JPS60256092A - Measuring device for water level in nuclear reactor - Google Patents

Measuring device for water level in nuclear reactor

Info

Publication number
JPS60256092A
JPS60256092A JP59110816A JP11081684A JPS60256092A JP S60256092 A JPS60256092 A JP S60256092A JP 59110816 A JP59110816 A JP 59110816A JP 11081684 A JP11081684 A JP 11081684A JP S60256092 A JPS60256092 A JP S60256092A
Authority
JP
Japan
Prior art keywords
water level
reactor
temperature
differential pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59110816A
Other languages
Japanese (ja)
Inventor
鈴木 康晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59110816A priority Critical patent/JPS60256092A/en
Publication of JPS60256092A publication Critical patent/JPS60256092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉水位計測装置に係わり、特に沸騰水型
原子力発電所の原子炉等に使用するに好適な原子炉水位
計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear reactor water level measuring device, and particularly to a nuclear reactor water level measuring device suitable for use in a nuclear reactor of a boiling water nuclear power plant.

〔発明の背景J 従来の原子力発電所の原子炉水位計測装置は。[Background of the invention J Conventional nuclear power plant reactor water level measurement equipment.

原子炉内圧力が、約70kg/a1gと非常に高く。The pressure inside the reactor is extremely high, approximately 70 kg/a1g.

はた通常水位を精度良く計測する必要性から、原子炉上
部と下部から圧力を検出し、上部側を基準水位とする差
圧検出方式を採用している。ここで、基準水位とする検
出配管をレファレンス・レグ(REF、LEG’)、下
部側の検出配管をバリアプル・レグ(VAR,LEG)
と称する。
Because of the need to accurately measure the normal water level, we have adopted a differential pressure detection method in which pressure is detected from the upper and lower parts of the reactor, and the upper part is used as the reference water level. Here, the detection piping used as the reference water level is the reference leg (REF, LEG'), and the detection piping on the lower side is the barrier pull leg (VAR, LEG').
It is called.

本差圧検出方式は、基準面の確保、レファレンス・レグ
とバリアプル・レグの密度差等が重要である。差圧の計
算では、通常運転中の条件下における公称値を使ってお
り、出力100%の通常運転中は、非常に精度の良い計
測を実現している。
In this differential pressure detection method, it is important to ensure a reference plane and the density difference between the reference leg and the barrier leg. In calculating the differential pressure, the nominal value under normal operating conditions is used, and very accurate measurement is achieved during normal operation at 100% output.

しかし、建設段階における起動試験時(低出力時)、プ
ラント起動停止時等では、環境条件が100%出力時と
変わり、前記公称値が、実際の条件と相違し、水位信号
に誤差を生じるという欠点がある。また原子炉事故(特
に冷却材喪失事故等の仮想事故)では、条件が大きく変
わるため、水位信号の誤差は、前記プラント起動停止時
よりも更に大きな誤差を生じ、また冷却材喪失事故時で
は、その特殊な現象としてレファレンス・レグの気相部
近くで減圧沸騰を生じ、これは実験では凝縮槽使用の場
合、水頭で51程度あることがわかっている。これらの
誤差は、原子炉状態を精確には把握できないが1機能上
1判断上は安全側の評価ができるが、精度向上の観点か
らは、欠点と考えられる。
However, during startup tests (at low output) in the construction stage, plant startup and shutdown, etc., the environmental conditions change from those at 100% output, and the nominal value differs from the actual conditions, causing an error in the water level signal. There are drawbacks. In addition, in a nuclear reactor accident (especially a hypothetical accident such as a loss of coolant accident), conditions change significantly, so the error in the water level signal will be even larger than that at the time of plant startup and shutdown, and in the case of a loss of coolant accident, As a special phenomenon, vacuum boiling occurs near the gas phase of the reference leg, and experiments have shown that this boils at a water head of about 51 when using a condensing tank. Although these errors cannot accurately grasp the state of the reactor, they can be evaluated on the safe side from a functional point of view, but they are considered a drawback from the perspective of improving accuracy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラントの如何なる状態、すなわち建
設段階における起動試験時、プラント起動停止時、通常
運転時、原子炉事故時等の状態においても、原子炉の圧
力、環境条件に左右されず、精度良く原子炉水位を計測
する原子炉水位計測装置を提供するにある。
The purpose of the present invention is to provide a system that is independent of reactor pressure and environmental conditions, regardless of the state of the plant, i.e., during start-up tests during the construction stage, during plant start-up and shutdown, during normal operation, during reactor accidents, etc. An object of the present invention is to provide a reactor water level measuring device that accurately measures the reactor water level.

〔発明の概要〕[Summary of the invention]

沸騰水型原子力発電所の原子炉水位計測装置は第1図の
様な基準水位を有する差圧検出方式を採用している1発
生差圧は、レファレンス・レグとバリアプル・レグの水
頭差で計算するが、それは。
The reactor water level measuring device in boiling water nuclear power plants uses a differential pressure detection method that has a reference water level as shown in Figure 1.1 The differential pressure generated is calculated from the water head difference between the reference leg and the barrier leg. But that is.

各部の水温の違いによる密度が大きくきいてくる。The density depends on the difference in water temperature in each part.

すなわち、第1図から発生差圧は、次の様である。That is, from FIG. 1, the generated differential pressure is as follows.

ΔP=(L I) + (fl + Q4)9w + 
CQss +Qs −Q−Qn )L■ ρs ) −((Qt +fisりρ、+6ρLL)=
、((LρLI Q s p、、J+ Q 4/)w 
+ (Qn + n s n 4 )×む−(ら十ag
)ρ−):+−j1(ρ1−ρ、)、ここで。
ΔP=(L I) + (fl + Q4)9w +
CQss +Qs -Q-Qn)L■ ρs) -((Qt +fisriρ, +6ρLL)=
, ((LρLI Q sp,, J+ Q 4/)w
+ (Qn + n s n 4) × M - (ra ten ag
)ρ−):+−j1(ρ1−ρ, ), where.

ΔP:差圧伝送器10に加わる発生差圧Q、二原子炉下
部計測タップ16と下部計装ペネトレーション4までの
鉛直距離 Ω12:上部計装ペネトレーション4と下部計測タップ
16までの鉛直距離 Q3:基準面13の基準面から上部計装ペネトレーショ
ン4までの鉛直距離 Q4:下部計測タップ16から水位計測基準点(レベル
0)までの鉛直距離 ρ :原子炉格納容器2の内側のレファレンスL ・レグ検出配管7内の水の密度 ρ :原子炉格納容器2の内側のバリアプル・H レグ検出配管8内の水の密度 ρ、:原子がl内の蒸気の密度 ρW:原子炉1内の水の密度 p、二原子炉格納容器2外側の検出配管内の水の密度 ρL8中ρLL(”ρL)では、 項CQ、ρLfl−” ”ρLL) =(”l −Qs
)ρ。
ΔP: Differential pressure Q applied to the differential pressure transmitter 10, vertical distance between the two reactor lower measuring taps 16 and the lower instrumentation penetration 4 Ω12: Vertical distance between the upper instrumentation penetration 4 and the lower measuring tap 16 Q3: Standard Vertical distance from the reference plane of surface 13 to upper instrumentation penetration 4 Q4: Vertical distance ρ from lower measurement tap 16 to water level measurement reference point (level 0): Reference L inside reactor containment vessel 2 - Leg detection piping Density of water in 7 ρ: Density of water in barrier pull/H leg detection pipe 8 inside reactor containment vessel 2 ρ, : Density of steam with atoms in l ρW: Density of water in reactor 1 p , where the density of water in the detection pipe outside the two reactor containment vessels 2 is ρLL ("ρL) in ρL8, the term CQ, ρLfl-""ρLL) = ("l -Qs
)ρ.

で1党、=Ω3のときは、ρ、の影響をなくすことがで
きる。
When there is one party and = Ω3, the influence of ρ can be eliminated.

実施工では、これは、困難なため、どうしても事項は残
ってしまう。
In the actual construction, this is difficult, so some items inevitably remain.

この様に密度の影響が大きく、従来技術では。As you can see, the influence of density is large in the conventional technology.

通常運転中の温度条件から密度を与え発生差圧を算出し
ている。また、先に上げた様にQlとQ3を極力同じ様
にする施工上の努力がなされている。
The differential pressure generated is calculated by giving the density based on the temperature conditions during normal operation. Additionally, as mentioned earlier, construction efforts are being made to make Ql and Q3 as similar as possible.

通常運転中を基準にしている為、起動停止時等では、そ
れを頭に描いて操作しているのが実情であり、運転員に
多少の負担を与えている。
Since the standard is based on normal operation, the actual situation is that when starting and stopping, etc., the operator must keep this in mind when operating, which puts some burden on the operator.

しかし、計測上は、極力原子炉事故時でも、精度良く計
測することが好ましい。
However, in terms of measurement, it is preferable to measure as accurately as possible even in the event of a nuclear reactor accident.

以上のプラント状態に左右される水位検出を、解消する
手段として、 (1)プラント状態で変化する密度を補正する。ために
、次の温度・圧力検出器を取付け、温度9圧力補償を行
う。
As a means to eliminate the water level detection that is affected by the plant status described above, (1) correct the density that changes depending on the plant status. For this purpose, install the following temperature/pressure detector and perform temperature and pressure compensation.

a)原子炉温度 b) M−7−心tw−h C)原子炉格納容器内温度 d)原子炉格納容器外温度 以上は必ずしも全部取付ける必要はない。a) Reactor temperature b) M-7-heart tw-h C) Temperature inside the reactor containment vessel d) Temperature outside the reactor containment vessel It is not necessarily necessary to install all of the above.

(2)原子炉事故時の減圧沸騰を補正するためにレファ
レンス・レグ側を冷却材喪失信号(LOCA信号という
)で、自動弁を使って切替え、差圧伝送器の低側を大気
開放することにより、基準を大気圧にすることにより、
減圧沸騰の影響をなくす。
(2) To compensate for reduced pressure boiling in the event of a nuclear reactor accident, the reference leg side is switched using a loss of coolant signal (referred to as the LOCA signal) using an automatic valve, and the low side of the differential pressure transmitter is opened to the atmosphere. By setting the standard to atmospheric pressure,
Eliminate the effects of reduced pressure boiling.

以上の様にしたものである。This is how it was done above.

〔発明の実施例〕[Embodiments of the invention]

原子炉1の上部計測タップ15からレファレンス・レグ
検出配管7を取り出し、差圧伝送器10のL[に接続し
、更に下部計測タップ16からバリアプル・レグ検出配
管8を取り出し、差圧伝送器10のH側に接続する。レ
ファレンス・レグ検出配管7には、基準面l13が設け
られ、本基準面器3上部から、原子炉圧力を検出する原
子炉圧力検出器17(PV)を接続する。また、レファ
レンス・レグ検出配管7のスリーバルブマニホールド9
の入口側に自動隔離弁22と、自動ベント弁23を設置
し、自動ベント弁23は、ドレンファンネル25にドレ
ン水を排出できる様に構成する。
Take out the reference leg detection pipe 7 from the upper measuring tap 15 of the reactor 1 and connect it to L of the differential pressure transmitter 10, and then take out the barrier pull leg detection pipe 8 from the lower measuring tap 16 and connect it to the differential pressure transmitter 10. Connect to the H side of the The reference leg detection pipe 7 is provided with a reference surface l13, and a reactor pressure detector 17 (PV) for detecting the reactor pressure is connected from the upper part of the reference surface device 3. In addition, the three-valve manifold 9 of the reference leg detection piping 7
An automatic isolation valve 22 and an automatic vent valve 23 are installed on the inlet side of the tank, and the automatic vent valve 23 is configured to discharge drain water into a drain funnel 25.

(第2図参照) 更に、原子炉lには、原子炉温度を検出する原子炉温度
検出器18(T、)を取付け、原子炉格納容器2内のレ
ファレンス・レグ検出配管7には、その平均温度が検出
できる検出配管上に温度検出器19(TL)を取付け、
同じく、バリアプル・レグ検出配管8上に温度検出器2
0(T、)を取付け、原子炉格納容器2の外の代表的な
場所に温度検出器21を取付け、これらの信号を温度・
圧力補償回路26に入力し、水位信号11を補償し、正
しい水位信号27とする。自動隔離弁22は通常全開状
態であり、自動ベント弁23は、通常全閉状態である。
(See Figure 2) Furthermore, a reactor temperature detector 18 (T,) is attached to the reactor l to detect the reactor temperature, and the reference leg detection pipe 7 inside the reactor containment vessel Temperature detector 19 (TL) is installed on the detection pipe that can detect the average temperature,
Similarly, a temperature sensor 2 is installed on the barrier pull leg detection pipe 8.
0 (T,), and temperature detectors 21 are installed at representative locations outside the reactor containment vessel 2, and these signals are converted into temperature and
The water level signal 11 is inputted to the pressure compensation circuit 26 and is compensated to form a correct water level signal 27. The automatic isolation valve 22 is normally fully open, and the automatic vent valve 23 is normally fully closed.

冷却材喪失事故時(LOCA時)、LOCA信号を受け
て、これらの弁は切替わり、差圧伝送器10のL側には
、大気圧がかかることになる。
At the time of a loss of coolant accident (LOCA), these valves are switched in response to the LOCA signal, and atmospheric pressure is applied to the L side of the differential pressure transmitter 10.

圧力温度補償回路26は、第3図の様な回路となってお
り、操作モードとして3つ、すなわち、(1)通常運転
時(出力100%) (2)起動停止時(出力100%未満)(3)原子炉事
故時 があり、それぞれに対して圧力・温度補償を行う。
The pressure/temperature compensation circuit 26 has a circuit as shown in Fig. 3, and has three operation modes: (1) Normal operation (100% output) (2) Start/stop (less than 100% output) (3) There will be reactor accidents, and pressure and temperature compensation will be provided for each.

構成としては、差圧伝送器10からのなまの水位信号1
1は、手動切替スイッチ28に入力される。また、各部
の温度検出器(T、、TL、T、。
The configuration includes raw water level signal 1 from differential pressure transmitter 10.
1 is input to the manual changeover switch 28. In addition, temperature detectors (T,,TL,T,) for each part.

T、)18〜21と原子炉圧力検出器(P、)17から
の信号は、温度補償回路29と圧力補償回路30に入力
される。これに補償回路については、後述する。
Signals from T, ) 18 to 21 and the reactor pressure detector (P, ) 17 are input to a temperature compensation circuit 29 and a pressure compensation circuit 30. The compensation circuit will be described later.

温度補償回路29は、前記(2)項起動停止時モード用
であり、手動切替スイッチ28により切替えられたとき
に使用され、自動切替スイッチ31を通して出力される
0通常時は、差圧伝送器10の出力は、通常運転条件で
校正されているため、特に補正せず、直接、自動切替ス
イッチ31を通して出力される。
The temperature compensation circuit 29 is for the above-mentioned (2) start/stop mode, and is used when switched by the manual changeover switch 28, and is outputted through the automatic changeover switch 31. Since the output has been calibrated under normal operating conditions, it is output directly through the automatic changeover switch 31 without any particular correction.

事故時は、LOCA信号24に、自動切替スイッチ31
が、自動的に圧力補償回路30側に切替えられ、出力さ
れる。
In the event of an accident, the automatic changeover switch 31 is activated on the LOCA signal 24.
is automatically switched to the pressure compensation circuit 30 side and output.

次に各補償回路の内容につき説明する。Next, the contents of each compensation circuit will be explained.

(a) 温度補償回路29 差圧発生の計算式第1式において、各密度は、次の様に
なっている。
(a) Temperature Compensation Circuit 29 In the first formula for calculating differential pressure generation, each density is as follows.

i)ρ =f+ (TL) L ii ) ρ =ft (TH) 5I iii ) ρ、=fg (T、、P、)iv) ρ−
”fs (’r−) V) p −= f −(Tll) (jB 2 式)
ただし、 L 、f12:温度・圧力をパラメータとする密度関数 いま、通常運転時の条件における密度は、上記各式とし
、起動停止時には、温度、圧力条件が、変わるので、「
′」を付して区別すると。
i) ρ = f+ (TL) L ii) ρ = ft (TH) 5I iii) ρ, = fg (T,,P,)iv) ρ-
"fs ('r-) V) p -= f - (Tll) (jB 2 formula)
However, L, f12: Density function with temperature and pressure as parameters.The density under normal operating conditions is given by each of the above formulas, and when starting and stopping, the temperature and pressure conditions change, so
’” to distinguish them.

第1式から、通常運転時には。From the first formula, during normal operation.

ΔP=f・(Q・ρLL’ρLH* I’s r pw
 * f’va )ρ□、ρIJ’ ρ5.ρ1.ρ、
を簡単のため、ρと表わすと、 ΔP=fA (Ω、ρ) これから、 Ω”FA(ΔP、ρ) (第3式) 起動停止時には、 Ω=FA(Δp /、ρ′)(第4式)とならなければ
ならないが、校正は、第3式にて行われている為、 ρ””FA(Δp l、ρ)(AP’ =fA(Q’ 
、ρ))となり、Q′が見かけの水位となる。
ΔP=f・(Q・ρLL'ρLH* I's r pw
*f'va) ρ□, ρIJ' ρ5. ρ1. ρ,
For simplicity, we represent ρ as ΔP=fA (Ω, ρ) From this, Ω”FA (ΔP, ρ) (3rd equation) When starting and stopping, Ω=FA (Δp /, ρ′) (4th equation) However, since the calibration is performed using the third equation, ρ""FA(Δp l, ρ)(AP' = fA(Q'
, ρ)), and Q' is the apparent water level.

これを補正するためには、第4式を使って実水位aをめ
ることができる。すなわち、ΔP′は差圧伝送器10の
出力であるから、第2式を使って、ρ′をめ、Ωを算出
する。
In order to correct this, the actual water level a can be calculated using the fourth equation. That is, since ΔP' is the output of the differential pressure transmitter 10, the second equation is used to calculate ρ' and Ω.

(b) 圧力補償回路30 差圧発生の計算式は、LOCA信号24で差圧伝送器1
0のL側うイン(レファレンス・レグ)を切り離し、大
気開放とするため、第1式は適用できず、次の様な簡単
な式となる。
(b) Pressure compensation circuit 30 The calculation formula for differential pressure generation is the differential pressure transmitter 1 using the LOCA signal 24.
Since the L side lining (reference leg) of 0 is separated and opened to the atmosphere, the first equation cannot be applied, and the following simple equation is used.

A P ” 72 t p LH+ (Q + El 
4) /’ w + (jl w + D 3Q Q4
)ρ9 +P。
A P ” 72 t p LH+ (Q + El
4) /' w + (jl w + D 3Q Q4
) ρ9 +P.

” j’ 1 ρLPI+ Q 4 P w + (Q
2+ Q 5 II 4 )ρ、+(ρ1−ρ9)+ρ
〜 (第5式)これを簡単のため。
” j' 1 ρLPI+ Q 4 P w + (Q
2+ Q 5 II 4 )ρ, +(ρ1−ρ9)+ρ
~ (Formula 5) This is for simplicity.

Δp=fll(u+ ρLH9ρ1.ρg)+P。Δp=fll(u+ ρLH9ρ1.ρg)+P.

=f、(Q、P)=P〜 (第6式) いま、自動ベント弁が開放されている状態でも当初の校
正は、通常運転時の条件でなされているため、原子炉事
故時に対しては、温度、圧力条件をr′」 を付して区
別すると、 第6式から Q=F8 (ΔP−P、、p)(第7式)より原子炉事
故時には、 Q=FII (ΔP’P〜、ρ′) (第8式)となら
なければならないが、校正は、第6式のf、(fl、ρ
)にて行われているため、AP’ =fe (n′tρ
)十P− となり、a′が見かけの水位となる。
= f, (Q, P) = P ~ (Equation 6) Even though the automatic vent valve is currently open, the initial calibration was performed under normal operating conditions, so it is not suitable for reactor accidents. If we distinguish the temperature and pressure conditions by adding r', then from the 6th equation, Q=F8 (ΔP-P,,p) (7th equation), in the event of a reactor accident, Q=FII (ΔP'P ~, ρ′) (Equation 8), but the calibration is performed using f, (fl, ρ′) in Equation 6.
), AP' = fe (n'tρ
) 10P-, and a' is the apparent water level.

これを補正する為には、第8式を使って、実水位aをめ
ること・ができる、すなわち、ΔP′は。
In order to correct this, the actual water level a can be calculated using equation 8, that is, ΔP' is.

差圧伝送器10の出力であるから、第2式を使ってρ′
をめ、実測値P−からΩをめることができる。
Since it is the output of the differential pressure transmitter 10, using the second equation, ρ'
Ω can be calculated from the actual measured value P-.

本発明の一実施例によれば、プラントの如何なる状態に
対しても、環境条件を補正し、実水位の計測を精度良く
計測できるという効果を上げることができる。
According to one embodiment of the present invention, it is possible to correct the environmental conditions for any state of the plant, and to achieve the effect that the actual water level can be measured with high accuracy.

第2図では、温度検出器を計4点としたが、これの増減
をしても十分な効果が期待できる。
In FIG. 2, there are a total of four temperature detectors, but a sufficient effect can be expected even if the number is increased or decreased.

また、密度ρを通常運転時に対しては、従来通り定数で
与えているが、実測温度から第2式を使って演算し、実
水位をめれば、更に精度が向上する。
Further, although the density ρ is given as a constant as before during normal operation, the accuracy can be further improved by calculating the second equation from the actually measured temperature and calculating the actual water level.

〔発呵の効果〕[Effect of inspiration]

本発明によれば、あらゆるプラント状態に対して、原子
炉水位に圧力・温度補正を行うことができるので、精度
を向上でき、特に事故時の減圧沸騰に対しても十分な精
度を得ることができるという効果がある。
According to the present invention, it is possible to perform pressure/temperature correction on the reactor water level for all plant conditions, so accuracy can be improved, and in particular, sufficient accuracy can be obtained for reduced pressure boiling in the event of an accident. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、沸騰水型原子力発電所の原子炉水位を差圧検
出方式で計測する基本系統図、第2図は、本発明の一実
施例の系統図、第3図は、温度・圧力補償の方式を説明
するブロック図である。 ■・・・原子炉、2・・・原子炉格納容器、3・・・基
準面器(凝縮槽)、4・・・計装ペネトレーション、5
・・・検出元弁、6・・・過流量チェック弁、10・・
・差圧伝送器、15・・・上部計測タップ、16・・・
下部計測タップ、23・・・自動ベント弁、24・・・
冷却材喪失信号、25・・・ドレンファンネル、26・
・・温度・圧力補償回路、27・・・補正後の水位信号
、28・・・手動切替スイッチ、31・・・自動切替ス
イッチ。 代理人 弁理士 高橋明夫 第 1 口 9 1−一一一 第2(2)
Fig. 1 is a basic system diagram for measuring the reactor water level in a boiling water nuclear power plant using a differential pressure detection method, Fig. 2 is a system diagram of an embodiment of the present invention, and Fig. 3 is a temperature/pressure system diagram. FIG. 2 is a block diagram illustrating a compensation method. ■... Nuclear reactor, 2... Reactor containment vessel, 3... Reference plane device (condensation tank), 4... Instrumentation penetration, 5
...Detection source valve, 6...Overflow check valve, 10...
・Differential pressure transmitter, 15...Top measurement tap, 16...
Lower measuring tap, 23... Automatic vent valve, 24...
Coolant loss signal, 25...Drain funnel, 26.
...Temperature/pressure compensation circuit, 27...Water level signal after correction, 28...Manual changeover switch, 31...Automatic changeover switch. Agent Patent Attorney Akio Takahashi No. 1 Account 9 1-111 No. 2 (2)

Claims (1)

【特許請求の範囲】[Claims] 1、基準水位を有する差圧計からな゛る原子炉水位計測
装置において、前記基準水位側に切替信号により作動す
る自動弁と、一方を大気開放にした自動弁を取付けたこ
とを特徴とする原子炉水位計測装置。
1. A nuclear reactor water level measuring device consisting of a differential pressure gauge having a reference water level, which is equipped with an automatic valve operated by a switching signal on the reference water level side, and an automatic valve with one side open to the atmosphere. Reactor water level measuring device.
JP59110816A 1984-06-01 1984-06-01 Measuring device for water level in nuclear reactor Pending JPS60256092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110816A JPS60256092A (en) 1984-06-01 1984-06-01 Measuring device for water level in nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110816A JPS60256092A (en) 1984-06-01 1984-06-01 Measuring device for water level in nuclear reactor

Publications (1)

Publication Number Publication Date
JPS60256092A true JPS60256092A (en) 1985-12-17

Family

ID=14545385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110816A Pending JPS60256092A (en) 1984-06-01 1984-06-01 Measuring device for water level in nuclear reactor

Country Status (1)

Country Link
JP (1) JPS60256092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003955A (en) * 2014-06-17 2016-01-12 日立Geニュークリア・エナジー株式会社 Reactor water level measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003955A (en) * 2014-06-17 2016-01-12 日立Geニュークリア・エナジー株式会社 Reactor water level measuring device

Similar Documents

Publication Publication Date Title
CN108181099A (en) A kind of nuclear reactor pressurizer safety valve leak test by filling water system and its test method
CN103903661B (en) A kind of manostat water level measurement system and method after accident
US6865244B2 (en) Device and method for cooling a reactor pressure vessel of a boiling water reactor plant
CN103400612B (en) Nuclear power station can not the method for early warning of identified leakage and system
US5533074A (en) Nuclear reactor coolant level monitoring system
EP1762830A2 (en) Liquid level measurement system comprising an improved condensing chamber design
JPS60256092A (en) Measuring device for water level in nuclear reactor
JP2012145406A (en) Non-condensable gas exhausting apparatus for water level measurement system
CN204926803U (en) Monitoring system that main steam pipe way leaked is prevented to nuclear power station
CN111834024B (en) On-line accurate measurement method and system for pressure in containment vessel
US3212318A (en) Calibration device
CN107255555B (en) A kind of system and method measuring valve tiny leakage rate
JPH06331784A (en) Water level measuring apparatus for nuclear reactor
CN108397574A (en) A kind of nuclear power plant's measurement standard soil resistant isolating valve and its application method
JPS59104593A (en) Water level measuring device in pressure vessel of bwr type reactor
JPS6189589A (en) Water level indicator for nuclear reactor
JPS5915834A (en) Detection of water leak into liquid metal
JPH039000Y2 (en)
Taylor NS Savannah Containment Integrity, Its Measurement and Improvement
JPS57105692A (en) Leakage detecting device for heat transferring tube of heat exchanger
JPH05288590A (en) Nuclear reactor water level measuring device
SU150651A1 (en) Device for flow measurement, liquid metering and calibration of liter meters
JPS6135948Y2 (en)
JPS63285492A (en) Differential pressure type apparatus for measuring water level of reactor
JPH02240600A (en) Device for controlling dissipation of gaseous phase of pressurizer