JPS60255615A - Production of silicon - Google Patents

Production of silicon

Info

Publication number
JPS60255615A
JPS60255615A JP10983784A JP10983784A JPS60255615A JP S60255615 A JPS60255615 A JP S60255615A JP 10983784 A JP10983784 A JP 10983784A JP 10983784 A JP10983784 A JP 10983784A JP S60255615 A JPS60255615 A JP S60255615A
Authority
JP
Japan
Prior art keywords
silicon
reducing agent
powder
silicon dioxide
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10983784A
Other languages
Japanese (ja)
Inventor
Mutsuhito Itou
伊藤 六仁
Susumu Hiratake
平竹 進
Yasuo Watanabe
渡辺 泰男
Mamoru Yoshimoto
護 吉本
Masato Ishizaki
正人 石崎
Mitsugi Yoshiyagawa
吉谷川 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
Daido Steel Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nippon Sheet Glass Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10983784A priority Critical patent/JPS60255615A/en
Publication of JPS60255615A publication Critical patent/JPS60255615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce highly pure Si, economically and efficiently, with a simplified means, by carrying out the complete reduction of a powdery mixture of SiO2 and a specific reducing agent instantaneously in a plasma gas stream. CONSTITUTION:1mol of powderly SiO2 (e.g. high purity quartz sand) crushed to about 200-325 mesh is added to a hot aqueous solution containing >=2mol of a reducing agent such as saccharose (in terms of C), kneaded homogeneously, dried, and pulverized to obtain powderly mixture of SiO2 and the reducing agent. The powder is thrown into the hopper 1, tansferred by H2 gas supplied to the feeder 2 attached to the bottom of the hopper 1, and introduced into the plasma torch 4 at the top of the reaction furnance 3. The powder is passed through the H2 gas plasma stream A of >=2,000 deg.C generated by the plasma torch 4, and is reduced completely and almost instantaneously to Si. The produced Si is cooled together with the gas stream with the cooler 5, separated from CO, H2 and stream by the separator 6, and delivered from the bottom of the separator 6.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はケイ素の製造方法に関し、更に詳しくは、単純
化した手段で二酸化ケイ素を効率的且つ経済的に還元し
てケイ素を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing silicon, and more particularly, to a method for producing silicon by efficiently and economically reducing silicon dioxide using simplified means. .

トランジスタやIC等に用いられる半導体、更には太陽
電池等にケイ素が広く利用されている。
Silicon is widely used in semiconductors used in transistors, ICs, etc., and also in solar cells and the like.

この種のケイ素(St)は一般に、二酸化ケイ素(Si
O2)を還元して製造される。
This type of silicon (St) is generally silicon dioxide (Si
It is produced by reducing O2).

本発明は、二酸化ケイ素を還元してケイ素を製造するに
当たり、該還元の手段を単純化した効率的且つ経済的な
ものとすることによって、更に精製することなくそのま
までも例えば太陽電池級になシ得るような比較的高純度
のケイ素を製造する方法を提供するものである。
The present invention reduces silicon dioxide to produce silicon, and by making the reduction method simple, efficient, and economical, it can be used as it is without further purification, for example, to produce silicon of the solar cell grade. The present invention provides a method for producing silicon of relatively high purity.

〈従来の技術とその問題点〉 従来、二酸化ケイ素を還元してケイ素を製造する次のよ
うな方法が提案されている。
<Prior art and its problems> Conventionally, the following methods have been proposed for producing silicon by reducing silicon dioxide.

1)二酸化ケイ素を粗ケイ素に還元し、次いで塩化物(
例えば三塩化物)の形態にした上で水素還元してケイ素
を製造する方法(ジーメンス法)がある。この方法は、
現在において半導体用のケイ素を製造する方法の主流と
なっているが、超高純度のケイ素が得ら、れる反面で、
手段が複雑であり且つ得られるケイ素が著るしく高価な
ものになる問題点がある。
1) Reduce silicon dioxide to crude silicon, then reduce chloride (
For example, there is a method (Siemens method) in which silicon is produced by converting it into a form (trichloride) and then reducing it with hydrogen. This method is
Currently, this is the mainstream method for producing silicon for semiconductors, but while it can produce ultra-high purity silicon,
The problem is that the methods are complicated and the silicon obtained is extremely expensive.

11)そこで近年再び、電気炉やアーク炉のような高温
炉を使用する方法が注目され、該高温炉中に二酸化ケイ
素及び還元材としての活性炭やカーボンブランクを装填
して還元反応させ、ケイ素を製造する方法が提案されて
いる(特開昭55−136116号)。しかし、この方
法によると、中間生成物である一酸化ケイ素(SiO)
や炭化ケイ素(8iC)が結果的に妨げとなってケイ素
の収率が悪いという問題点がある。
11) Therefore, in recent years, a method using a high-temperature furnace such as an electric furnace or an arc furnace has been attracting attention again. Silicon dioxide and activated carbon or carbon blank as a reducing agent are loaded into the high-temperature furnace and a reduction reaction is carried out to reduce silicon. A manufacturing method has been proposed (Japanese Patent Laid-Open No. 136116/1983). However, according to this method, the intermediate product silicon monoxide (SiO)
There is a problem in that silicon carbide (8iC) and silicon carbide (8iC) result in a poor yield of silicon.

111)また一方では、還元性のプラズマガス流中に二
酸化ケイ素の粉体を通過させたり、この際g1個に還元
材としての炭素粉体を通過させたシして二酸化ケイ素を
還元し、ケイ素を製造する方法(特開昭56−1691
18号)、更には、プラズマガス流中に二酸化ケイ素の
粉体を通過させ、次いでこれらを還元材の装填された反
応室に導入して二酸化ケイ素を還元し、ケイ素を製造す
る方法も提案されている(特開昭58−69713号)
。しかし、これらの方法によると、実際には二酸化ケイ
素が殆んどケイ素に還元されなかったシ、或いは依然と
してケイ素の収率が劣るという問題点がある。
111) On the other hand, silicon dioxide powder is reduced by passing silicon dioxide powder through a reducing plasma gas flow, and at this time passing carbon powder as a reducing agent through g1. Method for manufacturing (JP-A-56-1691
No. 18), a method has also been proposed in which silicon dioxide powder is passed through a plasma gas stream and then introduced into a reaction chamber loaded with a reducing agent to reduce silicon dioxide and produce silicon. (Unexamined Japanese Patent Publication No. 58-69713)
. However, these methods have the problem that silicon dioxide is actually hardly reduced to silicon, or the yield of silicon is still poor.

〈発明が解決しようとする問題点〉 本発明は、二酸化ケイ素を還元してケイ素を製造するに
当たり、叙上の如き従来の方法における問題点を解決す
るもので、該問題点を要約すると次の通りである。
<Problems to be Solved by the Invention> The present invention solves the problems in the conventional methods as described above in producing silicon by reducing silicon dioxide.The problems can be summarized as follows. That's right.

1)手段が複雑であるという問題点 2)前記1)と相まち、得られるケイ素が著るしく高価
なものとなシ、したがって非経済的であるという問題点 3)ケイ素の収率が悪く、非効率的であるという問題点 く問題点を解決するだめの手段〉 しかして本発明は、大局的には次式に則し、二酸化、ケ
イ素−を還元してケイ素を製造するに当たり、二酸化ケ
イ素と還元材とを一体共存させた粉体をプラズマ中に通
過させることを特徴とするケイ素の製造方法に係る。
1) Problem that the method is complicated 2) Coupled with 1) above, the problem that the obtained silicon is extremely expensive and therefore uneconomical 3) The yield of silicon is poor However, in general, the present invention is based on the following formula, and when manufacturing silicon by reducing silicon dioxide, silicon dioxide is reduced. The present invention relates to a method for producing silicon characterized by passing a powder in which silicon and a reducing agent coexist in a plasma.

SiO2+ 2C−+Si + 2CO↑本発明では、
二酸化ケイ素として例えば、比較的高純度の石英砂を使
用することができる。また還元材としては、活性炭やカ
ーボンブラック等の、炭素質材を使用することもできる
が、炭化水素化合物又はこれに酸素原子を含む化合物か
ら選ばれる1種又は2種以上を使用するのが好ましい。
SiO2+ 2C-+Si + 2CO↑In the present invention,
As silicon dioxide, for example, quartz sand of relatively high purity can be used. Further, as the reducing agent, carbonaceous materials such as activated carbon and carbon black can be used, but it is preferable to use one or more types selected from hydrocarbon compounds or compounds containing oxygen atoms. .

このような還元材としては、パラフィン、セルロース、
澱粉、フェノール、ポリビニルアルコール等、種々の化
合物が挙げられる。そして、以上列挙したような還元材
は、実際上、後述するように二酸化ケイ素と一体共存さ
せる前段階として、それ自体の溶液、その水溶液又はそ
の分散液等の形態で用いられるが、この際、サッカb−
スを併用するのが一層好ましい。
Such reducing agents include paraffin, cellulose,
Various compounds can be mentioned, such as starch, phenol, and polyvinyl alcohol. In practice, the reducing agents listed above are used in the form of solutions, aqueous solutions, or dispersions thereof as a preliminary step to coexist integrally with silicon dioxide, as will be described later. soccer b-
It is even more preferable to use it in combination.

本発明において、二酸化ケイ素と還元材とを一体共存さ
せた粉体とは、二酸化ケイ素の粉体に、還元材が付着し
ている形態、還元材が被覆となっている形態、還元材が
吸着しているかの如き形態及び/又は還元材が含浸して
いる形態等を意味し、二酸化ケイ素の粉体と還元材とが
少々くとも接合しているもので、双方が物理的に別個バ
ラバラに存在しているものではない。また本発明におい
て、該粉体をプラズマ中に通過させるとは、該粉体を例
えば水素ガスやアルゴンガス等のガス流にのせて、種々
のプラズマトーチやアーク発生電極を用いて発生させた
プラズマ中に通過させることである。
In the present invention, a powder in which silicon dioxide and a reducing agent coexist integrally refers to a powder in which the reducing agent is attached to the silicon dioxide powder, a powder in which the reducing agent is coated, and a powder in which the reducing agent is adsorbed. This refers to the form in which the silicon dioxide powder and the reducing agent are at least slightly joined together, and the two are physically separate and separate. It's not something that exists. Furthermore, in the present invention, passing the powder through plasma means placing the powder on a gas flow such as hydrogen gas or argon gas, and generating plasma using various plasma torches or arc generating electrodes. It is to let it pass inside.

第1図は本発明における要部系統図を例示するものであ
る。先ず、二酸化ケイ素と還元材とを一体共存させた粉
体を、例えば次のように作成する。
FIG. 1 illustrates a system diagram of main parts in the present invention. First, a powder in which silicon dioxide and a reducing agent coexist is prepared, for example, as follows.

すなわち、サッカロースの加熱水溶液中に200〜32
5メツシュ程度に粉砕した二酸化ケイ素の粉体を投入し
、これらを均一に練り合せる。その後、150°Cで一
夜乾燥した固まりを粉砕分級するのである。存られる粉
体は、その粒径が200〜325メツシュ程度で、二酸
化ケイ素1モルに対し炭素原子2モル前後以上となるよ
うに還元材を一体共存させたものが好ましい。
That is, in a heated aqueous solution of sucrose, 200 to 32
Add silicon dioxide powder pulverized to about 5 mesh and knead it uniformly. Thereafter, the mass was dried overnight at 150°C and then pulverized and classified. The powder to be present preferably has a particle size of about 200 to 325 mesh, and is preferably one in which a reducing agent is integrally co-existed so that the amount of carbon atoms is around 2 moles or more per 1 mole of silicon dioxide.

かくして作成した粉体を、以下第1図にしたがい、ホッ
パー1に投入する。ホッパー1の底部にはフィーダー2
が装備されており、このフィーダー2には水素(H2)
ガスが供給されていて、該水素ガスによシ粉体をガス搬
送し、これらは反応炉3の頂部に装備されているプラズ
マトーチ4へ送入される。図面では、リングタイプのプ
ラズマトーチ(例えば特開昭55−46266号公報に
記載されているようなプラズマトーチ)を示しているが
、これを高周波誘導加熱プラズマトーチとしたシ、或い
は反応炉3を含めてアーク発生電極を備える一般のアー
ク反応炉にしたシすること等、適宜に可能である。送入
された粉体は、プラズマトーチ4から発生する2000
°C以上の水素ガスのプラズマガス流人中を通過する際
、はぼ瞬時に、それを構成する二酸化ケイ素が主として
還元材の炭素によシ完全還元され、ケイ素(St)が生
成する。生成したケイ素は、ガス流と共にクーラー5で
冷却され、分離器6に至シ;゛ここで一酸化炭素(CO
)、水素(H2)、水蒸気(H2O)等が分別されて、
回収される。
The powder thus prepared is charged into a hopper 1 according to FIG. 1 below. Feeder 2 is at the bottom of hopper 1.
This feeder 2 is equipped with hydrogen (H2).
Gas is supplied, and the hydrogen gas transports the powders, which are fed into the plasma torch 4 installed at the top of the reactor 3. Although the drawing shows a ring-type plasma torch (for example, the plasma torch as described in Japanese Patent Application Laid-open No. 55-46266), it may also be used as a high-frequency induction heating plasma torch, or the reactor 3 may be used as a high-frequency induction heating plasma torch. It is possible to make it into a general arc reactor including an arc generating electrode as appropriate. The injected powder is 2000 yen generated from the plasma torch 4.
When hydrogen gas passes through a plasma gas stream at a temperature of .degree. C. or higher, the silicon dioxide constituting it is completely reduced mainly by the reducing agent carbon, producing silicon (St). The produced silicon is cooled together with the gas flow in a cooler 5, and reaches a separator 6; here, carbon monoxide (CO
), hydrogen (H2), water vapor (H2O), etc. are separated,
It will be collected.

〈作用〉 本発明は、以上説明したように、二酸化ケイ素と還元材
とを一体共存させた粉体をプラズマ中に通過させること
を骨子とするものである。該粉体の各粒子が二酸化ケイ
素と還元材とで構成されているため、双方を同一条件で
同時に加熱する等温加熱が可能である。しかも、該粉体
を極めて高温のプラズマ中に供給するため、数ミリ秒の
極く短時間で二酸化ケイ素と還元材を2000°C以上
の高温に到達させることができ、これが中間生成的な炭
化ケイ素(SiC)の発生を抑制する。そしてこの際、
還元材として炭化水素化合物やこれに酸素原子を含む化
合物から選ばれるものを使用すると、これらは活性炭や
カーボンブラック等よシも反応開始(還元材の炭素原子
が二酸化ケイ素の酸素原子と結合する反応の開始)に一
層のエネルギーを要することとなるが、これが結局は、
極く短時間ではあっても二酸化ケイ素及び還元材が充分
な温度に昇温する過程で発生する炭化ケイ素(SiC)
の生成防止に有効機能する。その上、二酸化ケイ素と還
元材とを一体共存させた粉体をプラズマ中に供給するた
め、二酸化ケイ素と還元材とが常に大きな接触面で接触
しておシ、還元材の炭素原子が二酸化ケイ素の酸素原子
と結合する反応が速やかに進展し、還元反応の完全化を
もたらす。
<Function> As explained above, the main feature of the present invention is to pass a powder in which silicon dioxide and a reducing agent coexist integrally into plasma. Since each particle of the powder is composed of silicon dioxide and a reducing agent, it is possible to perform isothermal heating in which both are heated simultaneously under the same conditions. Furthermore, since the powder is supplied into an extremely high temperature plasma, silicon dioxide and the reducing agent can be brought to a high temperature of over 2000°C in an extremely short period of several milliseconds, resulting in intermediate carbonization. Suppresses the generation of silicon (SiC). And at this time,
When a hydrocarbon compound or a compound containing an oxygen atom is used as a reducing agent, these compounds, such as activated carbon and carbon black, start a reaction (a reaction in which the carbon atoms of the reducing agent combine with the oxygen atoms of silicon dioxide). (starting) requires more energy, but this ultimately results in
Silicon carbide (SiC) is generated during the process of heating silicon dioxide and reducing agent to a sufficient temperature, even if it is only for a very short time.
It works effectively to prevent the generation of Furthermore, since a powder containing silicon dioxide and a reducing agent coexisting together is supplied to the plasma, the silicon dioxide and the reducing agent always come into contact with each other on a large contact surface, and the carbon atoms of the reducing agent are exposed to silicon dioxide. The reaction of bonding with the oxygen atom progresses rapidly, resulting in the completion of the reduction reaction.

〈発明の効果〉 しかして本発明には、斜上のような作用が、総合的に機
能し、要約すると次の効果がある。
<Effects of the Invention> However, in the present invention, the slant-up function functions comprehensively, and to summarize, the following effects are obtained.

すなわち、二酸化ケイ素を還元してケイ素を製造するに
当たり、単純化した手段の下に、高純度のケイ素を効率
良く且つ経済的に得ることができる。
That is, when producing silicon by reducing silicon dioxide, highly pure silicon can be obtained efficiently and economically using simplified means.

かかる本発明の効果は、より具体的に実施例で詳述する
ように、単に水素ガスのプラズマ中へ二酸化ケイ素の粉
体を通過させたシ、或いはそのようなプラズマ中へ二酸
化ケイ素の粉体と活性炭やカーボンブラックの如き還元
材の粉体とを別個バラバラに通過させたシするだけでは
得られない。
Such effects of the present invention can be obtained by simply passing silicon dioxide powder into a hydrogen gas plasma, or by passing silicon dioxide powder into such a plasma, as will be described in more detail in the examples. This cannot be obtained simply by passing the powder and the powder of a reducing agent such as activated carbon or carbon black separately.

〈実施例〉 それぞれ以下の粉体(本発明例の場合、比較例−1〜比
較例−3)を用意し、各粉体を第1図に準じて次の条件
下で還元処理した。処理後に回収した粉体中のケイ素(
St)の純度(%)を第1表に示した。
<Example> The following powders (in the case of the present invention, Comparative Examples-1 to Comparative Examples-3) were prepared, and each powder was subjected to reduction treatment under the following conditions according to FIG. Silicon (
The purity (%) of St) is shown in Table 1.

・本発明例の場合:サッカロースの50〜70℃加熱水
溶液中に200〜350メツシュ程度に粉砕分級した二
酸化ケイ素粉末(純度999%)を加え、充分に攪拌混
合して練シ合せた。二酸化ケイ素とサッカロースの割合
は二酸化ケイ素とサッカロース中のカーボン成分との割
合がモル比で1=2になるようにした。練シ合せた混合
物は更に150℃で一夜乾燥し、その後、粉砕分級する
ことによシ200〜325メツシュの粉体を得た。
- In the case of the present invention: Silicon dioxide powder (purity 999%) that had been crushed and classified to about 200 to 350 mesh was added to a heated aqueous solution of saccharose at 50 to 70°C, and the mixture was sufficiently stirred and mixed to be kneaded. The ratio of silicon dioxide to saccharose was such that the molar ratio of silicon dioxide to the carbon component in sucrose was 1=2. The kneaded mixture was further dried at 150°C overnight, and then pulverized and classified to obtain a powder of 200 to 325 mesh.

・比較例−1:本発明例の場合に・使用した二酸化ケイ
素を同様に粉砕分級して、200〜325メツシユの粉
体を得た。
- Comparative Example-1: In the case of the present invention example, the silicon dioxide used was similarly pulverized and classified to obtain a powder of 200 to 325 meshes.

・比較例−2:比較例−1で得た二酸化ケイ素の粉体と
、活性炭を同様に200〜325メツシユで粉砕分級し
た活性炭粉末とを、モル比で1:2の割合で混合した粉
体を得た。
・Comparative Example-2: Powder obtained by mixing the silicon dioxide powder obtained in Comparative Example-1 and activated carbon powder obtained by similarly crushing and classifying activated carbon using 200 to 325 mesh at a molar ratio of 1:2. I got it.

・比較例−3:活性炭の代わりにカーボンブラックを使
用し、以下、比較例−2と同様にして粉体を得た。
Comparative Example 3: Powder was obtained in the same manner as Comparative Example 2 except that carbon black was used instead of activated carbon.

轡条件二次の条件−1又は条件−2で還元処理した。Reduction treatment was carried out under the secondary condition-1 or condition-2.

第1表(回収した粉体中のStの純度)Table 1 (Purity of St in recovered powder)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における要部系統図を例示するものであ
る。 1・・・ホッパー、 2・・フィーダー、3・・・反応
炉、 4・・・プラズマトーチ、5・クーラー、 6・
・・分離器、 代理人 弁理士 入 山 宏 正
FIG. 1 illustrates a system diagram of main parts in the present invention. 1...Hopper, 2...Feeder, 3...Reactor, 4...Plasma torch, 5.Cooler, 6.
...Separator, Attorney: Hiromasa Iriyama

Claims (1)

【特許請求の範囲】 に酸化ケイ素を還元してケイ素を製造するに当たり、二
酸化ケイ素と還元材とを一体共存させた粉体をプラズマ
中に通過させることを特徴とするケイ素の製造方法。 2還元材が炭化水素化合物又はこれに酸素原子を含む化
合物から選ばれる1種又は2種以上のものである特許請
求の範囲第1項記載のケイ素の製造方法。 3還元材がサッカロースを含有するものである特許請求
の範囲第1項又は第2項記載のケイ素の製造方法。 4粉体が二酸化ケイ素1モルに対し炭素原子2モル前後
以上となるように還元材を一体共存させたものである特
許請求の範囲第2項又は第3項記載のケイ素の製造方法
[Scope of Claims] A method for producing silicon, which comprises passing through plasma a powder in which silicon dioxide and a reducing agent coexist in the production of silicon by reducing silicon oxide. 2. The method for producing silicon according to claim 1, wherein the reducing agent is one or more selected from hydrocarbon compounds and compounds containing oxygen atoms. 3. The method for producing silicon according to claim 1 or 2, wherein the reducing agent contains sucrose. 4. The method for producing silicon according to claim 2 or 3, wherein the reducing agent is integrally co-existed in the powder so that the amount of carbon atoms is approximately 2 moles or more per mole of silicon dioxide.
JP10983784A 1984-05-29 1984-05-29 Production of silicon Pending JPS60255615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10983784A JPS60255615A (en) 1984-05-29 1984-05-29 Production of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10983784A JPS60255615A (en) 1984-05-29 1984-05-29 Production of silicon

Publications (1)

Publication Number Publication Date
JPS60255615A true JPS60255615A (en) 1985-12-17

Family

ID=14520459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10983784A Pending JPS60255615A (en) 1984-05-29 1984-05-29 Production of silicon

Country Status (1)

Country Link
JP (1) JPS60255615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504089A (en) * 2008-09-30 2012-02-16 エボニック デグサ ゲーエムベーハー Carbohydrate pyrolysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504089A (en) * 2008-09-30 2012-02-16 エボニック デグサ ゲーエムベーハー Carbohydrate pyrolysis method

Similar Documents

Publication Publication Date Title
WO2018177294A1 (en) Method, apparatus, and system for producing silicon-containing product by utilizing silicon mud byproduct of cutting silicon material with diamond wire
EP0063272B1 (en) Synthesis of silicon nitride
JPH10500933A (en) Method for producing silicon carbide
CA1059065A (en) Arc reforming of hydrocarbons
JPS6055574B2 (en) Method for recovering nonvolatile metals from metal oxide-containing dust
KR890003344B1 (en) Multistage process for preparing ferroboron
JPH0417889B2 (en)
JPS62260711A (en) Manufacture of silicon by carbon heat reduction of silicate dioxide
JPS60255615A (en) Production of silicon
US4719095A (en) Production of silicon ceramic powders
JPS58120599A (en) Production of beta-silicon carbide whisker
JP2001039708A (en) High purity metal silicon and its production
CN101229916B (en) Method for combustion synthesis of silicon nitride powder by using polytetrafluoroethylene as additive
JPS60251112A (en) Process and device for preparing silicon
JPS6042164B2 (en) Powder manufacturing method
EP0634359B1 (en) Preparation of high alpha-type silicon nitride powder
JPS616109A (en) Manufacture of sic
JPS616114A (en) Process and apparatus for preparing metallic silicon
JPS60251113A (en) Process and device for preparing silicon
JPS616113A (en) Manufacture of metallic silicon
JP4545357B2 (en) Method for producing aluminum nitride powder
JPS6351467A (en) Production of high-purity carbon black
CN102976290A (en) Preparation method of iron vanadium nitride
JPS59110706A (en) Preparation of powder
JPH03187998A (en) Production of aluminum nitride whisker