JPS6025587A - High-degree treatment of water - Google Patents

High-degree treatment of water

Info

Publication number
JPS6025587A
JPS6025587A JP13206383A JP13206383A JPS6025587A JP S6025587 A JPS6025587 A JP S6025587A JP 13206383 A JP13206383 A JP 13206383A JP 13206383 A JP13206383 A JP 13206383A JP S6025587 A JPS6025587 A JP S6025587A
Authority
JP
Japan
Prior art keywords
water
ozone
treatment
treated
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13206383A
Other languages
Japanese (ja)
Inventor
Shizuo Suzuki
鈴木 鎮男
Takayuki Morioka
崇行 森岡
Hiroshi Hoshikawa
星川 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP13206383A priority Critical patent/JPS6025587A/en
Publication of JPS6025587A publication Critical patent/JPS6025587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To prevent adsorbing capability of activated carbon from being lowered, by controlling ozone injection ratio on the basis of a detected value of the total amount of organic matters having a molecular weight of not less than 1,000 contained in water to be treated. CONSTITUTION:Water 1 to be treated which has been subjected to a biochemical treatment and separation by flocculation is fed into a receiving tank 2, and is supplied into a reaction tank 5 for ozone oxidation by a water pump 3 through a detector 4. The detector 4 detects the total amount of organic matters having a high molecular weight of not less than 1,000 contained in water to be treated with ozone. After an ozone injection ratio is determined by a calculator 6 on the basis of the value detected by the detector 4, ozone is fed from an ozonizer 7 into the reaction tank 5 through a diffuser pipe 8, and is brought into reaction with water to be treated through gas-liquid contact. The water thus oxidized by ozone is fed into a dissolved ozone decomposing tank 10, where unreacted ozone contained in the water is brought into self-decomposition.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、下水処理施設及びし尿処理施設などにおけ
る水中の有機物を高度にしかも効果的に処理する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for highly and effectively treating organic matter in water in sewage treatment facilities, human waste treatment facilities, and the like.

〔従来技術とその問題点〕[Prior art and its problems]

近年、河川、湖沼などの公共用水域における水質の汚濁
は著しく、種々の弊害が生じている。この対策として、
C0D(化学的酸素要求量)総量規制が昭和56年から
施行されてきており、上流汚濁源となる下水処理施設、
し尿処理施設、ゴミ処理施設などがその対象となってい
る。なかでも下水処理施設とし尿処理施設は、放流水量
が多いと同時に放流水中のCODなどで表わされる有機
物の濃度が高いことから、上記公共用水域の水質汚濁に
最も影響を及はすものとされている。しかもこれらの施
設では放流水が着色しておシ、あたかも下水やし尿のた
れ流しを連想させてしまうことからも、放流水中の着色
成分及び有機物を低濃度レベルまで除去しなければなら
ない。すなわち放流水を高度に処理する必要に迫られて
いる。
In recent years, water quality in public water bodies such as rivers and lakes has become significantly polluted, causing various adverse effects. As a countermeasure for this,
Regulations on the total amount of COD (Chemical Oxygen Demand) have been in effect since 1981, and sewage treatment facilities, which are the source of upstream pollution,
This includes human waste treatment facilities, garbage treatment facilities, etc. Among these, sewage treatment facilities and human waste treatment facilities are said to have the greatest impact on water pollution in public water bodies, as they discharge a large amount of water and have a high concentration of organic matter expressed as COD etc. in the discharged water. ing. Moreover, in these facilities, the colored components and organic matter in the effluent must be removed to a low concentration level, since the effluent is colored and resembles sewage or human waste. In other words, there is an urgent need for advanced treatment of effluent water.

しかしながら、これらの施設におりる従来の水処理の方
法はほとんど同じと考えてよく、しかも機能的に十分で
ない。第1図にし尿処理施設の水処理のフローを示し、
これを用いて現状の処理法及びその問題点について以下
に説明する。まず収集された生し尿は、機械的分離工程
で粗いゴミなどを取シ除かれた後、以降の処理を容易に
するために地下水などで適度に稀釈されてから、次の生
物処理工程に流入する。この稀釈工程は下水処理の場合
では存在せず、この点が下水処理とし尿処理の大きく異
なる点でおる。また最近は稀釈水の削減をはかるために
、無稀釈処理の検討もされている。さて、生物処理工程
に流入した被処理水はここで活性汚泥などの微生物の働
きによシ有機物の大半や窒素、リンの殆んどが除去され
る。有機物の総量は総有機炭素(以下TOCと略す)や
CODで表わされ以下の説明ではTOCを用いる。参考
までに有機物の濃度(単位mg/l)について補足する
と、生物処理工程後では2桁のオーダーになる。
However, the conventional water treatment methods used in these facilities can be considered to be almost the same, and are not functionally sufficient. Figure 1 shows the flow of water treatment at a human waste treatment facility.
Using this, the current processing method and its problems will be explained below. First, the collected raw human waste undergoes a mechanical separation process to remove coarse dirt, and then is appropriately diluted with groundwater to facilitate subsequent treatment before flowing into the next biological treatment process. do. This dilution step does not exist in sewage treatment, and this is a major difference between sewage treatment and urine treatment. Recently, in order to reduce the amount of dilution water, non-dilution processing is also being considered. Now, in the water to be treated that flows into the biological treatment process, most of the organic matter, nitrogen, and phosphorus are removed by the action of microorganisms such as activated sludge. The total amount of organic matter is expressed as total organic carbon (hereinafter abbreviated as TOC) or COD, and TOC will be used in the following explanation. For reference, the concentration of organic matter (unit: mg/l) is on the order of two digits after the biological treatment process.

次に、生物処理工程をへた被処理水は塩素滅菌処理の消
毒工程を経て河川、湖沼などに放流される。
Next, the treated water that has passed the biological treatment process is discharged into rivers, lakes, etc. after undergoing a disinfection process using chlorine sterilization.

しかしこれらの処理法では、有機性の着色成分を除去で
きず、また放流水中に懸濁性の物質が浮遊して放流水の
外観を悪くしている。こう1−だ処理法の現状あるいは
前述の法的な規制の強化に伴ない、更に有機物の濃度を
1桁にできる高置の処理法が要求されてきている。その
高度な処理法は、はとんどが物理化学的な処理法であり
、代表的なものとしては凝集分離法、濾過法、オゾン酸
化法。
However, these treatment methods cannot remove organic coloring components, and suspended substances float in the effluent, worsening the appearance of the effluent. With the current state of single-level treatment methods and the strengthening of the aforementioned legal regulations, there is a growing demand for higher-level treatment methods that can reduce the concentration of organic matter to a single digit. The advanced treatment methods are mostly physicochemical treatment methods, and typical examples include coagulation separation method, filtration method, and ozone oxidation method.

活性炭吸着法などがあけられる。従って一部当該処理施
設では第2図に示すように既存のプロセスにこれらの高
度の処理プロセスを付加して処理を行っている。
Activated carbon adsorption methods are available. Therefore, some of the processing facilities are adding these advanced processing processes to existing processes, as shown in FIG.

なかでも、有機物と有機性の着色成分を高度に除去する
こと、たとえばTOC10mg/L +色度20度(着
色しているか否かほとんど判別できない程度)以下まで
処理することを目標とした場合には、■凝集分離・オゾ
ン酸化併用法と■凝集分離・活性炭吸着併用法が処理水
質の面から優れている。
In particular, when the goal is to remove organic substances and organic coloring components to a high degree, for example, to reduce the TOC to 10 mg/L + chromaticity of 20 degrees (to the extent that it is almost impossible to tell whether or not it is colored). , ■The combination method of coagulation separation and ozone oxidation, and the combination method of coagulation separation and activated carbon adsorption are superior in terms of treated water quality.

ところで上述の二つの方法は処理性が優れてはいるもの
の、維持管理性や運転性の面では、以下に示すような大
きな問題点がある。まず共通した問題は、凝集分離を効
果的に行うためには薬剤の注入量を増加しなければなら
ないと同時に、それに付随して凝集分離汚泥の量及び処
分量が増大することである。また、このことは単なるラ
ンニングコストの増大だけでなく、汚泥の搬送などの運
転性の面からも好ましくない。次に個々の処理法に着目
すると、この場合もランニングコストに関係するが、前
記■の方法ではオゾン酸化処理における有機物の除去性
が低く、これを向上するためにはオゾン注入量を大巾に
増加させなければならないという問題がある。第3図は
、某し尿処理施設における凝集分離水を酸化処理した結
果であるが、オゾン注入率100mg/を程度でもTO
Cは20チ程度しか除去されないことを示している。一
方前記■の方法では、TOCなどの有機物の活性炭に対
する吸着容量が小さいことから、その処理にあたっては
大容量の吸着塔を要するという問題点がある。
By the way, although the above-mentioned two methods are excellent in processability, there are major problems in terms of maintenance and operability as shown below. First, a common problem is that in order to effectively perform coagulation and separation, the amount of chemical injection must be increased, and at the same time, the amount of coagulated and separated sludge and the amount to be disposed of increase accordingly. Further, this is not preferable not only because of an increase in running costs but also from the viewpoint of operability such as transportation of sludge. Next, focusing on the individual treatment methods, although this also relates to running costs, method (2) has a low ability to remove organic matter in ozone oxidation treatment. The problem is that it has to be increased. Figure 3 shows the results of oxidation treatment of flocculated and separated water at a certain human waste treatment facility.
C indicates that only about 20 inches are removed. On the other hand, the above-mentioned method (2) has the problem that since the adsorption capacity of organic substances such as TOC to activated carbon is small, a large-capacity adsorption tower is required for its treatment.

このような二つの処理法の短所を補う方法として、生物
学的処理工程後凝集分離・オゾン酸化・活性炭吸着を行
う組合わせ処理法が知られている。
As a method to compensate for the shortcomings of these two treatment methods, a combination treatment method is known in which coagulation separation, ozone oxidation, and activated carbon adsorption are performed after the biological treatment step.

従来この処理法におけるオゾン酸化工程においてはオゾ
ン注入率を一定としているため、被処理水の有機物総量
の変動によシ、活性炭吸着性能が低下する問題があった
Conventionally, in the ozone oxidation step in this treatment method, the ozone injection rate was kept constant, so there was a problem that the activated carbon adsorption performance deteriorated due to fluctuations in the total amount of organic matter in the water to be treated.

〔発明の目的〕[Purpose of the invention]

この発明は、前記問題点に鑑みてなされたもので、オゾ
ン酸化工程と活性炭吸着工程を設けた処理法によシ水を
高度処理する方法において、被処理水の有機物総量の変
動に係らず、活性炭吸着性能が低下しない安定した高性
能の高度処理法を提供することを目的とする。
This invention was made in view of the above-mentioned problems, and is a method for highly treating waste water by a treatment method that includes an ozone oxidation step and an activated carbon adsorption step, regardless of fluctuations in the total amount of organic matter in the water to be treated. The purpose is to provide a stable, high-performance advanced treatment method that does not reduce activated carbon adsorption performance.

〔発明の要点〕[Key points of the invention]

この発明は、水の高度処理を行う際に、被オゾン処理水
中に含まれる高分子量の有機物の総量をめるための検出
部を設け、その検出値に基づきオゾン注入率を制御しな
がら処理をすることによって前述の目的を達するもので
ある。すなわちこの発明はオゾンによる酸化処理操作は
勿論のこと、その後の活性炭吸着工程における吸着性を
低下させることなく処理できるものである。尚高分子量
とは、種々の生物処理水によシ若干異なるが通常分子量
1000以上とする。
This invention provides a detection unit for calculating the total amount of high molecular weight organic matter contained in the water to be ozonated when performing advanced treatment of water, and performs the treatment while controlling the ozone injection rate based on the detected value. By doing so, the above objectives are achieved. In other words, the present invention is capable of carrying out the oxidation treatment using ozone as well as the subsequent activated carbon adsorption step without reducing the adsorption properties. The term "high molecular weight" means a molecular weight of 1000 or more, although it differs slightly depending on the type of biologically treated water.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の実施例を示す系統図を示すもので生
物学的処理工程および凝集分離工程(図示せず)をへた
被処理水(凝集分^W水)lは、一旦受槽2に流入した
後、水ポンプ3に・よシ検出器4を介してオゾン酸化の
反応4115に供給される。
FIG. 4 shows a system diagram showing an embodiment of the present invention. The water to be treated (flocculated water) l that has gone through the biological treatment process and the flocculation separation process (not shown) is once transferred to the receiving tank 2. After flowing into the water pump 3, the water is supplied to the ozone oxidation reaction 4115 via the water detector 4.

ここで検出器4は、被オゾン処理水中に含まれる通常分
子量1000以上の高分子量の有機物の総量をめるもの
であシ、水中に残存している有機物の総量とその中に占
める高分子量の有機物の割合をめる機能を併せもってい
る。たとえばこの検出器は、水中の有機物を液体クロマ
トグラフによ)分子量を分画した後、分子量1000以
上の有機物の分画水の有機物量をTOC分析計などを用
いることによ請求められる計測器である。
Here, the detector 4 measures the total amount of high-molecular-weight organic matter, which usually has a molecular weight of 1000 or more, contained in the water to be ozonated. It also has the function of calculating the proportion of organic matter. For example, this detector is a measuring device that calculates the amount of organic matter in the fractionated water of organic matter with a molecular weight of 1000 or more using a TOC analyzer after fractionating the molecular weight of organic matter in water using a liquid chromatograph. It is.

反応槽5では、検出器4でめられた値に基づき演算器6
によジオシン注入率が決定された後、オゾン発生機7か
ら所定のオゾンが反応槽5の底部にある散気管8を介し
て流入し、被処理水と気液の接触反応をする。この時未
反応の気相中のオゾンは、排オゾン処理装置9によシ処
理された後大気に放出する。反応槽5でオゾンによる酸
化処理を受けた被処理水は、次に溶存オゾン分解槽10
に流入する。ここで水中に含まれる未反応の溶存オゾン
は、被処理水が所定の時間滞留する間に自己分解して消
滅する。更に被処理水は、溶存オゾン分解槽10から溢
流して受槽11に流入してから水ポンプ12によシ活性
炭が充填された吸着塔13に連続的に供給されて処理を
うける。その後は、図示しない塩素滅菌工程に供される
In the reaction tank 5, a calculator 6 is used based on the value determined by the detector 4.
After the dioscin injection rate is determined, a predetermined amount of ozone flows from the ozone generator 7 through the aeration pipe 8 at the bottom of the reaction tank 5, and causes a gas-liquid contact reaction with the water to be treated. At this time, unreacted ozone in the gas phase is treated by the exhaust ozone treatment device 9 and then released into the atmosphere. The water to be treated that has been oxidized by ozone in the reaction tank 5 is then transferred to the dissolved ozone decomposition tank 10.
flows into. Here, unreacted dissolved ozone contained in the water self-decomposes and disappears while the water to be treated remains for a predetermined period of time. Furthermore, the water to be treated overflows from the dissolved ozone decomposition tank 10 and flows into the receiving tank 11, and then is continuously supplied by the water pump 12 to the adsorption tower 13 filled with activated carbon, where it is treated. After that, it is subjected to a chlorine sterilization process (not shown).

オゾン注入率の制御は本発明者らが実験した第5図の結
果に基づく最適制御範囲で行われる。第5図は被オゾン
処理水に含まれている有機物の総量の指標としてTOC
を用い、オゾン注入率と分子量1ooo以上の有機物の
総量との比を変化して、活性炭吸着工程後のTO(41
度を測定したものである。この結果から前記比が0.5
〜4.077)範囲では吸着工程後のTOCを10mg
/を以下にすることができ最適な制御範囲であることが
わかる。
The ozone injection rate is controlled within the optimum control range based on the results of experiments conducted by the present inventors and shown in FIG. Figure 5 shows TOC as an indicator of the total amount of organic matter contained in ozonated water.
TO (41
This is a measurement of the degree of From this result, the ratio is 0.5
~4.077) range, the TOC after the adsorption step is 10 mg.
It can be seen that / can be made below, which is the optimal control range.

以上説明した処理フローに基づいて実施しだ処理結果の
一例を従来技術と比較して第6図および第7図を用いて
説明する。
An example of the results of the processing performed based on the processing flow described above will be explained in comparison with the conventional technique using FIGS. 6 and 7.

第6図の処理工程と条件について説明すると、生物学的
処理工程をへた生物処理水を原水として、これを標準的
な処理操作条件のもとて凝集分離した後、3種類の70
−A、B、Cに分けて処理を行い比較実験した。フロー
Aは、凝集分離水を前述の7ゾン注入率の最適制御範囲
内のオゾン注入率20mg/A の条件で酸化処理をし
た後、活性炭の吸着塔に連続的に通水して処理を行った
ものである。一方フローBは、同じ凝集分離水をフロー
Aの場合に比較して高いオゾン注入率40mg/lの条
件で酸化処理をした後、フローAと同様の処理を行った
ものである。またフロー〇は、凝集分離水を直接吸着塔
に導いて処理を実施したものである。この実験における
処理結果を第7図に示す。
To explain the treatment process and conditions shown in Figure 6, the biologically treated water that has undergone the biological treatment process is used as raw water, and after flocculation separation under standard treatment operating conditions, three types of 70
- A, B, and C were treated separately and a comparative experiment was conducted. In Flow A, the coagulated and separated water is oxidized at an ozone injection rate of 20 mg/A, which is within the optimal control range of the 7 zones mentioned above, and then the water is continuously passed through an activated carbon adsorption tower for treatment. It is something that On the other hand, in Flow B, the same coagulated and separated water was oxidized at a higher ozone injection rate of 40 mg/l than in Flow A, and then subjected to the same treatment as in Flow A. In Flow ○, the coagulated and separated water was directly guided to the adsorption tower for treatment. The processing results in this experiment are shown in FIG.

第7図におけるTOC濃庭は、−か月間連続処理を行っ
た時の各工程における処理水の値である。第7図によれ
ば、仁の発明のフローAではTOC濃度を1桁である5
 m g / Lと有機物を高度に除去できることがわ
かる。フローBでは吸着塔に流入する被吸着処理水のT
OCQ度が最も低いにも拘らず、その後の吸着工程をへ
た処理水のTOC濃度が一番高くなっている。換言する
と、組合わせ法のようにオゾン酸化と活性炭吸着の工程
を直列的に付加して処理する方法では、オゾン注入率を
むやみに増加することがその後の吸着工程における有機
物の活性炭に対する吸着性を低下させることを示してい
る。この原因は、オゾン注入率の低い領域では難吸着性
である高分子量の有機物を低分子化して吸着性の高いも
のに変換できるが、過剰のオゾン注入率では元来吸着性
の高い低分子量の有機物まで分解して吸着性の低下をま
ねくことによる。
The TOC concentration in FIG. 7 is the value of treated water in each step when continuous treatment was performed for -month. According to FIG. 7, in flow A of Jin's invention, the TOC concentration is in the single digits.
It can be seen that organic matter can be removed to a high degree with mg/L. In flow B, T of the adsorbed treated water flowing into the adsorption tower
Although the OCQ degree is the lowest, the TOC concentration of the treated water that has not undergone the subsequent adsorption process is the highest. In other words, in a method that adds the ozone oxidation and activated carbon adsorption steps in series, such as the combination method, unnecessarily increasing the ozone injection rate will reduce the adsorption of organic matter to activated carbon in the subsequent adsorption step. It shows that it decreases. The reason for this is that at low ozone injection rates, high-molecular-weight organic substances that are difficult to adsorb can be converted into low-molecular-weight organic substances that are highly adsorbable; This is due to the decomposition of organic matter, leading to a decrease in adsorption properties.

第8図はこのことを具体的に示したもので、3つの分子
量範囲に分画した被吸着処理水のオゾン酸化処理前後の
吸着容量(活性炭の単位、質量あたりの有機物の吸着量
)の比を表わしている。比が1であることは、オゾン酸
化処理を行っていない場合である。1以上の場合は、オ
ゾン酸化処理を行うことによってその後の吸着性が向上
することを示している。ここで第8図の70−Bに着目
すると、過剰の酸化処理では分子z 1 o o o以
下の有機物の活性炭に対する吸着容量が減少することに
よって、全体的にも吸着性を低下させることを表わして
いる。従ってオゾン酸化処理では、分子量1000以上
の高分子量の有機物を対象として適正なオゾン注入率を
用い処理することが必要であることがわかる。また、分
子量の分画範囲については、よシ細分化することもでき
るが実用上は第8図の程度で十分である。第8図に示し
た分画は、ゲルクロマトグラフィーにより行った。
Figure 8 shows this in detail, and shows the ratio of adsorption capacity (adsorption amount of organic matter per unit of activated carbon, mass) of adsorbed treated water fractionated into three molecular weight ranges before and after ozone oxidation treatment. It represents. The ratio is 1 when ozone oxidation treatment is not performed. A value of 1 or more indicates that the subsequent adsorption property is improved by performing the ozone oxidation treatment. Focusing on 70-B in Fig. 8, it is shown that excessive oxidation treatment reduces the adsorption capacity of organic matter with molecules less than z 1 o o o to activated carbon, thereby reducing the overall adsorption performance. ing. Therefore, in ozone oxidation treatment, it is necessary to treat high molecular weight organic substances with a molecular weight of 1000 or more using an appropriate ozone injection rate. Furthermore, the molecular weight fractionation range can be further divided, but for practical purposes, the range shown in FIG. 8 is sufficient. The fractionation shown in FIG. 8 was performed by gel chromatography.

同、前記実験において凝集分離の操作は、供試水に凝集
剤として工業用硫酸アルミニウム溶液を300 mg/
L 、凝集助剤としてアニオン性ポリマー1mg/lを
注入して凝集させた後、沈降時間30分の固液分離槽に
導いて処理をした。吸着塔の通水速度はいずれも2m/
hrの条件のもとで笑厖した。
In the same experiment, the coagulation separation operation was performed by adding 300 mg/g of industrial aluminum sulfate solution to the test water as a coagulant.
L. After injecting 1 mg/l of an anionic polymer as a flocculation aid and flocculating it, it was introduced into a solid-liquid separation tank with a sedimentation time of 30 minutes for treatment. The water flow rate of the adsorption tower is 2m/
I laughed under the terms of HR.

さらに第6図のこの発明によるフロー人に関し、吸着塔
通水日数とTOolM、度の関係について実験した結果
を第9図に示す。これによシ活性炭の再生インターバル
約30日安定して低濃度の高度処理水が得られることが
わかる。
Furthermore, with regard to the flow control system according to the present invention shown in FIG. 6, FIG. 9 shows the results of an experiment regarding the relationship between the number of days water is passed through the adsorption tower, TOolM, and degree. It can be seen that this allows highly treated water with a low concentration to be obtained with a stable activated carbon regeneration interval of about 30 days.

この発明の原理とそれに関連する被処理水中すなわち生
物処理水中の有機物を把握する方法についてさらに詳し
く説明する。まず、生物処理水中の有機物は、元来水中
に含まれるものと新たに生最近同−の性質をもった有機
物の集合体すなわち有機物群として把握しようとする試
みが、主として分析化学の立場からなされている。アプ
ローチの方法としては二つある。−っは、あらがじめ生
物処理水中に含まれているものと考えられるタンパク質
、アミノ酸、糖類などを測定して、これらの有機物を有
機化学的に分類して把握(−ようとする方法である。も
p−っの方法は、液体クロマトグラフなどの分析装置を
用いて水中の有機物を分子量の違いなどにより分画する
と共にその分子量分布のパターンから有機物群の特性を
とらえようとする方法である。これらの二つの方法には
一長一短があるが、水処理の立場からは、後者により得
られる情報の方が利用価値が高い。りまシ、凝集分離、
オゾン酸化、活性炭吸着などの物理化学的処理では、一
般に水中に含まれている被処理物質の分子量が処理性に
最も影響を及はし易いことから、分子量に関する情報は
貴重であると考えられる。
The principle of this invention and the related method for determining organic matter in treated water, that is, biologically treated water, will be explained in more detail. First, attempts have been made primarily from the standpoint of analytical chemistry to understand organic matter in biologically treated water as a group of organic matter that has the same properties as those originally contained in water. ing. There are two approaches. - is a method that measures proteins, amino acids, sugars, etc. that are thought to be contained in biologically treated water, and classifies and understands these organic substances organically. The Mop method is a method that uses an analytical device such as a liquid chromatograph to fractionate organic substances in water based on differences in molecular weight, and attempts to determine the characteristics of a group of organic substances from the pattern of the molecular weight distribution. These two methods have advantages and disadvantages, but from the standpoint of water treatment, the information obtained by the latter is more useful.
In physicochemical treatments such as ozone oxidation and activated carbon adsorption, information on the molecular weight is considered to be valuable because the molecular weight of the substance to be treated that is generally contained in water is the most likely to affect the processability.

しかし、従来、上記の物理化学的処理では、分子量に関
する情報が処理の操作条件の内定などの面に利用されて
いない。たとえば、オゾンによる酸化処理の代表的な例
であるし尿処理水の脱色においては、あらかじめ被オゾ
ン処理水中の色度をめて、この値に基づきオゾン注入率
を制御しながら処理する方法が用いられている。この場
合は、オゾン注入率という操作条件を制御するための指
標として、色度という一種の被処理物質のm=を用いて
いるに過ぎない。更に、ここでし尿処理水中の色度につ
いて補足すると、着色成分は生し尿中に含まれる胆汁色
素と生し尿中の有機物が生物処理によシ分解されて新た
に生成したフミン質である。またこれらの着色成分の分
子量は、広く分布しておシ二つの物質が単純な物質でな
いことが我々の研究で明らかになっている。従って、オ
ゾン酸化単独あるいは凝集分離・オゾン酸化併用による
脱色では、むしろ着色成分の分子量より色度を制御指標
とするのが妥当である。
However, conventionally, in the above-mentioned physicochemical treatments, information regarding molecular weight has not been used for purposes such as determining the operating conditions of the treatments. For example, in decolorizing treated human waste water, which is a typical example of oxidation treatment using ozone, a method is used in which the chromaticity of the water to be ozonated is determined in advance and the ozone injection rate is controlled based on this value. ing. In this case, the chromaticity, m= of a type of material to be treated, is simply used as an index for controlling the operating condition of the ozone injection rate. Furthermore, to add more information about the chromaticity of the human waste treated water, the colored components are bile pigments contained in the human waste and humic substances newly generated by the decomposition of organic matter in the human waste through biological treatment. Furthermore, our research has revealed that the molecular weights of these coloring components are widely distributed and that these two substances are not simple substances. Therefore, in decolorizing by ozone oxidation alone or in combination with coagulation separation and ozone oxidation, it is more appropriate to use chromaticity as a control index rather than the molecular weight of the coloring component.

ところが、組合わせ法に!シ有機物を高度に除去する場
合は、着色成分は有機物の一部に過きないことから、オ
ゾン酸化工程におもて色度をオゾン注入率の制御指標と
することができない。また色度のみに着目して酸化処理
を行うことは過剰の処理にな)易く、経済的でないうえ
に有機物を過度に低分子化し第7図に示すように吸着性
を低下させてしまう。
However, the combination method! When removing organic matter to a high degree, the coloring component is only a part of the organic matter, so the chromaticity of the ozone oxidation process cannot be used as an index for controlling the ozone injection rate. Furthermore, performing oxidation treatment focusing only on chromaticity tends to result in excessive treatment, which is not economical and also reduces the organic matter to an excessively low molecular weight, resulting in a decrease in adsorption as shown in FIG.

そこでこの発明は、前述の処理法を用いて着色成分とそ
れ以外の有様物を除去する除に仮オゾン処理水中に含ま
れる分子量1000以上の有機物置をあらかじめ検出し
、その検出値によりオゾン注入率を制御して適正な醸化
処理を行うという原理を有することによって吸着工程に
おける吸着性の低下などの問題点を解決できるものであ
る。
Therefore, in this invention, in addition to removing colored components and other substances using the above-mentioned treatment method, organic substances with a molecular weight of 1000 or more contained in temporary ozonated water are detected in advance, and ozone is injected based on the detected value. By having the principle of controlling the rate and performing appropriate fermentation treatment, problems such as a decrease in adsorption in the adsorption process can be solved.

前述の説明では、し尿処理水などの生物処理水の高度処
理−の適用について説明してきたが、この発明は上記以
外にも上水道分野へも応用できる。
In the above description, the application of advanced treatment of biologically treated water such as human waste treated water has been explained, but the present invention can also be applied to the field of waterworks in addition to the above.

現在、上水道では、発ガン物質であるクロロホルムなど
の生成や異臭味の発生の問題を抱えている。この原因は
、前記生物処理水が河川、湖沼などの上水源に流入して
これらの水源の水質が悪化したことによるものである。
Currently, water supplies are facing problems with the production of carcinogenic substances such as chloroform and the production of strange odors and tastes. This is because the biologically treated water flows into water sources such as rivers, lakes, and marshes, and the water quality of these water sources deteriorates.

従って、上水源の水の中に存在する有機物は、生物処理
水中のものと類似しておシ、その対策にあたってはオゾ
ン酸化工程あるいは活性炭吸着工程を第10図に示す既
設の工程に付加することが考えられる。第11図と第1
2図は、この中でも特に将来採用されることが予測され
る浄水工程図である。第10図から第12図について以
下に説明する。第10図は標準的な浄水工程であり河川
などの上水源から取水された水道原水は一旦貯水池に貯
留された後、前塩素消毒工程で消毒処理を施されてから
、凝集分離工程に流入する。ここで被処理水は、主に懸
濁性の有機物を取り除かれる。次に、被処理水は、後塩
素消毒工程で再度消毒処理を受けた後、配水池などを介
して水道利用者のもとに給水される。
Therefore, the organic matter present in water from tap water sources is similar to that in biologically treated water, and as a countermeasure, it is necessary to add an ozone oxidation process or an activated carbon adsorption process to the existing process shown in Figure 10. is possible. Figure 11 and 1
Figure 2 is a water purification process diagram that is expected to be particularly adopted in the future. 10 to 12 will be explained below. Figure 10 shows a standard water purification process. Raw water taken from a water source such as a river is stored in a reservoir, then disinfected in a pre-chlorination process, and then flows into the coagulation separation process. . Here, suspended organic matter is mainly removed from the water to be treated. Next, the water to be treated undergoes disinfection treatment again in a post-chlorination disinfection step, and then is supplied to water service users via a water distribution reservoir or the like.

ところが、第10図の浄水工程では、前述した問題に対
応できないことから、第11図と第12図に示す浄水工
程が考えられる。第11図は、第10図の前塩素消毒工
程を前オゾン消毒工程に変え、更に凝集分離工程の後に
活性炭吸着工程を組込んだものである。また、第12図
は、前塩素消毒工程を廃止して、凝集分離工程の後に中
オゾン消毒工程を設けたもので、活性炭吸着工程の位置
については第11図と同様である。これら第11図と第
12図はいずれも、上水道の消毒工程で塩素に変わジオ
シンを利用すると共に、その後の工程に水処理の仕上げ
用として活性炭の吸着工程を配置したものである。従っ
てこの発明は、し尿処理施設などと適用分野は異なって
も、作用性が同じであることから上水道の分野へも充分
応用できる。
However, since the water purification process shown in FIG. 10 cannot deal with the above-mentioned problems, the water purification processes shown in FIGS. 11 and 12 are considered. In FIG. 11, the pre-chlorine disinfection step in FIG. 10 is changed to a pre-ozone disinfection step, and an activated carbon adsorption step is further incorporated after the coagulation separation step. Moreover, in FIG. 12, the pre-chlorine disinfection step is abolished and a medium ozone disinfection step is provided after the coagulation separation step, and the position of the activated carbon adsorption step is the same as in FIG. 11. Both Figures 11 and 12 show that dioscin is used instead of chlorine in the water disinfection process, and that an activated carbon adsorption process is arranged in the subsequent process to finish the water treatment. Therefore, even though the field of application is different from human waste treatment facilities, this invention can be fully applied to the field of waterworks as it has the same functionality.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、オゾン酸化工程と活性炭吸着工程を
有する高度水処理方法において、オゾン注入率を被オゾ
ン酸化処理水に含まれる分子量1000以上の有機物の
総量の検出値に基づき制御゛するようにしたので、被処
理水の有機物の総量の変動に係らず、活性炭吸着性能が
低下しない安定した高度処理法を提供できる効果がある
According to this invention, in an advanced water treatment method having an ozone oxidation step and an activated carbon adsorption step, the ozone injection rate is controlled based on the detected value of the total amount of organic matter with a molecular weight of 1000 or more contained in the water to be ozonized. Therefore, it is possible to provide a stable advanced treatment method in which the activated carbon adsorption performance does not deteriorate regardless of fluctuations in the total amount of organic matter in the water to be treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はし尿処理施設における標準的処理工程図、第2
図は第1図に高度処理プロセスを付加した処理工程図、
第3図はオゾン処理結果の一例、第4図はこの発明の実
施例の系統図、第5図は最適なオゾン注入率の制御範囲
を示す図、第6図はこの発明および従来技術の処理実験
比較工程図、第7図は第6図の実験結果比較、第8図は
第7図の実験結果を説明するだめの分析結果、第9図は
この発明の別の実験結果、第10図は上水道における標
準的浄水工程図、第11図および第12図は上水道にお
けるこの発明の実施例を示す図である。
Figure 1: Standard treatment process diagram at a human waste treatment facility; Figure 2:
The figure is a processing process diagram with the advanced treatment process added to Figure 1.
Fig. 3 is an example of ozone treatment results, Fig. 4 is a system diagram of an embodiment of the present invention, Fig. 5 is a diagram showing the control range of the optimum ozone injection rate, and Fig. 6 is a process of the present invention and prior art. Experimental comparison process chart, Figure 7 shows a comparison of the experimental results in Figure 6, Figure 8 shows the analysis results to explain the experimental results in Figure 7, Figure 9 shows another experimental result of this invention, and Figure 10. 1 is a standard water purification process diagram for waterworks, and FIGS. 11 and 12 are diagrams showing an embodiment of the present invention for waterworks.

Claims (1)

【特許請求の範囲】 1)オゾン酸化工程と活性炭吸着工程を有する水処理方
法において、オゾン注入率を被オゾン酸化処理水に含ま
れる分子11000以上の有機物の総量の検出値に基づ
き制御することを特徴とする水の高度処理法。 2、特許請求の範囲第1項記載の水の高度処理法におい
て、オゾン注入率と分子量1000以上の有機物の総量
との比を0.5から4,0の範囲に制御することを特徴
とする水の高度処理法。
[Claims] 1) In a water treatment method having an ozone oxidation step and an activated carbon adsorption step, the ozone injection rate is controlled based on the detected value of the total amount of organic matter having molecules of 11,000 or more contained in the water to be ozonized. Features: Advanced water treatment method. 2. The advanced water treatment method according to claim 1, characterized in that the ratio between the ozone injection rate and the total amount of organic matter with a molecular weight of 1000 or more is controlled in the range of 0.5 to 4.0. Advanced water treatment method.
JP13206383A 1983-07-20 1983-07-20 High-degree treatment of water Pending JPS6025587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13206383A JPS6025587A (en) 1983-07-20 1983-07-20 High-degree treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13206383A JPS6025587A (en) 1983-07-20 1983-07-20 High-degree treatment of water

Publications (1)

Publication Number Publication Date
JPS6025587A true JPS6025587A (en) 1985-02-08

Family

ID=15072641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13206383A Pending JPS6025587A (en) 1983-07-20 1983-07-20 High-degree treatment of water

Country Status (1)

Country Link
JP (1) JPS6025587A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577209A1 (en) * 1985-02-13 1986-08-14 Mitsubishi Electric Corp APPARATUS FOR PURIFYING DRINKING WATER
JPS62282689A (en) * 1986-05-30 1987-12-08 Nippon Denki Kankyo Eng Kk Treatment of waste water
JPH03157193A (en) * 1989-11-14 1991-07-05 Isomura Housui Kiko Kk Method and plant for treating high-degree purified water
JPH06108645A (en) * 1990-12-28 1994-04-19 Hiroshi Kondo Method for constructing concrete stairs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2577209A1 (en) * 1985-02-13 1986-08-14 Mitsubishi Electric Corp APPARATUS FOR PURIFYING DRINKING WATER
JPS62282689A (en) * 1986-05-30 1987-12-08 Nippon Denki Kankyo Eng Kk Treatment of waste water
JPH03157193A (en) * 1989-11-14 1991-07-05 Isomura Housui Kiko Kk Method and plant for treating high-degree purified water
JPH06108645A (en) * 1990-12-28 1994-04-19 Hiroshi Kondo Method for constructing concrete stairs

Similar Documents

Publication Publication Date Title
Iskander et al. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment
Dia et al. Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment
Takeuchi et al. Removal of organic substances from water by ozone treatment followed by biological activated carbon treatment
Seo et al. Sorption characteristics of biological powdered activated carbon in BPAC-MF (biological powdered activated carbon-microfiltration) system for refractory organic removal
US4810386A (en) Two-stage wastewater treatment
US4897196A (en) Two-stage batch wastewater treatment
KR101509109B1 (en) Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
Rakruam et al. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration
US4952316A (en) Continuous aeration-batch clarification wastewater treatment
Hattori Water treatment systems and technology for the removal of odor compounds
JPS6025587A (en) High-degree treatment of water
Malovanyy et al. Efficiency of two-stage aerobic-reagent technology for the pre-treatment of different age leachates of municipal solid waste landfills
Leeuwen Improved sewage treatment with ozonated activated sludge
JP3700938B2 (en) Method and apparatus for treating combined sewage in rainy weather
Ouyang et al. A study of a modified process for the intermittent cycle extended aeration system
JP2887284B2 (en) Ultrapure water production method
JP3449864B2 (en) Method and apparatus for reducing organic sludge
Wang et al. Ozonation of biologically treated landfill leachate: Treatment efficiency and molecular size distribution analysis
KR100280075B1 (en) Sanitary Landfill Leachate Treatment Method
KR200267141Y1 (en) equipment for advanced wastewater-treatment with a function of control according to the composition
JPS6377598A (en) Treatment of waste water of fiber dyeing
JPH10323688A (en) Method for removing phosphorus in waste water
JP2002221518A (en) Water quality monitor and controller for water treatment process
CN1198766C (en) New process for treating sewerage
JP2638726B2 (en) Ozone injection control method for low-temperature water treatment equipment