8 and (b). (b) The melting curve obtained using a differential scanning calorimeter at a temperature rate of 8°C/min shows that the temperature is cooled from the molten state at a cooling rate of 8°C/min, and then raised again at a temperature rate of 8°C/min. The crystal melting point must be at least 7°C higher than the crystal melting point in the melting curve when heated, and (b) the birefringence must be 35 x 10-'' or higher. 2. Polyether-based A method for producing an oriented polyether resin product, which comprises melt-extruding a resin at a temperature below the decomposition temperature of the resin without causing melt fracture, and cooling the melt-extruded state while drafting at a draft rate of 50 or more. .
JP11220284A 1984-06-02 1984-06-02 Orientated article of polyester family resin and manufacture thereof Granted JPS60257218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11220284A JPS60257218A (en) 1984-06-02 1984-06-02 Orientated article of polyester family resin and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11220284A JPS60257218A (en) 1984-06-02 1984-06-02 Orientated article of polyester family resin and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60257218A true JPS60257218A (en) 1985-12-19
JPH0379176B2 JPH0379176B2 (en) 1991-12-18

Family

ID=14580811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11220284A Granted JPS60257218A (en) 1984-06-02 1984-06-02 Orientated article of polyester family resin and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60257218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426423A (en) * 1987-04-01 1989-01-27 Polyplastics Co Manufacture of polyacetal resin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426423A (en) * 1987-04-01 1989-01-27 Polyplastics Co Manufacture of polyacetal resin film

Also Published As

Publication number Publication date
JPH0379176B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
SE433359B (en) PROCEDURE FOR THE PREPARATION OF FORMED DETAILS OF POLYETHYLENTE PREPARATION AND ADDITIVES FOR IMPLEMENTATION OF THE PROCEDURE
JPH0145500B2 (en)
JPS6297823A (en) Manufacture of oriented film from polymer composition mainlycomprising polyethylene
Krueger et al. Morphology of high‐strength transparent polyethylene prepared under controlled conditions
US3214503A (en) Uniaxial orientation of polypropylene film
US4667001A (en) Shaped article of vinylidene fluoride resin and process for preparing thereof
EP1308255A1 (en) Process for the manufacturing of a shaped part of ultra high molecular weight polyethylene and a fibre made with this process
KR0126128B1 (en) Process for preparation of fibers of stereoregular polystyrene
KR910005206B1 (en) Method of manufacturing polybutylene telephthalate resin films
EP0358135B1 (en) Polyarylene sulfide resin composition
Niikuni et al. Preparation of ultra-oriented, high-strength filaments of polyethylene
JPS60257218A (en) Orientated article of polyester family resin and manufacture thereof
JP6537250B2 (en) Polylactic acid monofilament
US5573823A (en) Phenylene sulfide/biphenylene sulfide copolymer pipe
Yang et al. Stress‐induced crystallization of biaxially oriented polypropylene
JP2000290512A (en) Polymer alloy and its film
EP1086987A1 (en) Method of fabricating composite fluoroplastic articles
Lüpke et al. Solid‐state processing of phb‐powders
US5928586A (en) Melt extrusion processing method of thermoplastic resin
US3420916A (en) Pyrolyzed blend of polyethylene and polypropylene
JPH0737577B2 (en) Self-reinforcing polymer composite and method for producing the same
KR880000392B1 (en) Process for the preparation of blown film and oriented film
CA2011683C (en) Blow-molded polyphenylene sulfide articles
US3936524A (en) Process for preparing polyisobutylene oxide moldings of excellent workability
GB2095166A (en) Vinylidene fluoride polymer of high Young&#39;s modulus