JPS60256506A - Low boiling point medium turbine - Google Patents
Low boiling point medium turbineInfo
- Publication number
- JPS60256506A JPS60256506A JP11079184A JP11079184A JPS60256506A JP S60256506 A JPS60256506 A JP S60256506A JP 11079184 A JP11079184 A JP 11079184A JP 11079184 A JP11079184 A JP 11079184A JP S60256506 A JPS60256506 A JP S60256506A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- valve
- temperature difference
- warm
- wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/10—Heating, e.g. warming-up before starting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕、:。[Detailed description of the invention] [Field of application of the invention]:.
本発明は、タービン加減弁暖機制御方法に係り、特5.
蒸気止弁に併設したバイパス弁の開閉、により、伸動流
体の一部を蒸気室に導入することにより暖機を行なうタ
ービンの、加減弁暖機方法に関する。The present invention relates to a turbine control valve warm-up control method, and features 5.
The present invention relates to a method for warming up a control valve of a turbine, which warms up a turbine by introducing a portion of expansion fluid into a steam chamber by opening and closing a bypass valve attached to a steam stop valve.
〔発明の背景〕、。[Background of the invention].
発電プラントを例とした場合社、タービン加減弁は、肉
厚が厚く、起動過程で蒸気室の内壁と外壁のメタル温度
に1.温度差が生じるのが通例である。Taking a power generation plant as an example, the turbine control valve has a thick wall, and during the start-up process, the metal temperature of the inner and outer walls of the steam chamber changes to 1. It is usual for temperature differences to occur.
この温度差が極端で、しばしば繰り返されるとクリープ
ひずみの集積によるき裂が生じることがある。このよう
な・き裂は当然、タービンの寿命に悪影響を及ぼすので
、これを回避するために比較的長期間停止した後の起動
で、メタル温度が低い場合に、タービン通気に先立って
暖機が行なわれるO ・ ゛
第1図は、暖機の、対象としている箇所を示す断面図で
、蒸気止弁から蒸気加減弁を通してタービン初段後に至
る蒸気経路の概念図である。ここで1は蒸気止弁、2は
蒸気止弁バイパス弁、3はケーシング、4は蒸気加減弁
、5は蒸気加減弁蒸気室であり、6,7.8はそれぞれ
、タービン初段動翼、ダイヤフラム、ドレン弁である。If this temperature difference is extreme and repeated often, cracks may occur due to the accumulation of creep strain. Such cracks naturally have a negative impact on the lifespan of the turbine, so to avoid this, if the metal temperature is low when starting up after a relatively long shutdown, warm up the turbine before venting. Figure 1 is a cross-sectional view showing the target locations during warm-up, and is a conceptual diagram of the steam path from the steam stop valve through the steam control valve to the rear of the first stage of the turbine. Here, 1 is a steam stop valve, 2 is a steam stop valve bypass valve, 3 is a casing, 4 is a steam control valve, 5 is a steam control valve steam chamber, and 6, 7.8 are a turbine first stage rotor blade and a diaphragm, respectively. , is the drain valve.
。.
暖機の対象としている箇所は、蒸気加減弁を含んだ蒸気
加減弁蒸気室であ、る。(タービンケーシングにおいて
、熱応力に対して最も危険な部分は、 □加減弁及び初
段ノズル付近の高温部とされている。)
従来、タービン加減弁の暖機方法としては、蒸気室の外
壁メタル温度が規定値以下ということから暖機要と判定
し、第2図に示す要領で、加減弁全閉を確認して、蒸気
止弁バイパス弁の開閉を規定パターンで繰り返して行な
う方法が広く知られている。尚、ここで21は蒸気室内
壁メタル温度、22は蒸気室外壁メタル温度、23は蒸
気止弁バイパス弁開度であり、24.25はそれぞれ暖
機開始、暖機完了条件である。The area targeted for warming up is the steam chamber containing the steam control valve. (In the turbine casing, the most dangerous parts for thermal stress are the high temperature parts near the regulator valve and the first stage nozzle.) Conventionally, the warm-up method for the turbine regulator valve is based on the temperature of the outer wall metal of the steam chamber. It is widely known that the steam stop valve bypass valve is repeatedly opened and closed in a specified pattern after determining that it is necessary to warm up the steam stop valve because it is below the specified value, and confirming that the control valve is fully closed as shown in Figure 2. ing. Here, 21 is the steam chamber wall metal temperature, 22 is the steam chamber outer wall metal temperature, 23 is the steam stop valve bypass valve opening degree, and 24.25 is the warm-up start and warm-up completion conditions, respectively.
この従来技術の特徴は、バイパス弁の開、閉のサイクル
を、第2図にも示したように規定時間々隔(T、、Tc
)で固定したパターン側胴としている点であるが、この
従来方式には、次の理由から暖機時間の最短化が図れな
いという大きな欠点をもつ。The feature of this prior art is that the opening and closing cycles of the bypass valve are performed at specified time intervals (T, , Tc) as shown in FIG.
), but this conventional method has a major drawback in that the warm-up time cannot be minimized for the following reason.
、) すなわち、蒸気加減弁蒸気室は、通常蒸気室の内
壁メタル温度と外壁メタル温度との温度差で、管理され
るのに対し、温度差とは直接関係なく、あらかじめ決め
た一定のパターンで制御させているためである。(理屈
からすれば、実機テストを繰り返すことにより、パター
ンを修正して行けば。, ) In other words, the steam chamber is normally controlled by the temperature difference between the inner wall metal temperature and the outer wall metal temperature of the steam chamber, but the steam control valve is controlled by a predetermined pattern that is not directly related to the temperature difference. This is because they are controlled. (In theory, the pattern should be corrected by repeating actual machine tests.
ある程度の時間重縮が可能になるはずであるが、現実的
には、かなりの手間と時間が必要であり問題が多い、)
尚、暖機時間の最短化ということに対しては、発電プラ
ントの場合、加減弁暖機に要する時間がプラントの起動
時間に、大きく影響を与えているため(350MW級火
力発電プラントの温機起動の例で、ボイラ点火から定格
負荷(350MW)までのプラント起動所要時間754
分に対し、暖機時間53分の例がある。)、プラント起
動時間を支配する要因の一つとして、高頻度起動停止運
用を計画するプラントでは、特に最短イ(に努力するよ
うさけばれている。勿論、プラント起動時間の短縮は、
給電要求に対する即応性の向上と起動損失の低減を意図
するものである i □′□′・又、暖機の完了判定に
ついては、通“常蒸気室の外壁メタル温度が規定値以上
に上がったことで行なっている。It should be possible to condense the time to a certain extent, but in reality, it requires a lot of effort and time, and there are many problems. In this case, the time required to warm up the control valve has a large effect on the plant start-up time. Required time 754
There is an example of a warm-up time of 53 minutes. ), which is one of the factors governing plant start-up time, and plants that plan for frequent start-up/shutdown operations are urged to make efforts to achieve the shortest possible start-up time.
This is intended to improve responsiveness to power supply requests and reduce startup loss. This is what we do.
本発明の目的は、蒸気加減弁蒸気室の内壁と外壁のメタ
ル温度差が、制限値内一杯にはいるよう・ 維持しつつ
、最短で暖機を行なうことのできるタービン加減弁暖機
制御方法を提供するにある。An object of the present invention is to provide a turbine control valve warming-up control method that can warm up the turbine in the shortest possible time while keeping the metal temperature difference between the inner wall and the outer wall of the steam control valve steam chamber fully within the limit value. is to provide.
(発明の概要〕
本発明の要点は、蒸気加減弁蒸気室の内壁と外壁のメタ
ル温度差を常に監視し、温度差が予め設定した値(制限
値に多少の余裕を取すオーバシュートを考慮する。)を
越えた場合、蒸気止弁バイパス弁を全閉するように制御
し、又、逆に、予め設定した値(バイパス弁を全閉する
温度差設定値に適度の動作すきまを持たせる。)より下
がった場合に、バイパス弁を全開(又は、規定開度)に
するように制御することにある。(Summary of the Invention) The key point of the present invention is to constantly monitor the metal temperature difference between the inner wall and outer wall of the steam chamber of the steam control valve, and set the temperature difference to a preset value (taking into account overshoot to allow some margin for the limit value). ), the steam stop valve bypass valve is controlled to be fully closed, and conversely, a preset value (temperature difference setting value for fully closing the bypass valve is controlled to have an appropriate operating clearance) .), the bypass valve is controlled to be fully open (or to a specified opening degree).
以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.
第3図、第4図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 3 and 4. FIG.
第3図は、暖機における蒸気止弁バイパス弁の操作方法
を、蒸気室の内壁及び外壁メタル温度に対応させて示し
たものであり、第4図は、第3図の蒸気止弁バイパス弁
の操作方法を、フローチャートに変換して示したもので
ある。Figure 3 shows how to operate the steam stop valve bypass valve during warm-up in response to the temperature of the inner wall and outer wall metal of the steam chamber, and Figure 4 shows the operation method of the steam stop valve bypass valve in Figure 3. The operating method is converted into a flowchart.
第3図に示されたように、蒸気止弁バイパス弁による暖
機を、弁の開閉によるという点は、従来技術と基本的に
同じであるが、本発明では時間軸方向に■及び■で示し
たように、二つの制御モードに区分し、区分Iは、従来
と同じ一定のパターン制御を、区分■で、温度差監視制
御を採用するようにしている。As shown in FIG. 3, the warm-up by the steam stop valve bypass valve is basically the same as the conventional technology in that the valve is opened and closed, but in the present invention, there are As shown, the control mode is divided into two control modes, and in category I, the same fixed pattern control as in the past is used, and in category 2, temperature difference monitoring control is adopted.
以下、順を追って説明する。The following is a step-by-step explanation.
24は、暖機開始条件であり、通常、r蒸気室外壁メタ
ル温度が規定値以下(暖機要の判定条件)」の他に、「
蒸気条件が成立している。」「加減弁が全閉している。24 is the warm-up start condition, and normally, in addition to "r steam room outer wall metal temperature is below the specified value (warm-up required judgment condition)", "
Steam conditions are established. "The control valve is fully closed.
」、「ドレン弁が規定開度゛になっている。」等の条件
との複合条件で構成される。",""The drain valve is at the specified opening.", etc. are combined conditions.
暖機開始条件が成立すると、まず、弁を10時間だけ開
き、その後、全閉し、T′。時間後に再度開くといった
、区分■のパターン制御を実行する。When the warm-up start conditions are met, first, the valve is opened for 10 hours, then fully closed, and T' is reached. Executes pattern control in category (■), such as reopening after a certain amount of time.
この制御モード採用の意図は、暖機初期、蒸気室の内壁
メタル温度が急激に上昇することを防止するためである
。The purpose of adopting this control mode is to prevent the temperature of the inner wall metal of the steam chamber from rising rapidly during the initial stage of warm-up.
Tc時間後に再度弁を開いたら、T6m時間後に(これ
は別に設置しなくともよいが、一応安定のため入れたも
の。)、内壁と外壁のメタル温度差が規定値以下(制限
値に対し、オーバーシュートを考えて多少の余裕を取っ
た値:、1lT1)をチェックし、区分■の温度差監視
制御−に移行させる。When the valve is opened again after Tc time, after T6m time (this does not need to be installed separately, but it is included for stability purposes), the metal temperature difference between the inner wall and outer wall is below the specified value (relative to the limit value). Check the value: , 1lT1) with some margin in consideration of overshoot, and shift to the temperature difference monitoring control of category (2).
温度差監視制御領域では、温度差制限値を越えない範囲
で、どんどん外壁メタル温度の上昇を図る。In the temperature difference monitoring control area, the temperature of the outer wall metal is gradually increased within a range that does not exceed the temperature difference limit value.
温度差がATIになったら、弁を全閉し、温度差が減少
するのを待つ、適“当な動作すきまを設定しくATI−
IT2) 、温度差がJT2以下にな−) j= 6・
再度弁を開“・外壁1″温度OJ″1図る。When the temperature difference reaches ATI, fully close the valve, wait for the temperature difference to decrease, and set an appropriate operating clearance.
IT2), the temperature difference is less than JT2-) j= 6・
Open the valve again and check the temperature of the outer wall 1.
これを繰り返し、蒸気室の外壁メタル温度が規定値以上
になったら暖機を終了する。25は、その暖機終了条件
である。なお、図中31.32゜33はそれぞれ蒸気室
内壁メタル温度、蒸気室外壁メタル温度、蒸気止弁バイ
パス弁開度である。This is repeated until the temperature of the outer wall metal of the steam room reaches or exceeds the specified value, and the warm-up is completed. 25 is the warm-up end condition. Note that 31.32° and 33 in the figure represent the steam chamber inner wall metal temperature, the steam chamber outer wall metal temperature, and the opening degree of the steam stop valve bypass valve, respectively.
第4図では、これらの動きをフローチャートで示してい
る。FIG. 4 shows these movements in a flowchart.
41は、暖機要否の判定回路であり、「外壁メタル温度
規定値以下か?(以下でYES)Jである。規定値以下
であれば、42で弁を開き、T0時間保持後43で弁を
閉じ、Tc待時間保持後4で弁開とパターン制御を行な
い、T6a時間後に、45で内壁と外壁のメタル温度差
をチェックしく「温度差規定値以上か?(以上でYES
)に、dTl)温度差監視制御に移行させる。Reference numeral 41 is a circuit for determining whether or not warm-up is necessary, and the answer is "Is the temperature of the outer wall metal below the specified value? (YES below)". Close the valve, hold the Tc waiting time, open the valve and perform pattern control at 4, and after T6a time, check the metal temperature difference between the inner and outer walls at 45.Is the temperature difference greater than the specified value?
) to dTl) temperature difference monitoring control.
46は、「温度差規定値以下は?(以下でYES);A
r1)Jの判定回路であり、47は、弁開、48は、弁
閉、49は、暖機終了の判定回路であ ′す)([外壁
メタル温度規定値以上か?(以上でYES)J )、4
9”l’終了が判定され、ま1、 ・ 1(善
45〜48で温度差監視制御が実行される。46 is “Is the temperature difference below the specified value? (YES below);A
r1) J judgment circuit, 47 is valve open, 48 is valve closed, 49 is warm-up completion judgment circuit) J), 4
9"l' end is determined, and temperature difference monitoring control is executed at 45 to 48.
尚、終了判定のメタル温度と暖機要否判定のメタル温度
は、同じ蒸気室の外壁メタル温度である゛が、通常は、
終了判定メタル温度を暖機要否判定メタル温度に対し士
数度高くシ、暖機完了後、タービン通気までの間に温度
が降下してもよいように、その分捕なうようにしている
。Note that the metal temperature for determining completion and the metal temperature for determining whether or not warm-up is necessary are the same outer wall metal temperature of the steam room, but normally,
The metal temperature for determining completion is set several degrees higher than the metal temperature for determining whether or not warm-up is necessary, and the temperature is taken care of so that it is possible for the temperature to drop between the time the warm-up is completed and the turbine ventilation. .
本発明iこよれば、内壁と外壁のメタル温度差を制限値
内一杯に維持しつつ、暖機を行なうことが−できるので
、暖機時間の短縮が図れ、プラント保証起動時間の短縮
を通して、給電要求に対する即応性の向上、起動損失の
低減を;効果がある。According to the present invention, it is possible to warm up while maintaining the metal temperature difference between the inner wall and the outer wall within the limit value, so that the warm-up time can be shortened, and the guaranteed start-up time of the plant can be shortened. Effective in improving responsiveness to power supply requests and reducing startup loss.
第1!lは、暖機の対象としている箇所を示す。
タービン内の蒸気経路の概念図、第2図は、従来の暖機
制御方法の説明図、第3図は、本発明の彎::l::@
:l:117;::74“”°“°°°”T o p
T e t T6m ”’時間、I、I[・・・区分。
代理人 弁理士 高橋明夫
第1 口1st! l indicates the location targeted for warming up. A conceptual diagram of the steam path in the turbine, Fig. 2 is an explanatory diagram of the conventional warm-up control method, and Fig. 3 is the curvature of the present invention::l::@
:l:117;::74""°"°°°"T op
T e t T6m ”' Time, I, I [...Category. Agent Patent attorney Akio Takahashi 1st address
Claims (1)
気加減弁をレリー、ズに設置し、前記蒸ネ止弁から前記
蒸気加減弁までの蒸気室の暖機を、前記蒸気止弁に併設
したバイパス弁の開閉により行なうタービンにおいて、 剪、記蒸気止弁の前記バイパス弁の開閉制御を、前駆蒸
気室の内壁と、外壁の、メタル温度差により行′なうこ
とを特徴とするタービン加減弁暖−制御方法・ ・[Claims] 1. A steam stop valve that shuts off the working fluid and a steam control valve that controls the flow rate are installed in the release, and the steam chamber from the steam stop valve to the steam control valve is warmed up. In the turbine, the opening and closing of the bypass valve of the steam stop valve is controlled by the metal temperature difference between the inner wall and the outer wall of the precursor steam chamber. Turbine control valve warming control method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11079184A JPH061041B2 (en) | 1984-06-01 | 1984-06-01 | Turbin control valve warm-up control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11079184A JPH061041B2 (en) | 1984-06-01 | 1984-06-01 | Turbin control valve warm-up control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60256506A true JPS60256506A (en) | 1985-12-18 |
JPH061041B2 JPH061041B2 (en) | 1994-01-05 |
Family
ID=14544720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11079184A Expired - Lifetime JPH061041B2 (en) | 1984-06-01 | 1984-06-01 | Turbin control valve warm-up control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH061041B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013029103A (en) * | 2012-07-03 | 2013-02-07 | Mitsubishi Heavy Ind Ltd | Anti-icing method for gas turbine |
-
1984
- 1984-06-01 JP JP11079184A patent/JPH061041B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013029103A (en) * | 2012-07-03 | 2013-02-07 | Mitsubishi Heavy Ind Ltd | Anti-icing method for gas turbine |
Also Published As
Publication number | Publication date |
---|---|
JPH061041B2 (en) | 1994-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4657057B2 (en) | Reheat steam turbine plant | |
JPS60256506A (en) | Low boiling point medium turbine | |
JP2633720B2 (en) | Pre-warming method for steam turbine | |
JP2002070506A (en) | Combined cycle power generation plant and warming and cooling steam supply method of combined cycle power generation plant | |
JP2013217200A (en) | Steam turbine plant | |
US6626637B2 (en) | Cooling method for turbines | |
JPS63227909A (en) | Method for turbine governor valve warming up control | |
JPS60206905A (en) | Re-heating steam turbine warm-up device | |
JP2003020905A (en) | Operating system and operating method for reheating electric power plant | |
JPS6239646B2 (en) | ||
JP2953794B2 (en) | Steam control valve chest warming method | |
JPH02130202A (en) | Combined plant | |
JPS63179102A (en) | Warming method for steam turbine | |
JPS5867906A (en) | Method for controlling thermal stress of a rotor | |
JPH0231206B2 (en) | FUKUGOHATSU DENPURANTO | |
JPS60164606A (en) | Piping warming up control device | |
JPH08260911A (en) | Restarting method and controller for uniaxial type combined cycle power plant | |
JPH06330707A (en) | Control method of reheating type steam turbine | |
JPS6239657B2 (en) | ||
JPH0350084B2 (en) | ||
JPS6270605A (en) | Warming control device | |
JPS63162907A (en) | Control for combined power generation plant | |
JPH04298602A (en) | Steam turbine starting equipment | |
JPH033044B2 (en) | ||
JPS60184909A (en) | Auxiliary steam temperature decrease controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |