JPS60255506A - Pneumatic tire - Google Patents
Pneumatic tireInfo
- Publication number
- JPS60255506A JPS60255506A JP59109624A JP10962484A JPS60255506A JP S60255506 A JPS60255506 A JP S60255506A JP 59109624 A JP59109624 A JP 59109624A JP 10962484 A JP10962484 A JP 10962484A JP S60255506 A JPS60255506 A JP S60255506A
- Authority
- JP
- Japan
- Prior art keywords
- tire
- kerf
- kerfs
- grooves
- transverse direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/0318—Tread patterns irregular patterns with particular pitch sequence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C2011/0337—Tread patterns characterised by particular design features of the pattern
- B60C2011/0339—Grooves
- B60C2011/0341—Circumferential grooves
- B60C2011/0346—Circumferential grooves with zigzag shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/03—Tread patterns
- B60C11/12—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
- B60C11/1204—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
- B60C2011/1213—Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は空気入りタイヤに関し、さら1こ詳しくは、車
輌サージを解消した空気入りタイヤに関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire that eliminates vehicle surge.
乗用車用タイヤのトレッドパターンはりブパターンとブ
ロックパターンの2つに大別でき、従来からりブパター
ンはブロックパターンに比べ騒音に対して有利であると
され、居住性を重視したタイヤに主として採用されてき
た。Tread patterns for passenger car tires can be broadly classified into two types: ribbed pattern and block pattern. Conventionally, ribbed pattern is considered to be more advantageous in terms of noise than block pattern, and has been mainly used in tires with emphasis on comfort. .
一方、車輌を減速から急に加速したときに発生する低周
波の前後振動、いわゆる車輌サージも居住性についての
一つの要素であるが、リブパターンはブロックパターン
に比べて車輌−)1−一ジの減衰時間が遅いという欠点
を持っていた。On the other hand, low-frequency longitudinal vibrations that occur when a vehicle suddenly accelerates from deceleration, so-called vehicle surge, are also a factor in livability, but compared to block patterns, rib patterns are had the disadvantage of slow decay time.
本発明の目的は、車輌サージによる車の前後方向の振動
を速く減衰させるリブパターンをトレッド面に有し、居
住性の向上した空気入りタイヤを提供することにある。An object of the present invention is to provide a pneumatic tire that has a rib pattern on the tread surface that quickly damps vibrations in the longitudinal direction of the vehicle due to vehicle surge, and has improved comfort.
すなわち本発明は、タイヤ周方向に連続して刻設された
溝と、この溝をへだてて形成されたリブをトレッド面に
有する空気入りラジアルタイヤにおいて、リブをタイヤ
横断方向に対して45°以下の角度で切断する複数のカ
ーフを刻設してエレメントを形成し、さらに、前記各カ
ーフのタイヤ全周に亙る平均ピッチPをカーフのタイヤ
横断方向平均投影長さしより小さくしたことを特徴とす
る空気入りタイヤを、その要旨とするものである。That is, the present invention provides a pneumatic radial tire having grooves continuously carved in the tire circumferential direction and ribs formed apart from the grooves on the tread surface, in which the ribs are arranged at an angle of 45° or less with respect to the tire transverse direction. The element is formed by carving a plurality of kerfs cut at an angle of , and the average pitch P of each kerf over the entire circumference of the tire is smaller than the average projected length of the kerf in the tire transverse direction. Its gist is pneumatic tires.
以下、本発明の構成を詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail.
車輌サージの原因は主にエンジンの不整燃焼による駆動
トルクの変動であるが、車輌サージの程度はタイヤに大
きく影響される。The main cause of vehicle surge is fluctuations in driving torque due to irregular combustion in the engine, but the degree of vehicle surge is greatly influenced by tires.
一般に車輌サージの良否は前後振動の減衰比の大小によ
って表わすことができ、減衰比が大きい程、車輌サージ
は良い。Generally, the quality of vehicle surge can be expressed by the magnitude of the damping ratio of longitudinal vibration, and the larger the damping ratio, the better the vehicle surge.
第5図に前後振動が時間と共に減衰する様子をグラフで
示した。このとき減衰比ζはζ−1/n Jn (XI
/X2 )で表わすことができる。Figure 5 is a graph showing how the longitudinal vibration attenuates over time. At this time, the damping ratio ζ is ζ-1/n Jn (XI
/X2).
次に減衰比とタイヤとの関係を述べると、減衰比はタイ
ヤの前後方向のスリップ剛性と関係があることが実験の
結果判明した。Next, regarding the relationship between the damping ratio and the tire, it was found through experiments that the damping ratio is related to the tire's longitudinal slip rigidity.
第6図はスリップ剛性と減衰比の関係を示したものであ
る。第6図かられかるように減衰比とスリップ剛性は負
の相関に、あり、減衰比をY軸に、スリップ剛性をX軸
にとると、
Y = −2,81x 10−’ X + 0.204
となり、このときの相関係数γはr = −0,858
9となる。FIG. 6 shows the relationship between slip stiffness and damping ratio. As can be seen from Fig. 6, there is a negative correlation between the damping ratio and the slip stiffness, and when the damping ratio is plotted on the Y axis and the slip stiffness is plotted on the X axis, Y = -2,81x 10-' X + 0. 204
In this case, the correlation coefficient γ is r = -0,858
It becomes 9.
スリップ剛性とはタイヤの進行速度を一定として、スリ
ップ率を変化させたときに働くタイヤ軸でのトルクを測
定し、これから得られるスリップ率とタイヤ軸トルク曲
線の原点での傾きである。Slip rigidity is the slope of the slip ratio and tire shaft torque curve at the origin obtained by measuring the torque acting on the tire shaft when the slip rate is varied while keeping the tire speed constant.
第7図にすべり速度νSとタイヤ軸トルクTの関係を示
すグラフである、この曲線aの原点での傾きbがスリッ
プ剛性dT/dVsである。この傾きが小さければスリ
ップ剛性が低く、スリップ剛性が低くなれば車輌前後方
向振動の減衰比が大きくなるから(第6図参照)、車輌
サージが改善されることになる。FIG. 7 is a graph showing the relationship between the slip speed νS and the tire shaft torque T. The slope b of this curve a at the origin is the slip stiffness dT/dVs. If this slope is small, the slip rigidity is low, and if the slip rigidity is low, the damping ratio of vehicle longitudinal vibration becomes large (see FIG. 6), so that vehicle surge is improved.
スリップ剛性を低くするには車輌サージ発生時にタイヤ
・路面間に作用する前後方向力に対してトレンドを変形
させることにより、タイヤ・路面間にスリップを生じさ
せてやることが有効である。In order to reduce slip rigidity, it is effective to generate slip between the tires and the road surface by changing the trend in response to the longitudinal force that acts between the tires and the road surface when a vehicle surge occurs.
一方、トレンドの変形はせん断による変形と曲げによる
変形とが合成されたものであるが、スリップ剛性を低く
するためには曲げによる変形を大きくすることが効果的
である。On the other hand, trend deformation is a combination of shear deformation and bending deformation, and increasing the bending deformation is effective in reducing slip rigidity.
第8図はトレッドが変形する様子を示したものである。FIG. 8 shows how the tread deforms.
路面に接地した深さDのトレンドBは接線力fにより破
線で示したように変形する。The trend B at the depth D of contact with the road surface is deformed as shown by the broken line due to the tangential force f.
スリップ剛性を低くするためには曲げ変形が効果的であ
る理由は第8図かられかるようにトレッドの接地面積が
減少することからと考えられる。The reason why bending deformation is effective in reducing slip rigidity is thought to be that the ground contact area of the tread is reduced, as seen in FIG.
曲げによる変形δは次の式で表わすことができる。The deformation δ due to bending can be expressed by the following formula.
δ=D3/、(3E I) ・f
(f:接線力(前後方向)、D:エレメントの厚さ、E
ニドレッドゴムのヤング率、■ニドレッドエレメントに
加えられた前後方向接線力fに垂直でエレメントの平断
面の図心を通る軸線に関する断面2次モーメント)
即ち、トレッドの変形に影響を与えるパターンについて
の要因はDと1であり、Dを大きく、あるいはIを小さ
くすることがトレッドの変形を大きくし、しいては車輌
サージを改善することになる。δ=D3/, (3E I) ・f (f: tangential force (back and forth direction), D: element thickness, E
Young's modulus of Nidred rubber, ■Second moment of area with respect to the axis perpendicular to the longitudinal tangential force f applied to the Nidred element and passing through the centroid of the flat section of the element) In other words, factors regarding the pattern that affect the deformation of the tread is D and 1, and increasing D or decreasing I increases the deformation of the tread, which in turn improves vehicle surge.
しかし、ここで問題となるのはトレッド部のタイヤ横断
方向の変形であり、タイヤ横断方向の変形が大きいと操
縦安定性を損なう結果となる。従って、直進安定性を確
保しつつ、車輌サージを改善するにはトレッドの変形は
タイヤ周方向に大きく、横断方向には小さくする必要が
ある。However, the problem here is the deformation of the tread portion in the tire transverse direction, and if the deformation in the tire transverse direction is large, the steering stability will be impaired. Therefore, in order to improve vehicle surge while ensuring straight-line stability, the deformation of the tread must be large in the tire circumferential direction and small in the transverse direction.
第9〜11図にリブパターンおよびエレメントの図を示
した。図において1がリブ、2が周方向に連続する溝、
3がカーフであり、4はカーフ3,3′によって切断さ
れたリブのエレメントである。Diagrams of the rib pattern and elements are shown in FIGS. 9-11. In the figure, 1 is a rib, 2 is a groove continuous in the circumferential direction,
3 is a kerf, and 4 is a rib element cut by the kerfs 3, 3'.
ここで各カーフ3のピンチがPi、リブlの幅がLiで
ある長方形のリブの一つのエレメント4について考える
。Here, consider one element 4 of a rectangular rib in which the pinch of each kerf 3 is Pi and the width of the rib I is Li.
このエレメント4が周方向に変形しやすくするためには
前記式からD3/Iを大きくする、即ちD/Piを大き
くすることが有効である。また、周方向の変形を横断方
向の変形より小さくするためにはLiをPiより大きく
する必要がある。゛これらのことをまとめると、
(DxLi) /Pi2を大きくすることが重要である
。 また、エレメント4は周方向から横断方向に向きを
変えるにしたがい周方向の変形が小さくなるのでカーフ
エの向きは周方向に直角な方向(タイヤ横断方向)が最
も効果的であり、好ましくはタイヤ横断方向に対して4
5°以下の角度である。タイヤ横断方向に対するカーフ
の角度θが45°を越えるとタイヤ周方向に変形しに<
<、車輌サージが改善されない。In order to make it easier for this element 4 to deform in the circumferential direction, it is effective to increase D3/I, that is, increase D/Pi, from the above equation. Furthermore, in order to make the deformation in the circumferential direction smaller than the deformation in the transverse direction, it is necessary to make Li larger than Pi. ``To summarize these things, it is important to increase (DxLi)/Pi2. In addition, as the element 4 changes direction from the circumferential direction to the transverse direction, the deformation in the circumferential direction becomes smaller, so the direction of the carfee perpendicular to the circumferential direction (tire transverse direction) is most effective, and preferably 4 for the direction
The angle is 5° or less. If the angle θ of the kerf with respect to the tire transverse direction exceeds 45°, the tire will deform in the circumferential direction.
<, Vehicle surge is not improved.
更に、エレメント4を接地域全域について考えると、リ
ブの幅Liに相当するものは一本のリブの幅Liにリブ
の本数nをかけたものとなる。Furthermore, considering the entire contact area of the element 4, the width Li of a rib is the width Li of one rib multiplied by the number n of ribs.
以上のことの相乗効果、すなわち、
Pi” / (n XLiXDXcos θ)を小さく
することにより車輌サージは改善されることになる。Vehicle surge can be improved by reducing the synergistic effect of the above, that is, Pi''/(nXLiXDXcos θ).
結局、車輌サージによる車の前後方向の振動を速く減衰
させ、居住性の向上した空気入りタイヤを得るためには
、リブをタイヤ横断方向に対して45°以下の角度で切
断する複数のカーフを刻設してエレメントを形成し、さ
らに、前記各カーフのタイヤ全周に亙る平均ピッチPを
カーフのタイヤ横断方向平均投影長さしより小さくする
必要がある。In the end, in order to quickly attenuate vibrations in the longitudinal direction of the vehicle caused by vehicle surges and to obtain a pneumatic tire with improved comfort, multiple kerfs are required in which the ribs are cut at an angle of 45 degrees or less with respect to the cross direction of the tire. It is necessary to form elements by engraving, and furthermore, it is necessary to make the average pitch P of each of the kerfs over the entire circumference of the tire smaller than the average projected length of the kerfs in the tire transverse direction.
そして、下記式を満足するエレメントがタイヤ全体のエ
レメントの35%以上を占めることが好ましいのである
。It is preferable that elements satisfying the following formula account for 35% or more of the elements in the entire tire.
0、05≦Pi2/ (nXLiXDXcos θ)≦
0.40但し、Pi・・・カーフのタイヤ周方向のピッ
チ。0,05≦Pi2/ (nXLiXDXcos θ)≦
0.40 However, Pi: pitch of the kerf in the tire circumferential direction.
Li・・・カーフρタイヤ横断方向投影長さ。Li...Curf ρ projected length in the tire transverse direction.
θ・・・カーフのタイヤ横断方向角度。θ...Angle of the kerf in the tire transverse direction.
n・・・リブの本数。n...Number of ribs.
D・・・カーフの深さ。D...Depth of kerf.
さらに、タイヤの全エレメントが上述した範囲に入るこ
とが望ましい。Furthermore, it is desirable that all elements of the tire fall within the ranges described above.
本発明の効果を確認するため次のような実験を行った。 In order to confirm the effects of the present invention, the following experiment was conducted.
タイヤサイズ185 /70SR14で第1図のパター
ンを有し、下記表に示した形状を有するタイヤを作り、
減衰比を測定した。A tire with a tire size of 185/70SR14 having the pattern shown in Figure 1 and the shape shown in the table below was made,
The damping ratio was measured.
(以下余白)
これらについて
Pi2/ (n xLix D Xcos θ)と減衰
比の関係を第12図に示した。(The following is a blank space) The relationship between Pi2/ (nxLixDXcosθ) and the damping ratio is shown in FIG. 12.
第12図の結果から、
Pi2/ (n XLiX D Xcosθ)が0.4
以下では減衰比が0.05以下になり車輌サージ改善効
果が大きいことがわかる。From the results in Figure 12, Pi2/ (n XLiX D Xcosθ) is 0.4
Below, it can be seen that the damping ratio is 0.05 or less, and the effect of improving vehicle surge is large.
ただし、Pi2/ (n XLi X D Xcos
θ)の値が0.05以上になるとカーフによって分割さ
れるエレメントが小さくなりすぎて操縦安定性の低下を
招くので好ましくない、
また、カーフの幅が211を越えるとブロックパターン
と同様、各々のエレメントが完全に独立し、騒音を発生
するのでカーフ幅は2fi以下が好ましい。However, Pi2/ (n XLi X D Xcos
If the value of θ) exceeds 0.05, the elements divided by the kerf will become too small, leading to a decrease in steering stability, which is undesirable. Also, if the width of the kerf exceeds 211, each element will become too small, similar to the block pattern. Since the elements are completely independent and generate noise, the kerf width is preferably 2fi or less.
更に、タイヤトレンドバクーンは騒音レベル低減のため
に各々のエレメントの周方向の長さを、最大のエレメン
ト長さと最小のエレメント長さとの比が1.7以下とな
るよう、いくつかの種類に分けているのが一般的である
が、タイヤ・路面接地面内にある全エレメントの内35
%以上が前記範囲の大きさのエレメントであれば十分で
ある。Furthermore, in order to reduce noise levels, Tire Trend Bakoon divides the length of each element in the circumferential direction into several types so that the ratio of the maximum element length to the minimum element length is 1.7 or less. Generally speaking, 35 out of all the elements in tires and road surfaces
It is sufficient if the element has a size within the above range.
さらに好ましくは、タイヤの全エレメントが前述した範
囲に入ることが望ましい。More preferably, all elements of the tire fall within the ranges described above.
以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.
第1図は本発明の第1の実施例であるラジアルタイヤの
トレッドパターンを示すもので、第2図はその部分拡大
図である。FIG. 1 shows a tread pattern of a radial tire according to a first embodiment of the present invention, and FIG. 2 is a partially enlarged view thereof.
トレッド面の接地域Aにはタイヤ周方向に連続した溝2
が4本刻設され、その各港2の間と両外側の溝2°の外
側に5本のリブ1,1°が形成されている。両側を溝2
.2“ではさまれたリブ1には両側の溝間を横断してリ
ブ1を切断するカーフ3が複数本刻設されている。また
、片側だけに溝2″を有する両側端のリブ1°にも溝2
′からトレッド接地外域Bへ横断してリブ1°を切断す
るカーフ3′が複数本刻設され、エレメント4が形成さ
れている。The contact area A of the tread surface has grooves 2 that are continuous in the tire circumferential direction.
are carved, and five ribs 1 and 1° are formed between each port 2 and on the outside of the grooves 2° on both outer sides. Groove 2 on both sides
.. A plurality of kerfs 3 are carved into the rib 1 sandwiched between the grooves 2" on both sides to cut the rib 1. Also, the rib 1 at both ends has the groove 2" on only one side. Mo groove 2
An element 4 is formed by cutting a plurality of kerfs 3' which cross the tread contact area B and cut the rib 1°.
そして前記カーフ3及び3′のタイヤ横断方向に対する
角度θは45°以下になっており、さらに、前記各カー
フ3及び3゛のタイヤ全周に亙る平均ピッチPをカーフ
3及び3′のタイヤ横断方向平均投影長さしより小さく
形成しである。The angle θ of the kerfs 3 and 3' with respect to the tire transverse direction is 45 degrees or less, and the average pitch P over the entire tire circumference of each of the kerfs 3 and 3' is set to The average projection length in the direction is smaller than that in the direction.
本実施例において、前記カーフ3及び3′のタイヤ横断
方向に対する角度θは、第2図に示すように、θ1.θ
2とそれぞれ異なっている。In this embodiment, the angle θ of the kerfs 3 and 3' with respect to the tire transverse direction is θ1. θ
2 are different from each other.
従って、前記角度θは(θ1+02)/2の値が45°
以下になっている。Therefore, the angle θ has a value of (θ1+02)/2 of 45°.
It is as below.
また、前記各カーフ3及び3′のタイヤ全周に亙るピッ
チも、第F図及び第2図に示すように、各エレメント4
のビ・ノチはPl、P2.・・Pi・・・Pmとなって
いる。従って、タイヤ全周に亙る平均ピッチPは、(P
l+P2 +・+Pi+・・+pm)/mの値をPとし
である。Furthermore, the pitch of each of the kerfs 3 and 3' over the entire circumference of the tire is also determined by the pitch of each element 4 as shown in FIGS.
Bi-nochi is Pl, P2. ...Pi...Pm. Therefore, the average pitch P over the entire circumference of the tire is (P
Let P be the value of l+P2 +·+Pi+···+pm)/m.
なお、任意の位置のエレメント4のピンチPiは本実施
例において第2図に示すように、左右の間隔が異なって
いるので、
Pi= (Pa+Pb) / 2
としである。Note that the pinch Pi of the element 4 at an arbitrary position is Pi=(Pa+Pb)/2 since the left and right intervals are different in this embodiment as shown in FIG.
さらに、各カーフのタイヤ横断方向平均投影長さも〜第
1図に示すように、各リブによってLl、L2 ・・L
i・・Lnとなっている。従って、各カーフのタイヤ横
断方向平均投影長さしは、(L1+L2+・+Li+・
・+Ln)/nの値をLとしである。Furthermore, the average projected length of each kerf in the tire transverse direction is also determined by each rib, as shown in Figure 1.
i...Ln. Therefore, the average projected length of each kerf in the tire transverse direction is (L1+L2+・+Li+・
・+Ln)/n is set to L.
なお、任意の位置のリブのタイヤ横断方向投影長さLi
は本実施例において第2図に示すように、
Li= (La十Lb) / 2
としである。In addition, the projected length Li of the rib in the tire transverse direction at an arbitrary position
In this embodiment, as shown in FIG. 2, Li=(La+Lb)/2.
しかも、本実施例は前記エレメント4の内、0.05≦
Pi2/ (n XLiX D Xcos θ)≦0.
40の関係を満足するエレメントがタイヤ全体のエレメ
ントの35%以上を占めているのは勿論である。Moreover, in this embodiment, among the elements 4, 0.05≦
Pi2/ (n XLiX D Xcos θ)≦0.
It goes without saying that elements satisfying the relationship of 40 account for 35% or more of the elements in the entire tire.
第3図は他の実施例を示すトレッドパターンであり、カ
ーフ3が直線ではなく折線になっている。FIG. 3 shows a tread pattern showing another embodiment, in which the kerf 3 is not a straight line but a broken line.
第4図は更に他の実施例を示すトレッドパターンであり
、溝2の幅が一定ではな(、枝溝5を有している。また
カーフ3も2箇所で屈折している。FIG. 4 shows a tread pattern showing yet another embodiment, in which the width of the grooves 2 is not constant (it has branch grooves 5), and the kerf 3 is also bent at two places.
本発明は次のような効果を発揮する。 The present invention exhibits the following effects.
fal 車輌サージによる振動の減衰が速く、居住性に
優れる。fal The vibrations caused by vehicle surges are quickly damped, providing excellent comfort.
(bl リプパターンであるので騒音の発生がすくない
。(Since it is a bl rep pattern, it generates less noise.
第1図は本発明の第1の実施例を示すトレッドパターン
図、第2図は第1図の部分拡大図、第3図は第2の実施
例を示すトレンドパターン図、第4図は第3の実施例を
示すトレッドパターン図、第5図は前後振動の減衰状態
を示すグラフ、第6図はスリップ剛性と減衰比の関係を
示すグラフ、第7図はスリップ剛性を示すグラフ、第8
図はトレンドゴムの変形状態を示す説明図、第9図はト
レッドパターンの説明図、第10図はエレメントの説明
図、第11図はカーフ角度を示す説明図、第12図はト
レンドパターンと減衰比の関係を示すグラフである。
■・・・リブ、2・・・溝、3・・・カーフ、4・・・
エレメ代理人 弁理士 小 川 信 −
弁理士 野 口 賢 照
弁理士斎下和彦
第1図
第2図
第3図
第4図
第5図
第6図
第7図
第81AFIG. 1 is a tread pattern diagram showing the first embodiment of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, FIG. 3 is a trend pattern diagram showing the second embodiment, and FIG. 4 is a tread pattern diagram showing the second embodiment. FIG. 5 is a graph showing the damping state of longitudinal vibration, FIG. 6 is a graph showing the relationship between slip rigidity and damping ratio, FIG. 7 is a graph showing slip rigidity, and FIG. 8 is a graph showing the relationship between slip rigidity and damping ratio.
The figure is an explanatory diagram showing the deformation state of the trend rubber, Fig. 9 is an explanatory diagram of the tread pattern, Fig. 10 is an explanatory diagram of the element, Fig. 11 is an explanatory diagram showing the kerf angle, and Fig. 12 is an explanatory diagram of the trend pattern and damping. It is a graph showing the relationship between ratios. ■...rib, 2...groove, 3...calf, 4...
Eleme Agent Patent Attorney Shin Ogawa - Patent Attorney Ken Noguchi Teru Patent Attorney Kazuhiko Saishita Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 81A
Claims (1)
をへだでて形成されたリブをトレンド面に有する空気入
りラジアルタイヤにおいて、リブをタイヤ横断方向に対
して45°以下の角度で切断する複数のカーフを刻設し
てエレメントを形成し、さらに、前記各カーフのタイヤ
全周に亙る平均ピッチPをカーフのタイヤ横断方向平均
投影長さしより小さくしたことを特徴とする空気入りタ
イヤ。 2、 下記式を満足するエレメントがタイヤ全体のエレ
メントの35%以上を占めることを特徴とする特許請求
の範囲第1項記載の空気入りタイヤ。 0.05≦Pi2/ (n XLiX D Xcos
θ)≦0.40但し、Pi・・・カーフのタイヤ周方向
のピッチ。 Li・・・カーフのタイヤ横断方向投影長さ。 θ・・・カーフのタイヤ横断方向角度。 n・・・リブの本数。 D・・・カーフの深さ。[Claims] 1. In a pneumatic radial tire having grooves continuously carved in the circumferential direction of the tire and ribs formed by extending the grooves on the trend surface, the ribs are formed in the tire transverse direction. A plurality of kerfs are cut at an angle of 45° or less to form an element, and the average pitch P of each kerf over the entire circumference of the tire is smaller than the average projected length of the kerf in the tire transverse direction. A pneumatic tire characterized by: 2. The pneumatic tire according to claim 1, wherein the elements satisfying the following formula account for 35% or more of the elements of the entire tire. 0.05≦Pi2/ (n XLiX D Xcos
θ)≦0.40 However, Pi: Pitch of the kerf in the tire circumferential direction. Li...Projected length of the kerf in the tire transverse direction. θ...Angle of the kerf in the tire transverse direction. n...Number of ribs. D...Depth of kerf.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59109624A JPS60255506A (en) | 1984-05-31 | 1984-05-31 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59109624A JPS60255506A (en) | 1984-05-31 | 1984-05-31 | Pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60255506A true JPS60255506A (en) | 1985-12-17 |
Family
ID=14515000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59109624A Pending JPS60255506A (en) | 1984-05-31 | 1984-05-31 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60255506A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62255204A (en) * | 1986-04-28 | 1987-11-07 | Bridgestone Corp | Pneumatic tire |
JPH01101204A (en) * | 1987-10-12 | 1989-04-19 | Bridgestone Corp | Pneumatic tire |
JPH0253609A (en) * | 1988-08-11 | 1990-02-22 | Sumitomo Rubber Ind Ltd | Pneumatic tire and manufacture thereof |
US5795415A (en) * | 1994-02-22 | 1998-08-18 | Pirelli Coordinamento Pneumatici S.P.A. | Medium/heavy duty motor-vehicle tires provided with a tread of the universal type |
US5801304A (en) * | 1995-10-09 | 1998-09-01 | Pirelli Coordinamento Pneumatici S.P.A. | Method of foreseeing tread wearing of a pneumatic tire |
KR20000038740A (en) * | 1998-12-09 | 2000-07-05 | 조충환 | Air pressure tire with improved steering safety |
US6151959A (en) * | 1996-10-10 | 2000-11-28 | Pirelli Coordinamento Pneumatici Spa | Pneumatic tire having tread wear detectors |
EP1270271A1 (en) * | 2001-06-29 | 2003-01-02 | Sumitomo Rubber Industries Ltd. | Studless tire |
JP2004314787A (en) * | 2003-04-16 | 2004-11-11 | Yokohama Rubber Co Ltd:The | Pneumatic tire for track travel vehicle |
JP2012183885A (en) * | 2011-03-04 | 2012-09-27 | Bridgestone Corp | Tire |
JP2013049407A (en) * | 2011-07-29 | 2013-03-14 | Bridgestone Corp | Tire |
US20160082779A1 (en) * | 2013-05-13 | 2016-03-24 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
US20170361658A1 (en) * | 2014-12-31 | 2017-12-21 | Compagnie Generale Des Etablissements Michelin | Tire tread with improved dry/snow traction |
WO2019188804A1 (en) * | 2018-03-26 | 2019-10-03 | 横浜ゴム株式会社 | Pneumatic tire |
JP2019199212A (en) * | 2018-05-17 | 2019-11-21 | Toyo Tire株式会社 | Pneumatic tire |
JP2019199213A (en) * | 2018-05-17 | 2019-11-21 | Toyo Tire株式会社 | Pneumatic tire |
JP2019209872A (en) * | 2018-06-06 | 2019-12-12 | Toyo Tire株式会社 | Pneumatic tire |
US11465451B2 (en) * | 2018-03-26 | 2022-10-11 | Sumitomo Rubber Industries, Ltd. | Tyre |
EP4151435A1 (en) * | 2021-09-15 | 2023-03-22 | Sumitomo Rubber Industries, Ltd. | Tire |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147902A (en) * | 1981-02-23 | 1982-09-13 | Gen Tire & Rubber Co | Tire with improved tread surface |
-
1984
- 1984-05-31 JP JP59109624A patent/JPS60255506A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147902A (en) * | 1981-02-23 | 1982-09-13 | Gen Tire & Rubber Co | Tire with improved tread surface |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62255204A (en) * | 1986-04-28 | 1987-11-07 | Bridgestone Corp | Pneumatic tire |
JPH01101204A (en) * | 1987-10-12 | 1989-04-19 | Bridgestone Corp | Pneumatic tire |
JPH0253609A (en) * | 1988-08-11 | 1990-02-22 | Sumitomo Rubber Ind Ltd | Pneumatic tire and manufacture thereof |
US6203640B1 (en) | 1994-02-22 | 2001-03-20 | Pirelli Coordinamento Pneumatici S.P.A. | Medium/heavy duty motor-vehicle tires provided with a tread of the universal type |
US5795415A (en) * | 1994-02-22 | 1998-08-18 | Pirelli Coordinamento Pneumatici S.P.A. | Medium/heavy duty motor-vehicle tires provided with a tread of the universal type |
US6609417B1 (en) | 1995-10-09 | 2003-08-26 | Pirelli Coordinamento Pneumatici Spa | Method of foreseeing and controlling tread wearing in a pneumatic tire and a related pneumatic tire |
US5801304A (en) * | 1995-10-09 | 1998-09-01 | Pirelli Coordinamento Pneumatici S.P.A. | Method of foreseeing tread wearing of a pneumatic tire |
US6151959A (en) * | 1996-10-10 | 2000-11-28 | Pirelli Coordinamento Pneumatici Spa | Pneumatic tire having tread wear detectors |
KR20000038740A (en) * | 1998-12-09 | 2000-07-05 | 조충환 | Air pressure tire with improved steering safety |
EP1270271A1 (en) * | 2001-06-29 | 2003-01-02 | Sumitomo Rubber Industries Ltd. | Studless tire |
US7204281B2 (en) | 2001-06-29 | 2007-04-17 | Sumitomo Rubber Industries, Ltd. | Studless tire with tread having circumferential portions, blocks and V shaped sipes |
JP2004314787A (en) * | 2003-04-16 | 2004-11-11 | Yokohama Rubber Co Ltd:The | Pneumatic tire for track travel vehicle |
JP2012183885A (en) * | 2011-03-04 | 2012-09-27 | Bridgestone Corp | Tire |
JP2013049407A (en) * | 2011-07-29 | 2013-03-14 | Bridgestone Corp | Tire |
US20160082779A1 (en) * | 2013-05-13 | 2016-03-24 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
US10471778B2 (en) * | 2013-05-13 | 2019-11-12 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
JP2017165406A (en) * | 2013-05-13 | 2017-09-21 | 住友ゴム工業株式会社 | Pneumatic tire |
US20170361658A1 (en) * | 2014-12-31 | 2017-12-21 | Compagnie Generale Des Etablissements Michelin | Tire tread with improved dry/snow traction |
CN111936323B (en) * | 2018-03-26 | 2022-06-07 | 横滨橡胶株式会社 | Pneumatic tire |
JP2019167052A (en) * | 2018-03-26 | 2019-10-03 | 横浜ゴム株式会社 | Pneumatic tire |
CN111936323A (en) * | 2018-03-26 | 2020-11-13 | 横滨橡胶株式会社 | Pneumatic tire |
WO2019188804A1 (en) * | 2018-03-26 | 2019-10-03 | 横浜ゴム株式会社 | Pneumatic tire |
US11465451B2 (en) * | 2018-03-26 | 2022-10-11 | Sumitomo Rubber Industries, Ltd. | Tyre |
US11951774B2 (en) | 2018-03-26 | 2024-04-09 | The Yokohama Rubber Co., Ltd. | Pneumatic tire |
JP2019199212A (en) * | 2018-05-17 | 2019-11-21 | Toyo Tire株式会社 | Pneumatic tire |
JP2019199213A (en) * | 2018-05-17 | 2019-11-21 | Toyo Tire株式会社 | Pneumatic tire |
US11376890B2 (en) | 2018-05-17 | 2022-07-05 | Toyo Tire Corporation | Pneumatic tire |
JP2019209872A (en) * | 2018-06-06 | 2019-12-12 | Toyo Tire株式会社 | Pneumatic tire |
EP4151435A1 (en) * | 2021-09-15 | 2023-03-22 | Sumitomo Rubber Industries, Ltd. | Tire |
US11904635B2 (en) | 2021-09-15 | 2024-02-20 | Sumitomo Rubber Industries, Ltd. | Tire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60255506A (en) | Pneumatic tire | |
EP1498288B1 (en) | Pneumatic tire | |
EP1946943B1 (en) | Pneumatic tire | |
EP2762332B1 (en) | Pneumatic tire for an auto motorcycle | |
JP2003211916A (en) | Pneumatic tire | |
US20090133792A1 (en) | Tire with decoupling groove for truck/bus | |
JP4925660B2 (en) | tire | |
JPH0443807B2 (en) | ||
JPH0429565B2 (en) | ||
JP4145397B2 (en) | Pneumatic tires for motorcycles | |
US4388960A (en) | Motorcycle tire | |
JPS58164407A (en) | Pneumatic tyre | |
JP4647432B2 (en) | Pneumatic tire | |
JP7230321B2 (en) | pneumatic tire | |
JPH0310908A (en) | Pneumatic tire | |
JPS63188505A (en) | Low noise pneumatic tire | |
JP2000071719A (en) | Pneumatic tire | |
JPS61215102A (en) | Low noise pneumatic tire | |
JPH04126612A (en) | Pneumatic tire | |
JPS63141804A (en) | Pneumatic tire | |
JP4717548B2 (en) | Pneumatic tire | |
JP3309016B2 (en) | Heavy duty pneumatic tires | |
JP6836382B2 (en) | Pneumatic tires | |
JPH03248902A (en) | Radial tire | |
JPS60161204A (en) | Aired tire |