JPS60257040A - Producing method for light source cathode-ray tube - Google Patents

Producing method for light source cathode-ray tube

Info

Publication number
JPS60257040A
JPS60257040A JP11344484A JP11344484A JPS60257040A JP S60257040 A JPS60257040 A JP S60257040A JP 11344484 A JP11344484 A JP 11344484A JP 11344484 A JP11344484 A JP 11344484A JP S60257040 A JPS60257040 A JP S60257040A
Authority
JP
Japan
Prior art keywords
heating
tube body
firing
chamber
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11344484A
Other languages
Japanese (ja)
Other versions
JPH0318290B2 (en
Inventor
Seihachiro Hayashi
林 清八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11344484A priority Critical patent/JPS60257040A/en
Publication of JPS60257040A publication Critical patent/JPS60257040A/en
Publication of JPH0318290B2 publication Critical patent/JPH0318290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

PURPOSE:To prevent a blister on the aluminum film of a circumferential wall of glass, by beginning to heat a tube main body after raising the temperature of it to the preset degree by the remaining heat of the preceding heating, not heating the said body immediately when it is carried in a firing room. CONSTITUTION:After a tube main body 1 is carried in a firing room 33 and screened by a parting door 37, the tube main body 1 is heated by the remaining heat of the preceding heating, and the regular heating is delayed by timer-control. In this way, it is prevented that a blister is made on an aluminum film in the baking precess, because a temperature rising curve around the temperature of 200-300 deg.C, where a large quantity of decomposed gas is scattered, is made gentle, and the decomposed gas is scattered little by little.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、ディスプレイ装置などに使用される光源用
陰極線管の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a cathode ray tube for a light source used in a display device or the like.

[従来技術] ディスプレイの多様化に伴い、巨大ディスプレイ装置が
種々開発されている。たとえば、カラー表示や動画の再
現に適した手段として、3原色の絵素の1つ1つを1本
の陰極線管におきかえ、数万木の陰極線管を用いたもの
がある。このような陰極線管は光源用陰極線管と呼ばれ
、いわば、発光素子とも表現できるものである。その構
造の一例を第1図に示す。
[Prior Art] With the diversification of displays, various giant display devices have been developed. For example, as a means suitable for color display and moving image reproduction, there is a method that replaces each of the picture elements of the three primary colors with a single cathode ray tube, and uses tens of thousands of cathode ray tubes. Such a cathode ray tube is called a light source cathode ray tube, and can also be described as a light emitting element. An example of its structure is shown in FIG.

第1図において、(1)は真空外囲器を構成する円筒状
のガラス製の管本体で、そのフェース部(2)内面には
、緑、青もしくは赤のいずれかに発光する蛍光面(3)
が形成されている。上記蛍光面(3)の内面には、いわ
ゆるメタルバックと称されるアルミニウム蒸着膜(4)
が形成されており、さらに導通を目的とする内部導通膜
としてグラファイト膜(5)が塗布されている。(8)
は信号に対応して電子を発射して蛍光面(3)を発光さ
せるための電子銃である。
In Fig. 1, (1) is the cylindrical glass tube body that constitutes the vacuum envelope, and on the inner surface of its face (2) is a fluorescent screen that emits green, blue, or red light ( 3)
is formed. On the inner surface of the phosphor screen (3), there is an aluminum vapor deposited film (4) called a metal back.
is formed, and a graphite film (5) is further applied as an internal conductive film for the purpose of electrical conduction. (8)
is an electron gun that emits electrons in response to a signal to cause the fluorescent screen (3) to emit light.

つぎに、」二記光源用陰極線管の製造方法を第2図(a
) 、、(b) 、 (c)にしたがって説明する。第
2図(a)に示すように、まず蛍光体(3a)を被着す
るガラス製の管本体(+)の内面を弗化水素酸水溶液、
水耐化ナトリウム水溶液および純水を用いて洗浄する。
Next, a method for manufacturing a cathode ray tube for a light source is shown in Figure 2 (a).
), , (b), and (c). As shown in FIG. 2(a), first, the inner surface of the glass tube body (+) on which the phosphor (3a) is to be coated is coated with a hydrofluoric acid aqueous solution.
Wash using a water-resistant sodium aqueous solution and pure water.

つぎに、たとえば、電解質として、酢酸バリウムの水溶
液を所定量注入し、その後、接着剤としての水ガラスの
水溶液に所定の蛍光体(3a)を分散Sせた懸濁液を注
入し、所定時間静置して、蛍光体(3a)を沈εさせる
。蛍光体(3a)の沈澱後に、管本体(+)をゆっくり
傾動させて」−澄液を排出し、脱湿エヤによって乾燥さ
せ、蛍光体(3a)のフェース部(2)への被着を完了
する。この方法は一般に沈降法と呼ばれており、この沈
降法によって蛍光体(3a)を被着した後、」二記メタ
ルバックを施しているが、これは蛍光面(3)に直接ア
ルミニウムを蒸着すると、連続した蒸着膜が形成されな
いので、蛍光面(3)の」二にごく薄い有機被膜を形成
してフィルミングを行った後、アルミニウムを蒸着して
いる。
Next, for example, a predetermined amount of an aqueous solution of barium acetate as an electrolyte is injected, and then a suspension of a predetermined phosphor (3a) dispersed in an aqueous solution of water glass as an adhesive is injected for a predetermined period of time. It is left standing to allow the phosphor (3a) to settle. After precipitation of the phosphor (3a), slowly tilt the tube body (+) to drain the clear liquid and dry it with dehumidifying air to prevent the phosphor (3a) from adhering to the face part (2). Complete. This method is generally called the precipitation method, and after the phosphor (3a) is deposited by this precipitation method, a metal back is applied, which involves directly depositing aluminum on the phosphor screen (3). Then, since a continuous vapor deposition film is not formed, a very thin organic film is formed on the second side of the phosphor screen (3) for filming, and then aluminum is vapor-deposited.

すなわち、第2図(b)のように、まず蛍光面 ・(3
)を純水などで湿潤状jルとし、蛍光体(3a)の大部
分を水膜(7)で覆った後、アクリル樹脂を主成分とす
るトルエン、酢酸エチルなどの有機溶剤ラッカを吹きつ
け、水nり(7)の−1−にごく薄いラッカ被11!(
8)を形成する。ついで第2図(c)に下す不必要な領
域、つまり、管本体(1)の蛍光面(3)が形成されて
いない周壁部(22)上にラッカ被膜(8)をノズル(
21)の孔(23)から一定圧力で噴出させた純水(2
0)によって除去する。これは蛍光体(3a)の被着さ
れていない領域にラッカ被膜(8)を形成すると、この
領域に蒸着されたアルミニウム蒸着膜(4)があとのベ
ーキング工程で火ぶくれを起こし、周壁部(22)から
剥れることを防ぐために行われるものである。
That is, as shown in Fig. 2(b), first the fluorescent screen ・(3
) is wetted with pure water, etc., and most of the phosphor (3a) is covered with a water film (7), and then an organic solvent lacquer such as toluene or ethyl acetate containing acrylic resin as the main component is sprayed. , very thin lacquer coating 11 on -1- of water nri (7)! (
8). Next, a lacquer coating (8) is applied using a nozzle (
Pure water (21) is jetted out at a constant pressure from the hole (23) in
0). This is because when a lacquer film (8) is formed on an area where the phosphor (3a) is not coated, the aluminum evaporated film (4) deposited on this area causes blisters during the subsequent baking process, and the peripheral wall (22) This is done to prevent it from peeling off.

つぎに脱湿エヤなどで蛍光面(3)を乾燥し、所定領域
にグラファイト膜(5)を塗布して、これを同様に乾燥
する。最後にアルミニウムの蒸着を行い、アルミニウム
蒸着11!(4)を形成した後、蛍光面形成時に使用し
た有機質材料を400〜420℃に加熱するベーキング
工程により分解除去して蛍光面(3)の形成を完了する
。蛍光面(3)の形成を完了した管本体(1)には、さ
らに、第1図の電子銃(6)を封着し、その後、管本体
(1)の内部を真空に排気して電子銃(6)の活性化を
行い、光源用陰極線管を得る。
Next, the phosphor screen (3) is dried using a dehumidifying air or the like, and a graphite film (5) is applied to a predetermined area, which is similarly dried. Finally, perform aluminum vapor deposition, Aluminum Vapor Deposition 11! After forming (4), the organic material used in forming the phosphor screen is decomposed and removed by a baking process in which it is heated to 400 to 420° C., thereby completing the formation of the phosphor screen (3). The tube body (1) on which the phosphor screen (3) has been formed is further sealed with the electron gun (6) shown in Figure 1, and then the inside of the tube body (1) is evacuated to release electrons. Activate the gun (6) to obtain a light source cathode ray tube.

」−記方法において、ベーキング工程は第3図に示すよ
うに、通常の陰極線管とは異なるベーキング処理を行っ
ている。つまり被焼成物が小さいのと、大量処理および
炉の設置面積と体積の縮少、省エネルギを目的とし、第
3図のような間欠駆動焼成処理を行っている。
As shown in FIG. 3, in the method described above, the baking process is different from that for ordinary cathode ray tubes. In other words, the intermittent drive firing process as shown in FIG. 3 is performed for the purpose of reducing the size of the objects to be fired, mass processing, reducing the installation area and volume of the furnace, and saving energy.

第3図において、アルミニウム蒸着膜(4)を形成した
管本体(1)は焼成冶具(31)に乗せられ、ベーキン
グ処理炉入口(32)へ配置ぎれ、数100本単位ごと
に焼成室(33)へ駆動ベルト(313)により搬送す
る。このとき、仕切扉(37) 、 (37) 、 (
3?)は同時に上方に移動し開放される。搬送により管
本体(1)が焼成室(33)に配置されると、仕切扉(
37)、(37) 、 (3?)はすべてもとのしやへ
い位置に降され、これより焼成が開始される。このとき
の焼成温度曲線は第4図の(a)で示す。こうして所定
時間焼成された管本体(1)はつぎに冷却室(34)へ
駆動ベルト(3B)により搬送される。このとき、仕切
扉(37) 、(3?) 、(37)は上方へ移動し開
放状態となっていることはいうまでもない。同時に入口
(32)に配置されたつぎの管本体(1)数100本は
焼成室(33)へ配置され、その後前述と同じように焼
成処理がなされる。このとき、焼成室(34)の管本体
(1)は焼成処理が行われるのと同時間冷却される。こ
うして焼成処理が完了すると、冷却室(34)の管本体
(1)は出口(35)へ、焼成室(33)の管本体(1
)は焼成室(34)へ、入口(32)の管本体(1)は
焼成室(33)へと同様のことがくり返され、ベーキン
グ工程を完了する。
In FIG. 3, the tube body (1) on which the aluminum vapor deposited film (4) has been formed is placed on a baking jig (31), placed at the baking furnace entrance (32), and placed in the baking chamber (33) in units of several hundred tubes. ) by a drive belt (313). At this time, the partition doors (37), (37), (
3? ) simultaneously moves upward and is released. When the tube body (1) is placed in the firing chamber (33) by transportation, the partition door (
37), (37), and (3?) are all lowered to their original positions, and firing begins from there. The firing temperature curve at this time is shown in FIG. 4(a). The tube body (1) thus fired for a predetermined period of time is then conveyed to the cooling chamber (34) by the drive belt (3B). At this time, it goes without saying that the partition doors (37), (3?), and (37) move upward and are in the open state. At the same time, the next several hundred tube bodies (1) placed at the inlet (32) are placed in the firing chamber (33), and are then fired in the same manner as described above. At this time, the tube body (1) of the firing chamber (34) is cooled for the same time as the firing process is performed. When the firing process is completed in this way, the tube body (1) of the cooling chamber (34) is transferred to the outlet (35), and the tube body (1) of the firing chamber (33) is transferred to the outlet (35).
) enters the baking chamber (34), and the tube body (1) at the inlet (32) enters the baking chamber (33), and the same process is repeated to complete the baking process.

通常のアクリル樹脂を主成分とする有機被膜の熱分解特
性は第5図に示すように200〜300°Cのところで
大量に分解ガスを発生する。しかし現状のベーキング処
理では、第4図の(a)の温度曲線でもわかるように、
通常の陰極線管に比べてかなり厳しい温度上昇を行って
いるため、管本体(1)の周壁部(22)に残存するラ
ッカ被膜の熱分解ガスが一1■に多♀−に発生する。そ
の結果、管本体(1)の周壁部(第2図(C)参f!l
−り (22)のアルミニウム蒸着膜(4)が第6図に
示すように、火ぶくれを起こし、ガラスの周壁部(22
)から剥離することになる。なぜならば、蛍光面(3)
の蛍光体(3a)の被着部では、蛍光体(3a)粒子の
突起部が無数にあり、アルミニウム蒸着膜(4)にはそ
の突起部によりピンホールが無数にできる。そのため、
蛍光体(3a)被着部ではラッカ被膜(8)の分解ガス
は前述ピンホールより放散するが、周壁ffl (22
)では蛍光体(3a)の被着がほとんどなく、ガラス壁
土に直接ラッカ被膜(8)が被着し、さらに、その上か
らアルミニウム蒸着膜(4)が被着されているため、急
激な分解ガスの放散により、アルミニウム蒸着膜(4)
に火ぶくれを招くこととなる。
As shown in FIG. 5, the thermal decomposition characteristics of an ordinary organic coating mainly composed of acrylic resin generate a large amount of decomposed gas at temperatures of 200 to 300°C. However, with the current baking process, as can be seen from the temperature curve in Figure 4 (a),
Since the temperature is raised much more severely than in a normal cathode ray tube, many thermal decomposition gases from the lacquer coating remaining on the peripheral wall (22) of the tube body (1) are generated. As a result, the peripheral wall of the tube body (1) (see Fig. 2 (C) f!
- As shown in Figure 6, the aluminum vapor deposited film (4) of (22) has blistered and the surrounding wall of the glass (22)
). Because fluorescent screen (3)
In the part where the phosphor (3a) is adhered, there are countless protrusions of the phosphor (3a) particles, and the aluminum evaporated film (4) has innumerable pinholes due to the protrusions. Therefore,
At the phosphor (3a) adhered part, the decomposed gas of the lacquer film (8) is diffused through the aforementioned pinhole, but the surrounding wall ffl (22
), there is almost no adhesion of the phosphor (3a), and the lacquer film (8) is directly deposited on the glass wall soil, and the aluminum evaporated film (4) is further deposited on top of it, so rapid decomposition occurs. Due to gas diffusion, aluminum vapor deposition film (4)
This can lead to blisters.

前述のような原因により、アルミニウム蒸着膜(4)が
火ぶくれを起こし、ガラスの周壁部(22)がら剥離し
、これが蛍光面(3)に刺着すると、発光効率が低下し
たり、また、電子銃(6)に旧着すると、スパークの原
因となるなどの問題を生じる。
Due to the causes mentioned above, the aluminum vapor deposited film (4) causes blisters, peels off from the glass peripheral wall (22), and if this sticks to the phosphor screen (3), the luminous efficiency may decrease or If the electron gun (6) is old, it may cause problems such as causing sparks.

[発明の概要] この発明は、」二記従来の欠点を解消するためになされ
たもので、ベーキング工程のうち、間欠駆動焼成処理方
法における加熱−」−昇温度曲線を緩和したものである
。つまり従来は焼成室に管本体が搬入されると、すぐに
加熱を開始していたが、これを焼成室に管本体が搬入S
れてもすぐに加熱を加えないで、前回の加熱の予熱によ
り一定温度まで上2させ1所定の温度に到達すると、加
熱を開始することにより、ガラス周壁部のアルミニウム
膜の火ぶくれを生じない光源用陰極線管の製造方法を提
供することを目的とする。
[Summary of the Invention] The present invention was made in order to eliminate the drawbacks of the prior art described in section 2, and is to relax the heating temperature rise curve in the intermittent drive firing method in the baking process. In other words, in the past, heating started immediately when the tube body was brought into the firing chamber;
Even if it is heated, do not heat it immediately, but let it rise to a certain temperature by preheating from the previous heating.1 When the predetermined temperature is reached, heating will start, causing blistering of the aluminum film on the glass peripheral wall. An object of the present invention is to provide a method for manufacturing a cathode ray tube for a light source.

[発明の実施例] 以下、この発明の一実施例を図面にしたがって説明する
。なお、以下の説明において、−に記従来技術と同一1
分については説明を省略する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. In addition, in the following explanation, the same 1 as the prior art described in -
The explanation regarding the minutes will be omitted.

この発明の実施例の特徴とするところは、間欠駆動焼成
処理方法において、焼成室(第3図参照) (33)に
おける加熱開始をタイマ制御により遅らせたことである
。つまり焼成室(33)に管本体(I)々)″搬入され
て仕切扉(37)によりじゃへいされた後、前回の加熱
予熱により管本体(1)を加熱し、本格的な加熱はタイ
マ制御により遅らせて、第5図に示す分解ガスの天敵に
放散する温度伺近2゜O〜300 ’Cの加熱」−昇曲
線をゆるくし、分解ガス放散を少量ずつ飛散させて、ベ
ーキング工程におけるアルミニウム被膜の火ぶくれをな
くしたことである。
A feature of the embodiment of the present invention is that in the intermittent drive firing processing method, the start of heating in the firing chamber (see FIG. 3) (33) is delayed by timer control. In other words, after the tube bodies (I)'' are carried into the firing chamber (33) and blocked by the partition door (37), the tube bodies (1) are heated by the previous heating preheating, and the full-scale heating is started by a timer. Heating is delayed by control to a temperature range of 2° to 300'C that dissipates into the natural enemy of decomposed gas shown in Figure 5. - The rising curve is made gentler, and the decomposed gas is dispersed little by little, and the heating is performed in the baking process. This eliminates blisters on the aluminum coating.

すなわち、従来の技術では、通常焼成室(33)に管本
体(1)が搬入されると、すぐに加熱していたが、この
実施例では、管本体(1)を焼成室(33)に搬入後、
10分間は加熱を加えないで予熱のみの加熱とし、管本
体(1)がt o o −150’0 ニなってから本
格的な加熱を加えるようにした。このときの加熱温度t
lh線を第4図の(b)で示す。
That is, in the conventional technology, the tube body (1) is heated immediately after being brought into the firing chamber (33), but in this embodiment, the tube body (1) is heated immediately after being brought into the firing chamber (33). After loading,
No heating was applied for 10 minutes, only preheating was performed, and full-scale heating was applied after the tube body (1) reached t o -150'0. Heating temperature t at this time
The lh line is shown in FIG. 4(b).

なお他の製造1−程は、−■二記従来技術と同様である
ので、その説明は省略する。また、上記実施例では、焼
成室での加熱開始を10分間遅らせる方法としたが、こ
れより短時間だと、アルミニウム蒸着膜の火ぶくれ防止
効果が少なくなり、長詩間だと効果はさらに」二がるが
、処理時間が増大する不利があり、本実施例が最良であ
った。
Note that the other manufacturing steps 1-1 are the same as those in the prior art described in 2), so the explanation thereof will be omitted. In addition, in the above example, the start of heating in the firing chamber was delayed for 10 minutes, but if the time is shorter than this, the effect of preventing blistering of the aluminum vapor-deposited film will be reduced, and if the time is long, the effect will be even more effective. However, this example had the disadvantage of increasing the processing time, so this example was the best.

本実施例ではガス焼成炉で用いたが、電気焼成炉でも同
様の効果を奏する。また、間欠駆動焼成処理方法のベー
キング工程ならば、光源用陰極線管ノベーキング処理の
みではなく、他の陰極線管にも応用可能である。
Although a gas firing furnace was used in this embodiment, a similar effect can be obtained using an electric firing furnace. Furthermore, the baking process of the intermittent drive baking process can be applied not only to the baking process for cathode ray tubes for light sources, but also to other cathode ray tubes.

[発明の効果] 以上説明したこの発明によれば、ベーキング工程におい
て、ラッカ被膜の分解ガスの放散速度が緩和され、アル
ミニウム蒸着膜の火ぶくれの発生がなくなり、アルミニ
ウム蒸着膜の剥離による蛍光面輝度の低下や、スパーク
などの欠点が解消され、工程の歩留りや信頼性が向上す
る。
[Effects of the Invention] According to the invention described above, in the baking process, the rate of dissipation of the decomposed gas of the lacquer film is reduced, the occurrence of blistering of the aluminum vapor deposition film is eliminated, and the phosphor screen due to peeling of the aluminum vapor deposition film is eliminated. Defects such as reduced brightness and sparks are eliminated, improving process yield and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光源用陰極線管の一例を示す断面図。 第2図(a)〜(C)は光源用陰極線管の従来の製造過
程の説明図、第3図は間欠駆動焼成炉を示す簡略図、第
4図は加熱温度曲線、第5図はラッカ被膜膜の分解率を
示すグラフ、第6図はアルミニウム蒸着膜の火ぶくれ状
態を示す簡略図である。 (1)・・・管本体、(2)・・・フェース部、(3)
・・・蛍光面、(4)・・・メタルバック、(8)・・
・ラッカ被膜、(31)・・・焼成治具、(33)・・
・焼成室、(34)・・・冷却室。 なお、図中同一符号は同一または相当部を示す。 −代理人 大 岩 増 雄 第3図 第4図 11間昭6O−257040(b) 第51月 第6図
FIG. 1 is a sectional view showing an example of a cathode ray tube for a light source. Figures 2 (a) to (C) are explanatory diagrams of the conventional manufacturing process of cathode ray tubes for light sources, Figure 3 is a simplified diagram showing an intermittent drive firing furnace, Figure 4 is a heating temperature curve, and Figure 5 is a lacquer FIG. 6 is a graph showing the decomposition rate of the coating film, and is a simplified diagram showing the blistering state of the aluminum vapor deposited film. (1)...Pipe body, (2)...Face part, (3)
... Fluorescent screen, (4) ... Metal back, (8) ...
・Lacquer coating, (31)...Baking jig, (33)...
- Firing chamber, (34)...cooling chamber. Note that the same reference numerals in the figures indicate the same or equivalent parts. - Agent Masuo Oiwa Figure 3 Figure 4 Figure 11 60-257040 (b) 51st Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)真空外囲器を構成するガラス製の管本体の少なく
とも一端のフェース部内面に蛍光面を形成し、この蛍光
面上に、アクリル樹脂を主成分とする有機溶剤からなる
ラッカ被膜を形成し、」二記ラッカ被膜−ににメタルバ
ックを施した後、焼成室と冷却室それぞれ独立した室を
持ち、上記管本体を焼成拍其に乗せ、上記焼成室から冷
却室へと順次間欠的に搬送させる間欠駆動加熱焼成炉に
より上記ラッカ被〃Qを分解除去する光源用陰極線管の
製造方法において、上記間欠駆動加熱焼成炉の焼成室加
熱工程は前記管本体が加熱工程に配置されたのち、所定
時間経過後、加熱動作を開始することを特徴とする光源
用陰極線管の製造方法。
(1) A phosphor screen is formed on the inner face of at least one end of the glass tube body that constitutes the vacuum envelope, and a lacquer film made of an organic solvent containing acrylic resin as the main component is formed on the phosphor screen. Then, after applying a metal back to the lacquer coating mentioned above, a firing chamber and a cooling chamber are provided, each having an independent chamber, and the tube body is placed on the firing chamber, and the tube body is sequentially and intermittently transferred from the firing chamber to the cooling chamber. In the method for manufacturing a cathode ray tube for a light source, in which the lacquer coating Q is decomposed and removed by an intermittent drive heating and firing furnace, the firing chamber heating step of the intermittent drive heating and firing furnace is performed after the tube body is placed in the heating step. A method for manufacturing a cathode ray tube for a light source, characterized in that a heating operation is started after a predetermined period of time has elapsed.
JP11344484A 1984-05-31 1984-05-31 Producing method for light source cathode-ray tube Granted JPS60257040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11344484A JPS60257040A (en) 1984-05-31 1984-05-31 Producing method for light source cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11344484A JPS60257040A (en) 1984-05-31 1984-05-31 Producing method for light source cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS60257040A true JPS60257040A (en) 1985-12-18
JPH0318290B2 JPH0318290B2 (en) 1991-03-12

Family

ID=14612379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11344484A Granted JPS60257040A (en) 1984-05-31 1984-05-31 Producing method for light source cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS60257040A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132185A1 (en) 2010-04-20 2011-10-27 Lior Bazak A multi-purpose convertible carriage

Also Published As

Publication number Publication date
JPH0318290B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US2666864A (en) Image intensifier tube
JPH0343937A (en) Manufacture of image tube
JPS60257040A (en) Producing method for light source cathode-ray tube
JPS601735B2 (en) cathode ray tube
US2178238A (en) Electric discharge device
US5723170A (en) Method of forming fluorescent screen of cathode ray tube
US3526527A (en) Process of forming a cathodoluminescent screen
JPH08315731A (en) Manufacture of cathode ray tube
JPS5897237A (en) Manufacture of light source cathode ray tube
KR940007646B1 (en) Filming compound and fluorescent layer manufacturing method using it
JPH0241140B2 (en) INKYOKUSENKANNOSEIZOHOHO
TW583386B (en) Method for manufacturing high brightness planar lamp
JP3376608B2 (en) Cold cathode discharge lamp
JPH0311057B2 (en)
JPH04249848A (en) Display vacuum tube
KR980011638A (en) Aluminum film formation method of cathode ray tube
JPS6347102B2 (en)
KR19980060792A (en) Method of manufacturing cathode ray tube
JPS60202184A (en) Display device and production thereof
JPS59103246A (en) Manufacturing process for cathode-ray tube
JPS6153816B2 (en)
JPH04269425A (en) Manufacturing method of gas discharging display panel
JPH03122944A (en) Manufacture of florescent surface of color cathode-ray tube
JPH01267931A (en) Manufacture of small cathode ray tube
JPS58214267A (en) Cathode-ray tube for light source