JPS60255984A - Manufacture of heat exchanger body - Google Patents

Manufacture of heat exchanger body

Info

Publication number
JPS60255984A
JPS60255984A JP11011684A JP11011684A JPS60255984A JP S60255984 A JPS60255984 A JP S60255984A JP 11011684 A JP11011684 A JP 11011684A JP 11011684 A JP11011684 A JP 11011684A JP S60255984 A JPS60255984 A JP S60255984A
Authority
JP
Japan
Prior art keywords
heat transfer
metal
magnetic powder
magnetic
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11011684A
Other languages
Japanese (ja)
Other versions
JPH0440430B2 (en
Inventor
Tsutomu Takahashi
務 高橋
Kazuo Toda
戸田 一夫
Masakatsu Inaba
稲葉 正勝
Kazuyoshi Adachi
足立 数義
Shoichi Yoshiki
吉木 尚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP11011684A priority Critical patent/JPS60255984A/en
Publication of JPS60255984A publication Critical patent/JPS60255984A/en
Publication of JPH0440430B2 publication Critical patent/JPH0440430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Abstract

PURPOSE:To form a porous layer easily at a heat transfer surface and obtain an exchanger body having a high heat exchanging ratio by covering the heat transfer surface of a heat transfer base body made of magnetic metal such as tube, box, etc. with a metal having lower m.p. than the base body, further sprinkling magnetized powders thereon, and heating said body. CONSTITUTION:Two points of electric contact points are taken at one end of e.g. the magnetic metal tube 1 being heat transfer base body through conducting rolls 2, the heating by conducting electricity is performed, while these points are moved in the direction for the other end of the tube 1. Thereat, the tube 1 is rotated, while it is heated, the magnetic powders 4 are jetted together with gas by a nozzle 3 from one end of the tube 1 to sprinkle them at the heat transfer surface inside the tube 1. The surface of the powder 4 is coated with metal having m.p. lower by >=200 deg.C than that of the tube 1, and magnetized, and said powder is adhered inside the tube 1 due to the magnetic force and the magnetic metal layer is formed. Here, by heating the tube 1 at temp. lower than by >=100 deg.C than its m.p. and higher by >=20 deg.C than m.p. of the covered metal, the covered metal is melted, the powder 4 is adhered inside the tube 1, the porous layer is formed and cooled by cold air from a nozzle 5.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、安価にして熱交換効率が優れ、空調用熱交換
器の蒸発管やヒートパイプの基体として好適な熱交換器
の熱交換体の製造方法に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention provides a heat exchanger for a heat exchanger that is inexpensive, has excellent heat exchange efficiency, and is suitable as a base for an evaporation tube or a heat pipe of an air conditioning heat exchanger. The present invention relates to a manufacturing method.

「従来の技術」 従来、熱交換器用の熱交換体(伝熱体)の製造に当って
は、各種の方法によってその表面積を増加さゼたり、毛
細管現象による効果、乱流、核沸騰などの効果を促進さ
せてその伝熱効率を向上させることが試みられ、また、
実用化されている。
``Prior Art'' Conventionally, in manufacturing heat exchangers for heat exchangers, various methods have been used to increase the surface area, and effects such as capillarity, turbulence, and nucleate boiling have been used to increase the surface area. Attempts have been made to accelerate the effect and improve its heat transfer efficiency, and
It has been put into practical use.

例えば、伝熱管は、転造、押出、引抜、エツチング、i
!!、電解・無電解メッキ、切削などの方法により製造
されており、特に冷凍、空調改器に利用される細径(主
として101φ以下)、薄肉(主として0.5mmt以
下)の鋼管は、転造方法によって内面にらせん溝が付け
られたものが製造されている。
For example, heat exchanger tubes can be formed by rolling, extrusion, drawing, etching, i
! ! In particular, small diameter (mainly 101φ or less) and thin wall (mainly 0.5mmt or less) steel pipes used in refrigeration and air conditioning equipment are manufactured using methods such as electrolytic/electroless plating, cutting, etc. Products with spiral grooves on the inner surface are manufactured by

[発明が解決しようとする問題・点」 ところで、上記転造方法では、 (ω 転造工具と管内面に形成された溝との摩擦が大き
く、大きな加圧力を要する +b+ その結果、転造工具寿命が短い(C1加工速度
が遅い +d+ 転造加工用の工具の製作上あるいは転造技術上
、らせん溝の条数、ねじれ角度に制限があるなどの欠点
がある。
[Problems/Problems to be Solved by the Invention] By the way, in the above rolling method, (ω) the friction between the rolling tool and the groove formed on the inner surface of the tube is large, and a large pressing force is required +b+ As a result, the rolling tool Short life (C1 slow machining speed +d+) There are drawbacks such as limitations on the number of helical grooves and the helix angle due to the manufacturing of rolling tools or rolling technology.

一方、上記らせん溝付銅管を伝熱特性面から見ると、表
面積の増加、らせん溝の谷底での毛細管現象による効果
は期待されるものの、最も熱伝達率の増大に寄与する核
沸騰現象はほとんど認められず、その発泡時の乱流効果
も小ざい。したがって、鋼管の内面に多孔質層を形成し
て核沸騰現象を誘発させることが考えられる。ところが
、板状の熱交換体であると、焼結あるいはろう付法によ
り、その熱伝達面に多孔質層を形成することができるが
、上記鋼管のような管状構造体にこれらの方法を適用す
ることは困難である。
On the other hand, when looking at the above-mentioned spiral grooved copper tube from the aspect of heat transfer characteristics, although effects due to an increase in surface area and capillarity at the bottom of the spiral grooves are expected, the nucleate boiling phenomenon, which contributes most to the increase in heat transfer coefficient, is It is hardly noticeable, and the turbulence effect during foaming is also small. Therefore, it is possible to induce the nucleate boiling phenomenon by forming a porous layer on the inner surface of the steel pipe. However, in the case of a plate-shaped heat exchanger, a porous layer can be formed on the heat transfer surface by sintering or brazing, but these methods cannot be applied to tubular structures such as the steel pipes mentioned above. It is difficult to do so.

本発明は、上記事情に鑑みてなされたもので、長尺の管
、板、きよう体等の各種の熱伝達基体に対して、その熱
伝達面に容易に多孔質層を形成することができ、しかも
安価にして強度の高い熱交換体を得ることができる熱交
換体の製造方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and it is possible to easily form a porous layer on the heat transfer surface of various heat transfer substrates such as long tubes, plates, and walls. It is an object of the present invention to provide a method for manufacturing a heat exchanger, which can produce a heat exchanger with high strength at low cost.

[問題点を解決するための手段]および「作用」本発明
は、管、板、きよう体等の金属−の熱伝達基体の熱伝達
面に、熱伝達基体より200’C以上低い融点を有する
金属を被覆しさらに着磁した磁性粉を散布し、磁性粉の
形成する磁力により磁性粉を熱伝達面上に捕獲した状態
で、熱伝達基体をその融点より100℃以上低くかつ磁
性粉上の被覆金属の融点より20℃以上高い温度に加熱
し、熱伝達基体からの伝熱により磁性粉上の被覆金属を
溶融させ、磁性粉を熱伝達面に密着接着させて多孔質層
を熱伝達基体上に形成するものである。
[Means for Solving the Problems] and "Operation" The present invention provides a heat transfer surface of a metal heat transfer base such as a tube, plate, or wall body with a melting point lower than that of the heat transfer base by 200'C or more. The heat transfer substrate is coated with a metal having a heat transfer surface of 100 degrees Celsius or more below its melting point, and is coated with magnetized magnetic powder, and the magnetic powder is captured on the heat transfer surface by the magnetic force formed by the magnetic powder. The coating metal is heated to a temperature 20°C or more higher than the melting point of the coating metal, and the coating metal on the magnetic powder is melted by heat transfer from the heat transfer base, and the magnetic powder is tightly adhered to the heat transfer surface to transfer heat through the porous layer. It is formed on a substrate.

このように、本発明では、着磁した磁性粉の形成する磁
力によって、粉粒体である該磁性粉を熱伝達面上に強制
的に捕獲し、この状態で磁性粉を被覆する金属を溶融さ
せて該磁性粉を熱伝達面に溶着させるため、従来不可能
とされている長尺の管の内面にも多孔質層を容易にかつ
安価に形成することができ、しかも、この多孔質病を強
くかつ均質なものとすることができる。
In this way, in the present invention, the magnetic powder in the form of powder particles is forcibly captured on the heat transfer surface by the magnetic force formed by the magnetized magnetic powder, and in this state, the metal covering the magnetic powder is melted. Since the magnetic powder is welded to the heat transfer surface, it is possible to easily and inexpensively form a porous layer even on the inner surface of a long tube, which was previously considered impossible. can be made strong and homogeneous.

次に、本発明をさらに詳しく説明する。Next, the present invention will be explained in more detail.

本発明では、熱伝達基体の熱伝達面に着磁した磁性粉を
付着させるに当り、そのWi磁性粉ひとつひとつが形成
する磁力を利用するから、熱伝達基体は磁性金属である
か、もしくは熱伝達面に磁性金属層が形成されている必
要がある。また、上記磁性粉としては、Fe、Ni、C
r等の磁性金属粉あるいは磁性合金粉をはじめ、マグネ
タイト等の磁性酸化物粉そして非磁性の金属粉あるいは
合金粉、セラミックス粉、鉱物粉等に磁性金属層を設け
た複合粉等を用いることができる。
In the present invention, when attaching magnetized magnetic powder to the heat transfer surface of the heat transfer base, the magnetic force formed by each Wi magnetic powder is used, so the heat transfer base is made of magnetic metal or A magnetic metal layer must be formed on the surface. In addition, as the magnetic powder, Fe, Ni, C
In addition to magnetic metal powder or magnetic alloy powder such as R, magnetic oxide powder such as magnetite, and composite powder in which a magnetic metal layer is provided on non-magnetic metal powder or alloy powder, ceramic powder, mineral powder, etc. can be used. can.

また、熱伝達基体の加熱は、高周波加熱、雰囲気加熱あ
るいは通電加熱が望ましい。その加熱温度をその融点よ
り100℃以上低くかつ磁性粉上の被覆金属の融点より
20℃以上高くするが、これはこの温度が、磁性粉上の
被覆金属が容易に溶けて、しかも熱伝達基体が溶融しな
い安全な温度だからであり、好ましくは、その融点より
100℃以上低くかつ磁性粉上の被覆金属の融点より5
0〜100℃高くするのがよい。
Further, the heat transfer substrate is preferably heated by high frequency heating, atmospheric heating, or electrical current heating. The heating temperature is set at least 100°C lower than the melting point of the magnetic powder and at least 20°C higher than the melting point of the metal coating on the magnetic powder. This is because it is a safe temperature that does not melt, and is preferably at least 100°C lower than its melting point and 5°C or more lower than the melting point of the coating metal on the magnetic powder.
It is better to raise the temperature by 0 to 100°C.

さらに、磁性粉の外層に設ける金属は、熱伝達基体の加
熱温度が上記のように該金属の融点より50〜100℃
高いことが好ましいので、熱伝達基体が溶融しないよう
に安全性を考慮すると、その融点が熱伝達基体の融点よ
り200℃以上低いことが必要であり、また融点が低い
ほど取扱いが容易となる。この要求を満たす比較的低融
点の金属としては3n、 Sn合金、Zn、 Zn合金
、■n、in合金があるが、これらの金属あるいは合金
を用いると、電気メッキあるいは化学メッキにより磁性
粉上に容易にその層を形成することができるので最も好
都合である。
Furthermore, the metal provided in the outer layer of the magnetic powder is such that the heating temperature of the heat transfer base is 50 to 100 degrees Celsius below the melting point of the metal, as described above.
Since it is preferable that the melting point be higher, in consideration of safety so that the heat transfer substrate does not melt, it is necessary that the melting point is 200° C. or more lower than the melting point of the heat transfer substrate, and the lower the melting point, the easier it is to handle. Metals with relatively low melting points that meet this requirement include 3n, Sn alloys, Zn, Zn alloys, n, and in alloys. It is most convenient because the layer can be easily formed.

一方、磁性粉の着磁方法としては、磁性粉が金属材料で
あればコールドプレスして固めて10Kgauss以上
の磁場中にさらして着磁した後、これを粉砕すればよい
。また、金属粉、非金属粉を問わず磁性粉を着磁する方
法としては、これら磁性粉をプラスチック等のきよう体
に充填した後、このぎよう体をi 0 K oauss
以上の磁場中にさらし、磁性粉のひとつひとつに着磁す
る方法がある。なJ3、磁性粉の着磁強さを高めるため
には、より強い磁場中に磁性粉をさらすか、磁性粉のき
よう体中における充填密度を上げればよい。また、磁性
粉の着磁はその外面に金属層およびフラックス層または
その何れかを設けた後行なうのが取扱いの上から最も好
ましい。
On the other hand, as a method for magnetizing the magnetic powder, if the magnetic powder is a metal material, it may be solidified by cold pressing, exposed to a magnetic field of 10 Kgauss or more to be magnetized, and then pulverized. In addition, as a method of magnetizing magnetic powder, regardless of whether it is metal powder or non-metal powder, after filling a body such as plastic with these magnetic powders, the body is
There is a method of exposing each piece of magnetic powder to the above magnetic field and magnetizing it one by one. J3. In order to increase the magnetization strength of magnetic powder, it is possible to expose the magnetic powder to a stronger magnetic field or increase the packing density of the magnetic powder in the body. Further, from the viewpoint of handling, it is most preferable to magnetize the magnetic powder after providing a metal layer and/or a flux layer on its outer surface.

さらに、磁性粉の供給は、板状体の片面に多孔質層を形
成するような場合は重力を利用してその面上に磁性粉を
単に散布すればよいが、長尺管内に多孔質層を形成しよ
うとする場合は、磁性粉を高圧気体を媒体として搬送供
給するのが好ましく、例えば磁性粉をノズルから高圧気
体で噴出させればよい。
Furthermore, when supplying magnetic powder, if a porous layer is to be formed on one side of a plate-shaped body, it is sufficient to simply scatter the magnetic powder on that surface using gravity, but if a porous layer is to be formed in a long tube, When attempting to form a magnetic powder, it is preferable to transport and supply the magnetic powder using high-pressure gas as a medium. For example, the magnetic powder may be jetted out from a nozzle using high-pressure gas.

また、磁性粉ど金属製の熱伝達基体との接合は、磁性粉
上の被覆金属の溶融によって行なわれるが、接合をより
容易にするためには、フラックスを用いるか、加熱部を
不活性もしくは還元性雰囲気にすればよい。フラックス
層としては、熱伝達基体をあらかじめフラックス処理し
てもよいが、・磁性粉の最外層にフラックス層をあらか
じめ形成しておく方がよい。これは、後者によれば、磁
性粉と金R製の熱伝達基体との接合の他に磁性粉同志の
接合も容易に行われるため、磁性粉が数層結合した多孔
質の構造体を容易に形成できるからである。
In addition, magnetic powder is joined to a heat transfer base made of metal by melting the coating metal on the magnetic powder, but in order to make joining easier, it is recommended to use flux or make the heating part inert or A reducing atmosphere may be used. As for the flux layer, the heat transfer substrate may be subjected to flux treatment in advance, but it is better to form the flux layer on the outermost layer of magnetic powder in advance. This is because, according to the latter, in addition to bonding magnetic powder and a heat transfer base made of gold R, it is also easy to bond magnetic powders together, so it is easy to create a porous structure in which several layers of magnetic powder are bonded. This is because it can be formed into

一方、加熱部を不活性もしくは還元性雰囲気にするのは
、加熱の際に熱伝達基体が酸化づるのを防ぐためである
On the other hand, the purpose of creating an inert or reducing atmosphere in the heating section is to prevent the heat transfer substrate from oxidizing during heating.

またさらに、本発明の方法で長尺管の内面等に連続的に
多孔質層を形成しようとする場合は、局部的に加熱し、
その加熱源を順次一方向に送るか、あるいは長尺管を連
続的に一方向に移動させればよい。また、より均質な多
孔質層を管内面に形成するには、前記の一方向への移動
運動に回転運動を加えればよい。
Furthermore, when attempting to continuously form a porous layer on the inner surface of a long tube using the method of the present invention, heating is performed locally.
The heating source may be sent sequentially in one direction, or the long tube may be moved continuously in one direction. Further, in order to form a more homogeneous porous layer on the inner surface of the tube, rotational movement may be added to the movement movement in one direction.

以下、本発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

「実施例1」 第1図は本発明の第1の実施例を説明するためのもので
、図中符号1は外径9.5n+n+φ、肉厚0゜3mm
、長さ5000mmの燐脱酸鋼管(熱伝達基体)である
。この銅管1の一端に、コンダクタ−ロール2を介して
電気接点を2点取り、これら電気接点を銅管1の他端に
向けて移動しながら300℃で通電加熱を行なった。ま
た、このとき、銅管1を毎分5回転のスピードで回転さ
せた。そして、銅管]を通電加熱している間、銅管1の
一端より噴出ノズル3により磁性粉4を、Coガスを5
%含む気体を媒体として噴出し、銅管1の内面(熱伝達
面)に散布した。上記磁性粉4は、平均粒径100μの
Fe粉の表面に厚さ15μのSnの電気メッキを施し、
最外層に塩化アンモンのフラックス層を形成したもので
、着磁処理がなされている。このFe粉の着磁はフラッ
クス処理後に行なったもので、マグネタイト粉をプラス
チックビンに充填した後、このプラスチックビンを2個
の電磁石の間に置き、電磁石を作動させて一方向に向い
た1 5 K gaussの磁場中に5秒間さらすこと
によりなした。なお、通電加熱部の後方には冷風の吹出
しノズル5を設け、ここから銅管1に冷風を連続的に吹
付け、銅管1を冷却した。
"Example 1" Figure 1 is for explaining the first example of the present invention, and the reference numeral 1 in the figure has an outer diameter of 9.5n+n+φ and a wall thickness of 0°3mm.
, a phosphorus deoxidized steel pipe (heat transfer base) with a length of 5000 mm. Two electrical contacts were made at one end of the copper tube 1 via a conductor roll 2, and while moving these electrical contacts toward the other end of the copper tube 1, electrical heating was performed at 300°C. Further, at this time, the copper tube 1 was rotated at a speed of 5 revolutions per minute. Then, while heating the copper tube with electricity, a jet nozzle 3 sprays magnetic powder 4 and 5 Co gas from one end of the copper tube 1.
% gas was ejected as a medium and sprayed on the inner surface (heat transfer surface) of the copper tube 1. The magnetic powder 4 is obtained by electroplating Sn to a thickness of 15 μm on the surface of Fe powder having an average particle size of 100 μm,
It has an ammonium chloride flux layer formed on the outermost layer, and is magnetized. This Fe powder was magnetized after flux treatment. After filling a plastic bottle with magnetite powder, the plastic bottle was placed between two electromagnets, and the electromagnets were activated to point it in one direction. This was done by exposing it to a K gauss magnetic field for 5 seconds. Note that a cold air blowing nozzle 5 was provided behind the energization heating section, and cold air was continuously blown onto the copper tube 1 from there to cool the copper tube 1.

このようにして連続的に銅管1の内面に多孔質層(約3
層の磁性粉層)を形成した。そして、その熱交換特性を
第2図に示すような伝熱測定H置により下記条件に基づ
いて測定した。この伝熱測定装置においては、銅管1の
内部に、熱交換器6から供給される冷媒が流れ、同銅管
1の外部には恒温水槽7からの恒温水が上記冷媒に対し
向流となるように流れるようになっている。恒温水の温
度は各冷媒流量(39/hr)毎に冷媒系が安定するよ
うに制御した。なお、図中8a 、 8b 、 8c 
In this way, a porous layer (approximately 3
A magnetic powder layer) was formed. Then, its heat exchange characteristics were measured under the following conditions using a heat transfer measuring device as shown in FIG. In this heat transfer measuring device, a refrigerant supplied from a heat exchanger 6 flows inside the copper tube 1, and constant temperature water from a constant temperature water tank 7 flows countercurrently to the refrigerant outside the copper tube 1. It flows as it should. The temperature of the constant temperature water was controlled to stabilize the refrigerant system for each refrigerant flow rate (39/hr). In addition, 8a, 8b, 8c in the figure
.

8dは温度センサーを示し、9a 、9bは圧力削を示
し、10は差圧計を示し、11(よポンプを示し、12
a〜12pはバルブを示すものである。
8d shows the temperature sensor, 9a and 9b show the pressure cutter, 10 shows the differential pressure gauge, 11 (Yo shows the pump, 12
a to 12p indicate valves.

試験条件 冷媒流1(Kg/hr) 40.60.80蒸発温度〈
℃)5 加熱度(℃) 5±、5 凝縮温度(’C) 45 過冷却度(”C) 10+0.5 水量(J/分)9.0 水温(”C) 15〜25 上記のような伝熱測定装置によって銅管1の蒸発伝熱特
性値をプロットしたところ、第3図にA線で示すような
結果を得た。これに対し、内面に多孔質層を形成してい
ない鋼管を比較例として同様に特性値をプロットしたと
ころ、図中B線で示すような結果となった。
Test conditions Refrigerant flow 1 (Kg/hr) 40.60.80 Evaporation temperature
℃) 5 Heating degree (℃) 5±, 5 Condensing temperature ('C) 45 Supercooling degree (''C) 10+0.5 Water amount (J/min) 9.0 Water temperature (''C) 15~25 As above When the evaporative heat transfer characteristics of the copper tube 1 were plotted using a heat transfer measurement device, the results shown by line A in FIG. 3 were obtained. On the other hand, when the characteristic values of a steel pipe without a porous layer formed on its inner surface were similarly plotted as a comparative example, the results were as shown by line B in the figure.

第3図に示すように、本発明の方法により製造した鋼管
は、比較例(平滑鋼管)に比べて約8倍の優れた熱交換
特性を示した。これは、銅管内面に形成した多孔質層で
核沸騰が充分に起るためと思われる。
As shown in FIG. 3, the steel pipe manufactured by the method of the present invention exhibited heat exchange characteristics that were about 8 times as excellent as those of the comparative example (smooth steel pipe). This seems to be because nucleate boiling occurs sufficiently in the porous layer formed on the inner surface of the copper tube.

「実施例2」 磁性粉として、平均粒径120μのマグネタイト粉の表
面に厚さ20μの5n−Pbの電気メッキを施こし、最
外層に塩化アンモンのフラックス層を形成したものを用
い、その他の条件は実施例1と同様にして、鋼管の内面
に連続的に約4層の磁性粉層から成る多孔質層を形成し
た。そして、この鋼管の蒸発伝熱特性を実施例1と同様
な条件下で測定したところ、実験結果の図示は略すが、
"Example 2" As magnetic powder, magnetite powder with an average particle size of 120 microns was electroplated with 5n-Pb to a thickness of 20 microns on the surface, and a flux layer of ammonium chloride was formed as the outermost layer. The conditions were the same as in Example 1, and a porous layer consisting of approximately four layers of magnetic powder was continuously formed on the inner surface of the steel pipe. The evaporative heat transfer characteristics of this steel pipe were measured under the same conditions as in Example 1, and the experimental results were not shown in the figure.
.

平滑鋼管に比べて約10倍の熱交換特性を示した。It exhibited approximately 10 times better heat exchange characteristics than smooth steel pipes.

「効果」 以上説明したように、本発明に係る熱交換体の製造方法
は、管、板、きよう体等の磁性金属製の熱伝達基体の熱
伝達面に、熱伝達基体より200℃低い融点を有する金
属を被覆しさらに磁性した磁性粉を散布し、磁性粉の形
成する磁力により磁性粉を熱伝達面上に捕獲した状態で
、熱伝達基体をその融点より100℃以上低くかつ磁性
粉上の被覆金属の融点より20℃以上高い温度に加熱し
、熱伝達基体からの伝熱により磁性粉上の被覆金属を溶
融させ、磁性粉を熱伝達面に畜i接着させて多孔質層を
熱伝達基体上に形成するものであるから、従来不可能と
されている長尺の管やきょう体の内面にも多孔質層を容
易にかつ安価に形成することができ、しかも、熱伝達面
の形試や重力に対する位置関係の影響を受けることがな
いので、熱伝達面の全体に口って均質な多孔質層を形成
づ゛ることができる。したがって、本発明の方法により
製造した熱交換体は、毛細管現象および核沸騰現象によ
り格段と良好な熱交換特性を有し、空調用熱交換器の蒸
発管あるいはヒートバイブ等に好適である。
"Effects" As explained above, the method for manufacturing a heat exchanger according to the present invention provides heat transfer surfaces of magnetic metal heat transfer bases such as tubes, plates, and walls that are 200°C lower than the heat transfer base. The heat transfer substrate is coated with a metal that has a melting point and further sprinkled with magnetized magnetic powder, and the magnetic powder is captured on the heat transfer surface by the magnetic force formed by the magnetic powder. The coating is heated to a temperature 20°C or more higher than the melting point of the coating metal above, and the coating metal on the magnetic powder is melted by heat transfer from the heat transfer base, and the magnetic powder is adhered to the heat transfer surface to form a porous layer. Since it is formed on a heat transfer substrate, it is possible to easily and inexpensively form a porous layer on the inner surface of a long tube or housing, which was previously considered impossible. Since it is not affected by the shape of the heat transfer surface or its position relative to gravity, it is possible to form a homogeneous porous layer over the entire heat transfer surface. Therefore, the heat exchanger manufactured by the method of the present invention has extremely good heat exchange characteristics due to capillary phenomenon and nucleate boiling phenomenon, and is suitable for evaporation tubes of air conditioning heat exchangers, heat vibrators, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための断面略図、
第2図は本発明の方法よって製造した熱交換体の熱交換
特性を測定するのに好適な装置の構成図、第3図は本発
明の一実施例の方法で得た熱交換体の蒸発伝熱特性を示
したグラフである。 1・・・・・・鋼管(熱伝達基体)、3・・・・・・噴
出ノズル、4・・・・・・磁性粉。 出願人 三菱金属株式会社
FIG. 1 is a schematic cross-sectional view for explaining one embodiment of the present invention;
Figure 2 is a block diagram of an apparatus suitable for measuring the heat exchange characteristics of a heat exchanger produced by the method of the present invention, and Figure 3 is a diagram showing the evaporation of a heat exchanger obtained by the method of an embodiment of the present invention. It is a graph showing heat transfer characteristics. 1... Steel pipe (heat transfer base), 3... Spray nozzle, 4... Magnetic powder. Applicant Mitsubishi Metals Corporation

Claims (10)

【特許請求の範囲】[Claims] (1) 管、板、きよう体等の磁性金属製の熱伝達基体
の熱伝達面に、熱伝達基体より200℃以上低い融点を
有する金属を被覆しさらに着磁した磁性粉を散布し、磁
性粉の形成する磁力により磁性粉を熱伝達面上に捕獲し
た状態で、熱伝達基体をその融点より100℃以上低く
かつ磁性粉上の被覆金属の融点より20℃以上高い温度
に加熱し、熱伝達基体からの伝熱により磁性粉上の被覆
金属を溶融させ、磁性粉を熱伝達面に密着接着させるこ
とを特徴とする熱交換体の製造方法。
(1) The heat transfer surface of a heat transfer base made of magnetic metal, such as a tube, plate, or wall, is coated with a metal that has a melting point 200°C or more lower than that of the heat transfer base, and further magnetized magnetic powder is scattered, With the magnetic powder captured on the heat transfer surface by the magnetic force formed by the magnetic powder, the heat transfer substrate is heated to a temperature that is 100°C or more lower than its melting point and 20°C or more higher than the melting point of the coating metal on the magnetic powder, A method for manufacturing a heat exchanger body, which comprises melting a covering metal on magnetic powder by heat transfer from a heat transfer base, and closely adhering the magnetic powder to a heat transfer surface.
(2) 熱伝達基体が磁性金属もしくは熱伝達面に磁性
金属層を有する金属であることを特徴とする特許請求の
範囲第1項記載の熱交換体の製造方法。
(2) The method for manufacturing a heat exchanger according to claim 1, wherein the heat transfer substrate is a magnetic metal or a metal having a magnetic metal layer on the heat transfer surface.
(3) 熱伝達基体が管状構造体であり、その管状構造
体を回転させることを特徴とする特許請求の範囲第1項
記載の熱交換体の製造方法。
(3) The method for manufacturing a heat exchanger according to claim 1, wherein the heat transfer base is a tubular structure, and the tubular structure is rotated.
(4) 磁性粉上に被覆した金属が、3n、3n合金、
Zn、7n合金、In、In合金から選ばれる低融点金
属であることを特徴とする特許請求の範囲第1項記載の
熱交換体の製・遣方法。
(4) The metal coated on the magnetic powder is 3n, 3n alloy,
2. The method for manufacturing and using a heat exchanger according to claim 1, wherein the metal is a low melting point metal selected from Zn, 7n alloy, In, and In alloy.
(5) la磁性粉金属層およびフラックス層またはそ
の何れかを設けた後、着磁することを特徴とする特許請
求の範囲第1項記載の熱交換体の製造方法。
(5) The method for manufacturing a heat exchanger according to claim 1, wherein magnetization is carried out after providing the la magnetic powder metal layer and/or the flux layer.
(6) !i磁性粉磁性体であるがあるいは磁性層を有
するものであることを特徴とする特許請求の範囲第1項
記載の熱交換体の製造方法。
(6)! 1. The method for producing a heat exchanger according to claim 1, wherein the heat exchanger is made of magnetic powder or has a magnetic layer.
(7) 磁性粉を気体中に分散させながら熱伝達基体の
熱伝達面に供給することを特徴とする特許請求の範囲第
1項記載の熱交換体の製造方法。
(7) The method for manufacturing a heat exchanger according to claim 1, characterized in that the magnetic powder is supplied to the heat transfer surface of the heat transfer base while being dispersed in a gas.
(8) 気体が不活性もしくは還元性であることを特徴
とする特許請求の範囲第7項記載の熱交換体の製造方法
(8) The method for producing a heat exchanger according to claim 7, wherein the gas is inert or reducing.
(9) 磁性粉の最外層にフラックス層を設けることを
特徴とする特許請求の範囲第1項記載の熱交換体の製造
方法。
(9) A method for manufacturing a heat exchanger according to claim 1, characterized in that a flux layer is provided as the outermost layer of magnetic powder.
(10) 加熱されている熱伝達基体の外面に不活性あ
るいは還元性雰囲気を形成することを特徴とする特許請
求の範囲第1項記載の熱交換体の製造方法。
(10) The method for manufacturing a heat exchanger according to claim 1, characterized in that an inert or reducing atmosphere is formed on the outer surface of the heat transfer substrate being heated.
JP11011684A 1984-05-30 1984-05-30 Manufacture of heat exchanger body Granted JPS60255984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011684A JPS60255984A (en) 1984-05-30 1984-05-30 Manufacture of heat exchanger body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011684A JPS60255984A (en) 1984-05-30 1984-05-30 Manufacture of heat exchanger body

Publications (2)

Publication Number Publication Date
JPS60255984A true JPS60255984A (en) 1985-12-17
JPH0440430B2 JPH0440430B2 (en) 1992-07-02

Family

ID=14527444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011684A Granted JPS60255984A (en) 1984-05-30 1984-05-30 Manufacture of heat exchanger body

Country Status (1)

Country Link
JP (1) JPS60255984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004923A3 (en) * 2002-07-02 2004-02-26 Jr Kenneth Casner Method for coating metallic tubes with corrosion-resistant alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004923A3 (en) * 2002-07-02 2004-02-26 Jr Kenneth Casner Method for coating metallic tubes with corrosion-resistant alloys

Also Published As

Publication number Publication date
JPH0440430B2 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
ES2212997T3 (en) METHOD OF DEPOSITING A FOUNDING OR A FOUNDING AND METAL ON A METAL SUBSTRATE FOR STRONG WELDING.
EP1670609B1 (en) Thermal spray application of brazing material for manufacture of heat transfer devices
EP0814173B1 (en) Method of bonding thermally sprayed coatings to non-roughened light metal-based surfaces
JP4677050B1 (en) Film forming method and composite material formed by the method
US20120160901A1 (en) Method for producing steel pipe plated with metal by thermal spraying
JPS645111B2 (en)
US20050283967A1 (en) Tube mill with in-line braze coating spray process
JP2008231486A (en) Alloy application method, brazing material application method, and manufacturing method of heat exchanger
JPS60255984A (en) Manufacture of heat exchanger body
JPS58204169A (en) Production of clad material
KR100847131B1 (en) Method for manufacturing heat exchanger
JPH10121110A (en) Boiling heat-transfer member and its production
JP2012153581A (en) Joining method of ceramic and aluminum
JPH0440429B2 (en)
JP3264240B2 (en) Method for producing copper tube having copper porous layer
JP5598946B2 (en) Method for producing aluminum member with brazing material layer and method for producing heat exchanger
US5482744A (en) Production of heat transfer element
US5549239A (en) Method of providing particle retaining metal surfaces and flux retaining metal components
TW200804025A (en) Method of applying a solder to substrate surface transported by gas spraying and powdery solder material
CN108085678A (en) A kind of preparation method and its liner of high heat conduction coating liner
JPS60253793A (en) Heat transfer tube for heat exchanger
EP0612858A2 (en) Production of heat transfer element
JPS5910467A (en) Production of blank material for brazing
JPH08224662A (en) Manufacture of aluminum joint
JP3356856B2 (en) Anticorrosion aluminum material for brazing and method for producing the same