JPS60255145A - Heavy oil reforming catalyst - Google Patents

Heavy oil reforming catalyst

Info

Publication number
JPS60255145A
JPS60255145A JP59109597A JP10959784A JPS60255145A JP S60255145 A JPS60255145 A JP S60255145A JP 59109597 A JP59109597 A JP 59109597A JP 10959784 A JP10959784 A JP 10959784A JP S60255145 A JPS60255145 A JP S60255145A
Authority
JP
Japan
Prior art keywords
zeolite
catalyst
iron
alumina
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59109597A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成夫
Kozo Iida
耕三 飯田
Shigeru Nojima
繁 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59109597A priority Critical patent/JPS60255145A/en
Publication of JPS60255145A publication Critical patent/JPS60255145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide pour point depressing activity and to improve the durability by depositing nickel, molybdenum, etc. on a carrier consisting of a mixture of iron-contg. zeolite and gamma-alumina to form the titled heavy oil reforming catalyst. CONSTITUTION:A catalyst carrier is formed of a mixture of iron-contg. zeolite consisting of crystalline metallosilicate obtained by substituting a part of Si at the apex of the crystal lattice for Fe and gamma-alumina. In this case, 20-70wt% iron-contg. zeolite is mixed with 30-80wt% gamma-alumina. When the content of the iron-contg. zeolite becomes <=20wt%, the pour point depressing activity is eliminated, and the denitrifying and desulfurizing activity is deteriorated, when the content becomes >=70wt%. A catalyst component consisting of 3-10wt% NiO, 3-10wt% CoO, 10-30wt% MoO3, and 10-30wt% WO3 is deposited on the carrier to obtain the heavy oil reforming catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石油系の常圧残油、減圧残油、あるいはター
ルサンド、シエールオイルなどの重質油の改質触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reforming catalyst for petroleum-based atmospheric residual oil, vacuum residual oil, or heavy oil such as tar sand and sierre oil.

(従来の技術) 近年、石油代替エネルギー開発の一環として、石炭、オ
イルシェール、タールサンド等の化石燃料の有効利用が
行われている。
(Prior Art) In recent years, as part of the development of oil-alternative energy, fossil fuels such as coal, oil shale, and tar sand have been effectively utilized.

これら化石燃料を熱処理することによって得られる重質
油は、輸送用や燃焼用燃料として利用されるが、これら
の油は、石油に比べ窪素分、硫黄分會多く含むため、そ
のまま燃焼すると窒素酸化物や硫黄酸化物を多く、大気
に放出することになり、好ましくない。さらに、シエー
ルオイル等の油は、パラフィン分會多く含むため流動点
が高く、パイプライン輸送をする場合、加熱ケ要し、多
大なエネルギーが必要となる。
Heavy oil obtained by heat-treating these fossil fuels is used for transportation and as a fuel for combustion, but these oils contain higher silicon and sulfur content than petroleum, so if they are burned as is, they cause nitrogen oxidation. This is undesirable as it releases a lot of substances and sulfur oxides into the atmosphere. Furthermore, oil such as sierre oil has a high pour point because it contains a large amount of paraffin fraction, and when transported by pipeline, heating is required and a large amount of energy is required.

現在、これらの重質油の精製は、重質油の性状、製品の
需要構成および要求性状により異なるが、コーキング等
の前処理と水素化精製を組み合わせた二段プロセスで行
っている。この水素化プロセスは、触媒の存在下におい
て炭化水素類の分解、窒素化合物のアンモニア、硫黄化
合物の硫化水素への反応を行わせるものであるが、触媒
の活性の寿命、選択性が鍵となっている。その特性を制
御する方法として、細孔容積中細孔分布の検討が一般に
行われている。
Currently, refining of these heavy oils is carried out using a two-stage process that combines pretreatment such as coking and hydrorefining, although this varies depending on the properties of the heavy oil, product demand structure, and required properties. This hydrogenation process decomposes hydrocarbons, reacts nitrogen compounds to ammonia, and sulfur compounds to hydrogen sulfide in the presence of a catalyst, but the key factors are the lifetime and selectivity of the catalyst's activity. ing. As a method of controlling the properties, the pore distribution within the pore volume is generally studied.

従来の石油系の水素化処理プロセス用・に適用されてい
る触媒は、r−アルミナ全担体とし、ニッケル、モリブ
デンなどの活性金属成分全担持したものがほとんどであ
り、上記の重質油に対しては、高温でのガス化を促進す
る水素化処理であるため、水素消費量が大へん多い。さ
らに、重質油の脱窒素、脱硫は促進されるが、流動点を
降下させる機能tはとんど備えていない。
Conventional catalysts used in petroleum-based hydrotreating processes are mostly r-alumina carriers, which support all active metal components such as nickel and molybdenum. Since hydrogen treatment promotes gasification at high temperatures, the amount of hydrogen consumed is very high. Furthermore, although denitrification and desulfurization of heavy oil are promoted, it hardly has the function of lowering the pour point.

一方、流動点降下用□触媒として、灯軽油留分を対象K
、強い酸性物質であるシリカアルミナ系ゼオライ)1用
いて、パラフィン系炭化水素の水素化分解を行っている
。しかし、シリカ・アルミナ系ゼオライトは油中の窒素
分によって被毒されるため、窒素分ケ多く含む重質油全
原料油に用いると流動点はほとんど低下しなくなる。
On the other hand, kerosene fraction is used as a catalyst for lowering pour point.
, silica-alumina-based zeolite (1), which is a strongly acidic substance, is used to perform hydrogenolysis of paraffinic hydrocarbons. However, since silica-alumina-based zeolite is poisoned by the nitrogen content in the oil, the pour point hardly decreases when used in heavy oil containing a large amount of nitrogen.

(発明が解決しようとする問題点) そこで、発明者等は流動点が高く、窒素を多く含む重質
油を水素化改質するため脱窒素、脱硫、さらに脱ろう活
性の両機能ケ備えた触媒の開発に鋭意取り組み、その結
果、本発明を見い出すに致った。
(Problem to be solved by the invention) Therefore, in order to hydro-reform heavy oil that has a high pour point and contains a large amount of nitrogen, the inventors developed a technology that has both denitrification, desulfurization, and dewaxing activities. We worked diligently to develop catalysts, and as a result, we discovered the present invention.

(発明の知見) 発明者等は、ゼオライトの持つ脱ろう活性に着目し、特
に、シリカ・鉄系のゼオライトとγ−ATOs e混合
した担体に、ニッケル、モリブデンを担持した触媒を用
いることによって著しい効果があること全見出した。
(Findings of the Invention) The inventors focused on the dewaxing activity of zeolite, and in particular, by using a catalyst in which nickel and molybdenum are supported on a carrier that is a mixture of silica/iron zeolite and γ-ATO, the inventors achieved remarkable results. I found out that it is effective.

この触礫の機能は従来のγ−人403のみ?担体とする
触媒と比較して、脱窒素、脱硫性能は同一であるに加え
て、脱ろう性能を大幅に促進するものである。
Is this touchstone's function only for the conventional γ-jin 403? Compared to the catalyst used as a carrier, the denitrification and desulfurization performance is the same, and the dewaxing performance is greatly promoted.

シリカ・鉄系のゼオライトはシリカ・アルミナ系のゼオ
ライトに比べ窒素による被毒を受けにくいため耐久性が
ある。さらに、酸量を変えずに、活性金属を担持するこ
とができるため、ニッケル、モリブデンの水素化能がほ
とんど変わらないことが特徴となっている。
Silica/iron-based zeolites are more durable than silica/alumina-based zeolites because they are less susceptible to nitrogen poisoning. Furthermore, since active metals can be supported without changing the amount of acid, the hydrogenation ability of nickel and molybdenum remains almost the same.

(発明の構成) すなわち本発明は鉄含有ゼオライトとT−アルミナとの
混合物全担体とすることを特徴とする重質油改質触媒で
ある。
(Structure of the Invention) That is, the present invention is a heavy oil reforming catalyst characterized in that the entire carrier is a mixture of iron-containing zeolite and T-alumina.

本発明でいう鉄含有ゼオライトとは結昌格子点の81 
の一部f Fe で置換した結晶性メタロシリケートの
ことである。
The iron-containing zeolite referred to in the present invention is 81 of the crystal lattice points.
It is a crystalline metallosilicate in which a part of f is substituted with Fe.

鉄含有ゼオライトとr−アルミナの混合比は、鉄含有ゼ
オライト:T−アルミナが20〜70wt係=30〜8
0 wt俤の範囲である。鉄含有ゼオライトが、20 
wt4以下になると流動点降下能がなくなシ、7 Ow
t俤以上では脱窒素、脱硫黄活性が悪くなるからである
The mixing ratio of iron-containing zeolite and r-alumina is iron-containing zeolite:T-alumina: 20-70wt = 30-8
It is in the range of 0 wt. Iron-containing zeolite is 20
When the wt is below 4, the pour point depressing ability is lost, 7 Ow
This is because denitrification and desulfurization activities deteriorate when the amount exceeds t.

鉄含有ゼオライトとγ−アルミナとの混合物担体に、担
持させると七ができる触媒成分は、Ni、Co、Mo、
Wであシ、担体に対する担持量FiN10:3〜10w
t係、C00;!1〜10チ。
The catalyst components that can be supported on a mixture carrier of iron-containing zeolite and γ-alumina include Ni, Co, Mo,
W, loading amount on carrier FiN10: 3-10w
T person, C00;! 1 to 10 chi.

MOO畠: 10〜30 wt%、 won ; 10
〜30wt係である。
MOO Hatake: 10-30 wt%, won; 10
~30wt person.

以下、本発明の触媒の特徴を実施例により詳細に説明す
る。
Hereinafter, the characteristics of the catalyst of the present invention will be explained in detail with reference to Examples.

〔実施例−1〕 触媒1の調製法を以下に記す。[Example-1] The method for preparing catalyst 1 is described below.

6462のFe04−6 H2Oと294fのMaOB
、i 55 B ’rの蒸留水(H鵞0 ’)に溶かす
。ついで上記溶液に、コロイダルシリカ1530f(固
形分20 wt%)と蒸留水600fの混合物を攪拌し
ながら加える(仕込、み比S io、/Fe!03 =
 40 ’)。
6462 Fe04-6 H2O and 294f MaOB
, i 55 B'r dissolved in distilled water (H 0'). Next, a mixture of colloidal silica 1530f (solid content 20 wt%) and distilled water 600f is added to the above solution while stirring (preparation ratio Sio, /Fe!03 =
40').

さらに、290t’のテトラ−n−プロピルアンモ;ラ
ムブロマイド(TPABr)ft加え、オートクレーブ
に入れ密封した。オートクレーブを160℃に保ち、攪
拌を行いながら、ゼオライトを水熱合成させた。3日後
、オートクレーブを開け、内容物を炉遇した。回収した
結晶性物質を多量の水で洗い、120℃で乾燥した。こ
の乾燥物質iX線回折丁同定したところZEIM −5
型の結晶性物質であることが確認された。さらに、この
ゼオライトli500℃で3’hr 焼成した。
Further, 290 t' of tetra-n-propylambromide (TPABr) ft was added, and the mixture was placed in an autoclave and sealed. Zeolite was hydrothermally synthesized while keeping the autoclave at 160° C. and stirring. After 3 days, the autoclave was opened and the contents were heated. The recovered crystalline material was washed with a large amount of water and dried at 120°C. The iX-ray diffraction pattern of this dry substance was identified as ZEIM-5.
It was confirmed that it is a type of crystalline substance. Furthermore, this zeolite li was calcined at 500°C for 3'hr.

ゼオライ)?H型にイオン交換するために、5NのNH
4Oを水溶液1tの中に、ゼオライトを浸し、60℃の
もとて5時間攪拌した。上記イオン交換を数回行った後
、ゼオライトを洗浄濾過し、120℃で10時間乾燥し
、500℃で3 Hr 焼成した。
Zeorai)? For ion exchange to H type, 5N NH
The zeolite was immersed in 1 t of an aqueous solution of 4O, and stirred at 60° C. for 5 hours. After performing the above ion exchange several times, the zeolite was washed and filtered, dried at 120°C for 10 hours, and calcined at 500°C for 3 hours.

次に、以上調製したゼオライ)36ftアルミナゾル5
bot(固形分10 it%)に加え混・合した。この
混合物に等量の水酸化アンモニウムを40−加え、混合
ゲルを得る。得られたゲルを120℃で18時間乾燥し
、500t:で3時間焼成し、触媒1の担体を得る。
Next, the zeolite prepared above) 36ft alumina sol 5
bot (solid content 10 it%) and mixed. An equal amount of ammonium hydroxide is added to this mixture to obtain a mixed gel. The obtained gel is dried at 120° C. for 18 hours and calcined at 500 t for 3 hours to obtain a carrier for catalyst 1.

上記の触媒担体30tf、蒸留水20dK5、8 ? 
(7) N1(NO3)1・640 f溶解した溶液を
用いて含浸した。さらに、蒸留水2o−に7.39の(
NH4)6M07024 ・4 Ego ’に溶解した
溶液を用いて含浸した。含浸後120Cで10時間乾燥
させ500℃で3時間焼成した。
The above catalyst carrier 30tf, distilled water 20dK5,8?
(7) Impregnation using a solution containing 1.640 f of N1 (NO3). Furthermore, 7.39 (
Impregnated using a solution dissolved in NH4)6M07024.4 Ego'. After impregnating, it was dried at 120C for 10 hours and fired at 500C for 3 hours.

このように調製した触媒1は、ゼオライトとアルミナの
混合担体に対してNiO、Mo01の活性金属をそれぞ
れ5 wt%、1/iwt%担持した触媒である。
Catalyst 1 prepared in this manner is a catalyst in which active metals NiO and Mo01 are supported at 5 wt% and 1/iwt%, respectively, on a mixed carrier of zeolite and alumina.

この触媒1を用い、下記表1に示した原料油(シエール
オイル)を表2の水素化条件下で水添反応を実施した。
Using this Catalyst 1, a hydrogenation reaction was carried out on the feedstock oil (Sierre oil) shown in Table 1 below under the hydrogenation conditions shown in Table 2.

その結果も表1に併せて示す。The results are also shown in Table 1.

表−1 表−2 〔実施例−2〕 触媒2の調製方法は、ゼオライ11−水熱合成する際の
FeCl2・6H20仕込量を32.3fとした以外は
実施例−1で調製した触媒1と同様の方法である。
Table 1 Table 2 [Example 2] The preparation method of catalyst 2 was the same as that of catalyst 1 prepared in Example 1 except that the amount of FeCl2.6H20 charged during hydrothermal synthesis of zeolite 11 was 32.3f. This is the same method as .

このゼオライトのslo、 / 1reos の仕込み
組成比は80である。
The charging composition ratio of slo/1reos of this zeolite is 80.

この触媒2會用いて、実施例−1と同一の原料油と水素
化条件で水添反応を実施した結果、“表−3に示す水添
油が得られた。
Using these two catalysts, a hydrogenation reaction was carried out under the same hydrogenation conditions as in Example 1 with the raw material oil, and as a result, the hydrogenated oil shown in Table 3 was obtained.

表−3 〔実施例−3〕 触媒3も実施例−1で調製した触媒1と同様な方法で調
製した。触媒3の特徴は、触媒の担体を形成するゼオラ
イトのFθa4・isH,0仕込み量1142fとし、
SiO,/Fe、Os仕込み組成比を160とした点に
ある。
Table 3 [Example 3] Catalyst 3 was also prepared in the same manner as Catalyst 1 prepared in Example 1. The characteristics of catalyst 3 are that the amount of Fθa4・isH,0 charged amount of zeolite that forms the catalyst carrier is 1142f;
The point is that the SiO,/Fe, Os charging composition ratio was set to 160.

この触媒3t−用いて、実施例−1と同一の原料油と水
素化条件で水添反応を実施した結果、表−4に示す水添
油が得られた。
Using 3 tons of this catalyst, a hydrogenation reaction was carried out under the same hydrogenation conditions as in Example 1 with the raw material oil, and as a result, the hydrogenated oil shown in Table 4 was obtained.

表−4 以上、3種触媒により処理した水添油全燃料油とした際
公害問題となるS、11はほとんど除去されている。さ
らに、流動点は、−5℃以下と、原料油に比べ′55℃
以下減少し、油のパイプライン輸送が大幅に容易になっ
た。
Table 4 As shown above, when the hydrogenated oil treated with the three types of catalysts is used as a total fuel oil, S and 11, which cause pollution problems, are almost completely removed. Furthermore, the pour point is -5℃ or less, which is 55℃ compared to raw oil.
Less reduced, pipeline transportation of oil has become significantly easier.

〔比較例〕[Comparative example]

通常使用されているγ−A403にn1o(5%)、M
OO,(16%)1に担持した従来の触媒によるシエー
ルオイルの水添試験を実施した。その性能を表5に示す
。ただし、水添反応条件は表−2に依る。
Normally used γ-A403 with n1o (5%) and M
Hydrogenation tests of sierre oil with a conventional catalyst supported on OO, (16%) 1 were carried out. Its performance is shown in Table 5. However, the hydrogenation reaction conditions depend on Table-2.

表−5 表1.3.4と表5比較から、本発明の3種の触媒は、
脱窒素、脱硫活性に対しては、従来の触媒と同様の性能
を示しており、さらに、重質油の流動点會低下させる脱
ろう活性を具備したものであることがわかる。
Table 5 From the comparison between Table 1.3.4 and Table 5, the three types of catalysts of the present invention are:
It can be seen that the catalyst exhibits the same performance as conventional catalysts in terms of denitrification and desulfurization activities, and also has a dewaxing activity that lowers the pour point of heavy oil.

また、上記の触媒1を表−2と同一の条件で原料油全連
続供給し、1000時間′の耐久性試験ケ行った。この
結果、脱鵞素活性、脱硫活性さらに流動点降下活性とも
初期と殆んど変化がないことを確認した。
In addition, a durability test was conducted for Catalyst 1 for 1000 hours under the same conditions as shown in Table 2, by continuously supplying the raw material oil. As a result, it was confirmed that there was almost no change from the initial stage in the deodorization activity, desulfurization activity, and pour point depressing activity.

以上の実施例?、2.3および比較例から、本発明触媒
は、従来の重質油の改質触媒に比べ、流動点降下活性を
具備した、耐久性のある改質触媒であることが明らかで
ある。
Examples of the above? , 2.3 and the comparative examples, it is clear that the catalyst of the present invention is a durable reforming catalyst that has pour point lowering activity compared to conventional reforming catalysts for heavy oil.

復代理人 内 1) 明 復代理人 萩 原 亮 −Among the sub-agents: 1) Akira Sub-agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] 鉄含有ゼオライトとγ−アルミナとの混合物全担体とす
ることを特徴とする重質油改質触媒。
A heavy oil reforming catalyst characterized in that the entire carrier is a mixture of iron-containing zeolite and γ-alumina.
JP59109597A 1984-05-31 1984-05-31 Heavy oil reforming catalyst Pending JPS60255145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59109597A JPS60255145A (en) 1984-05-31 1984-05-31 Heavy oil reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109597A JPS60255145A (en) 1984-05-31 1984-05-31 Heavy oil reforming catalyst

Publications (1)

Publication Number Publication Date
JPS60255145A true JPS60255145A (en) 1985-12-16

Family

ID=14514300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109597A Pending JPS60255145A (en) 1984-05-31 1984-05-31 Heavy oil reforming catalyst

Country Status (1)

Country Link
JP (1) JPS60255145A (en)

Similar Documents

Publication Publication Date Title
US10596555B2 (en) Catalyst to attain low sulfur gasoline
US2880171A (en) Hydrodesulfurization of hydrocarbons with catalyst composed of molybdenum and two members of the iron group metals
Prins Catalytic hydrodenitrogenation
Anderson et al. Catalysis: science and technology
SU1151216A3 (en) Method of desulfurization of cracked gasoline
JPH04226191A (en) Method for saturating aromatic hydrocarbonin the range of diesel boiling point
WO2005092498A1 (en) Catalyst for hydrogenation treatment of hydrocarbon oil and method for preparation thereof, and method for hydrogenation treatment of hydrocarbon oil
US3223652A (en) Preparation of iron group metal catalysts
JPH11156198A (en) Hydrogenation cracking catalyst for medium duty distilled oil production
GB1575434A (en) Method of presulphiding hydrodesulphurization catalysts
CA1131199A (en) Catalyst for hydrotreatment of heavy hydrocarbon oils and process for preparing the catalysts
US4540482A (en) Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use
SU1181522A3 (en) Catalytic system for hydraulic processing of petroleum fractions and method of hydraulic processing of petroleum fractions
US2878193A (en) Preparation of iron group hydrogenation catalyst support on molybdenum oxide-aluminasupport
JPS6186948A (en) Hydrotreating composition containing carrier mixture comprising trivalent chromium, molybdenum or tungsten sulfide
JPH08277395A (en) Desulfurization of catalytically cracked gasoline
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPS60255145A (en) Heavy oil reforming catalyst
Egorova Study of aspects of deep hydrodesulfurization by means of model reactions
JP2567291B2 (en) Hydroprocessing method for hydrocarbon oil
IL30806A (en) Preparation of hydrodesulfurization catalysts
US4969989A (en) Hydrocarbon conversion process with catalytic materials of controlled geometric mean electronegativity
CN113680347A (en) Hydrofining catalyst, preparation method thereof and application thereof in oil refining and aromatic ring saturation regulation
JPH04210240A (en) Hydrogenation catalyst and its production
JPS60255144A (en) Heavy oil reforming catalyst