JPS60254904A - Mos analog amplifier circuit - Google Patents

Mos analog amplifier circuit

Info

Publication number
JPS60254904A
JPS60254904A JP59111792A JP11179284A JPS60254904A JP S60254904 A JPS60254904 A JP S60254904A JP 59111792 A JP59111792 A JP 59111792A JP 11179284 A JP11179284 A JP 11179284A JP S60254904 A JPS60254904 A JP S60254904A
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
output
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59111792A
Other languages
Japanese (ja)
Other versions
JPH0249049B2 (en
Inventor
Takashi Mitsuida
高 三井田
Akira Takei
武井 朗
Kiyoshi Tashiro
田代 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59111792A priority Critical patent/JPS60254904A/en
Publication of JPS60254904A publication Critical patent/JPS60254904A/en
Publication of JPH0249049B2 publication Critical patent/JPH0249049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34DC amplifiers in which all stages are DC-coupled
    • H03F3/343DC amplifiers in which all stages are DC-coupled with semiconductor devices only
    • H03F3/345DC amplifiers in which all stages are DC-coupled with semiconductor devices only with field-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To generate a stable output voltage which is not affected by variation in source voltage by adjusting the gate voltage of MOS transistors (TR) as the load resistance of a source follower through a bias voltage circuit so that variation in output voltage with the source voltage is canceled. CONSTITUTION:A depletion type TR is used as a Tr2 of a load bias circuit and its operation point is set in a nonsaturation region (triode region). An enhancement type TR is used as a Tr1 of the load bias circuit, and the gate is connected to the drain, allowing the TR to operate in a saturation region. The Tr1 and Tr2 divide the source voltage VDD and the divided voltage Vb is outputted from the connection point A and supplied to gates of the Tr2, Tr5, and Tr7. The Tr2 is in the nonsaturation triode region, so the voltage Vb at the output terminal A rises as the source voltage VDD rises, and consequently the gate voltage of the Tr5 and Tr7 rises to increase the conductivity, so that the output voltage Vout does not rise with the source voltage VDD.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、MO3I−ランジスタをソースホロアで用い
たアナログアンプ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an analog amplifier circuit using an MO3I transistor as a source follower.

従来技術と問題点 ソースホロア回路は使用増幅素子がnチャネルMOS)
ランジスタであるとそのドレインを電源に、ソースを負
荷抵抗を介してグランドに接続し、ゲートに入力電圧を
加え、ソースと負荷抵抗との接続点より出力電圧を取出
す。ソースホロアは利得は1以下であるがインピーダン
ス変換によく用いられる。実用例の1つはCOD (電
荷結合装置)の出力部であり、その概要を第1図に示す
Conventional technology and problems In the source follower circuit, the amplification element used is n-channel MOS)
In the case of a transistor, its drain is connected to a power supply, its source is connected to ground via a load resistor, an input voltage is applied to its gate, and an output voltage is obtained from the connection point between the source and the load resistor. Although the source follower has a gain of 1 or less, it is often used for impedance conversion. One practical example is the output section of a COD (charge-coupled device), an outline of which is shown in FIG.

この図でT r I %T r 7はnチャネルMOS
)ランジスタで、T r 4〜T r 7が2段のソー
スホロアを構成する。即ち’l’r4.’l’r6のド
レインは電源VDDに接続され、ソースが負荷抵抗とな
るトランジスタTr5.Tr7のドレインに接続され、
該Try、Tr7のソースが電源(グランド)Vssに
接続される。Try、Tr2は負荷バイアス回路であり
、トランジスタ’l’r5.Tr7にこれらを適当な値
の負荷抵抗とするためのゲート電圧を供給する。ソース
ホロアを2段接続すると利得は更に下るが、負荷容量な
どに対応すべくCODでは2段ものが用いられることが
多い。ダイオードのマークで示したちのDはCOD (
電荷結合装置)の出力部で、トランジスタのソース、ド
レインと同様な拡散領域からなる。出力部りはトランジ
スタT r 3を介して電源VDDへ接続される。
In this figure, T r I % T r 7 is an n-channel MOS
) transistors, and T r 4 to T r 7 constitute a two-stage source follower. That is 'l'r4. The drain of 'l'r6 is connected to the power supply VDD, and the source of transistor Tr5.'l'r6 serves as a load resistance. Connected to the drain of Tr7,
The sources of the Try and Tr7 are connected to the power supply (ground) Vss. Try, Tr2 are load bias circuits, and transistors 'l'r5. A gate voltage is supplied to Tr7 to set these as load resistances of appropriate values. If the source follower is connected in two stages, the gain will further decrease, but two stages are often used in COD to accommodate load capacitance. The D shown by the diode mark is COD (
It is the output part of a charge-coupled device (charge-coupled device) and consists of diffusion regions similar to the source and drain of a transistor. The output section is connected to the power supply VDD via the transistor T r 3.

このトランジスタT r 3はディプリーション型で常
時はカットオフしており、リセットクロックφRが入る
とカットオン(オン)になって出力部りを電源VDDへ
直結しく等価的に)、該出力部をリセットする。
This transistor T r 3 is a depletion type and is normally cut off, and when the reset clock φR is input, it is cut on (on) and the output section is directly connected to the power supply VDD (equivalently). Reset.

第2図の(b)がリセットクロックφRの波形を示し、
同図(a)が出力電圧Voutの波形を示す。第1図の
トランジスタT r 3にリセットクロックφRが入る
とT r 3はオンになってCODの出力部りは電源V
DDへ固定され、トランジスタT r 4 、 ’rr
5゜TR6,TR7のオン抵抗値に応じて分割され、出
力電圧Voutが得られる。リセットクロックφRが切
れるとトランジスタT r 3のゲート・ソース間容量
により出力部りの電位が若干下り、つれて出力電圧Vo
utも若干下る。この部分QがDC(直流)基準レベル
となる。次にCODの電荷(電子)が転送されてきてそ
れが出力部りに入ると、該出力部の電位は下る。この部
分Rの電位変化は流入電荷により定まり、従ってQ−R
が信号電圧Vsgになる。信号電圧の読取りは、部分R
の各々の一中間部で該部分の電位を読取り、基準レベル
Qとの差をめることにより出力を得る。
(b) of FIG. 2 shows the waveform of the reset clock φR,
FIG. 5(a) shows the waveform of the output voltage Vout. When the reset clock φR is applied to the transistor T r 3 in FIG. 1, T r 3 turns on and the output part of COD is connected to the power supply
DD, transistor T r 4 , 'rr
5° is divided according to the on-resistance values of TR6 and TR7, and the output voltage Vout is obtained. When the reset clock φR is cut off, the potential at the output section drops slightly due to the gate-source capacitance of the transistor T r 3, and as a result, the output voltage Vo
ut is also slightly lower. This portion Q becomes the DC (direct current) reference level. Next, when the charges (electrons) of the COD are transferred and enter the output section, the potential of the output section decreases. The potential change in this portion R is determined by the inflow charge, so Q-R
becomes the signal voltage Vsg. Reading the signal voltage is done in part R
An output is obtained by reading the potential of the intermediate part of each part and calculating the difference from the reference level Q.

CODが携帯用テレビカメラなどに使用されていると電
源は乾電池などとなり、該乾電池から昇圧した後に給電
する場合に電源電圧が変動しやすい。電源電圧VDDが
変動すると出力電圧Voutは第2図(C1に示すよう
に全体が該電源電圧変動につれて変動する。これでは部
分Q、 Rレベルも変動するから、これをサンプリング
して得た出力信号には電源電圧変動が含まれ、不安定な
ものになる。
When a COD is used in a portable television camera or the like, the power source is a dry battery or the like, and the power supply voltage is likely to fluctuate when power is supplied after boosting the voltage from the dry battery. When the power supply voltage VDD fluctuates, the output voltage Vout as a whole fluctuates as the power supply voltage fluctuates, as shown in Figure 2 (C1).In this case, the partial Q and R levels also fluctuate, so the output signal obtained by sampling this includes power supply voltage fluctuations, making it unstable.

発明の目的 本発明はか\る点を改善し、電源電圧変動の影響を受け
ない安定な出力電圧を発生するようにしようとするもの
である。
OBJECTS OF THE INVENTION The present invention aims to improve the above points and generate a stable output voltage that is not affected by power supply voltage fluctuations.

発明の構成 本発明は、ソースホロアに接続したMOS)ランジスタ
回路と、該回路の負荷抵抗となるMOS)ランジスタの
ゲートに、ゲートをドレインへ接続した一対のMOS)
ランジスタで電源電圧を分圧して得たバイアス電圧を加
える負荷バイアス回路を備えるMOSアナログアンプ回
路において、該負荷バイアス回路を構成する一対のMo
sトランジスタの一方をデプリーション型としかつ非飽
和領域で動作させて該負荷バイアス回路に、電源電圧変
動時に、ソースホロアの出力電圧が電源電圧変動で変動
しないように変動する電圧を出力させるようにしてなる
ことを特徴とするが、次に実施例を参照しながらこれを
説明する。
Structure of the Invention The present invention consists of a MOS transistor circuit connected to a source follower, a MOS transistor circuit serving as a load resistance of the circuit, and a pair of MOS transistors having the gate connected to the drain.
In a MOS analog amplifier circuit equipped with a load bias circuit that applies a bias voltage obtained by dividing a power supply voltage using a transistor, a pair of Mo
One of the s transistors is a depletion type and is operated in a non-saturation region, so that the load bias circuit outputs a voltage that fluctuates so that the output voltage of the source follower does not fluctuate due to fluctuations in the power supply voltage when the power supply voltage fluctuates. Next, this will be explained with reference to examples.

発明の実施例 本発明では第1図の負荷バイアス回路のトランジスタT
 r 2をディプリーション型にすると共に動作点を非
飽和領域(3極管領域)に選ぶ。従来回路ではこのトラ
ンジスタT r 2はエンハンスメント型であり、動作
点は飽和領域にある。負荷バイアス回路のトランジスタ
T r Hは本発明回路および従来回路ともにエンハン
スメント型であり、ゲートをドレインに接続して飽和領
域で動作させる。
Embodiments of the Invention In the present invention, the transistor T of the load bias circuit shown in FIG.
r2 is made into a depletion type, and the operating point is selected in the non-saturation region (triode region). In the conventional circuit, this transistor T r 2 is of an enhancement type, and its operating point is in the saturation region. The transistor T r H of the load bias circuit is of an enhancement type in both the circuit of the present invention and the conventional circuit, and the gate is connected to the drain to operate in the saturation region.

トランジスタTr1.Tr2は電源電圧VDDを分圧し
、接続点Aからその分圧電圧を出力して該分圧電圧vb
をトランジスタT r2 、 T r5. Tr7のゲ
ートへ供給する。従来回路のようにトランジスタT r
l 、 T r2が共に飽和領域で動作すると該電圧v
bは電源電圧VDDの影響を余り受けず、はソ゛一定で
ある。そこで電源電圧VDDが例えば上昇すると、ソー
スホロア段の出力電圧Voutも上昇することになる。
Transistor Tr1. Tr2 divides the power supply voltage VDD, outputs the divided voltage from the connection point A, and outputs the divided voltage vb.
are transistors T r2 , T r5 . Supplied to the gate of Tr7. As in the conventional circuit, the transistor T r
When both l and T r2 operate in the saturation region, the voltage v
b is not affected much by the power supply voltage VDD and remains constant. Therefore, when the power supply voltage VDD increases, for example, the output voltage Vout of the source follower stage also increases.

これに対して本発明回路ではトランジスタTr2は非飽
和3極管領域にあるから、電源電圧VDDが上昇すると
出力端Aの電圧Vbは上昇し、これによりトランジスタ
T r 5 、 Trtはゲート電圧が上昇して導通度
を高め、つまり低抵抗となり、出力電圧Voutは電源
電圧VDDの上昇と共に上ることはしなくなる。電圧v
bはVDDの変化によるVoutの変化を充分抑えるよ
うに変化するのが望ましく、これはトランジスタTr1
゜Tr2のW/L (ゲート中/ゲート長)などのサイ
ズ、およびTr2の動作領域を適切に選択することで実
現できる。トランジスタTr2のデプリーション化は、
該トランジスタのチャネル領域にP(リン)などの不純
物を打ち込むことにより行なう。
On the other hand, in the circuit of the present invention, the transistor Tr2 is in the unsaturated triode region, so when the power supply voltage VDD increases, the voltage Vb at the output terminal A increases, and as a result, the gate voltage of the transistors Tr5 and Trt increases. The conductivity is increased, that is, the resistance becomes low, and the output voltage Vout does not rise as the power supply voltage VDD increases. voltage v
It is desirable that b changes so as to sufficiently suppress the change in Vout due to the change in VDD.
This can be achieved by appropriately selecting the size such as W/L (gate middle/gate length) of Tr2 and the operating region of Tr2. The depletion of transistor Tr2 is as follows:
This is done by implanting an impurity such as P (phosphorus) into the channel region of the transistor.

発明の詳細 な説明したように本発明ではソースホロアの負荷抵抗と
なるMOS)ランジスタのゲート電圧をバイアス電圧回
路により、電源電圧変化による出力電圧変化を打ち消す
ように調整するので、電源が乾電池のような電圧変動を
生じ易いものである場合にも安定な出力電圧が得られ、
またこのための手段は負荷バイアス回路のトランジスタ
の1つをディプリーション型にし非飽和領域で動作させ
るという簡単なものであるので、回路の複雑化を招くこ
とはないという利点が得られる。
As described in detail, in the present invention, the gate voltage of the MOS transistor serving as the load resistance of the source follower is adjusted by the bias voltage circuit so as to cancel out the output voltage change caused by the power supply voltage change. A stable output voltage can be obtained even when the voltage is likely to fluctuate.
Further, since the means for this purpose is simple, that is, one of the transistors in the load bias circuit is made into a depletion type and operated in a non-saturation region, there is an advantage that the circuit does not become complicated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す回路図、第2図は動作説
明用の波形図である。 図面で、T’6 、Tr7はソースホロアに接続したM
OS)ランジスタ回路、Tr7は負荷抵抗となるMOS
)ランジスタ、Try、Tr2は電源電圧を分圧する負
荷バイアス回路のトランジスタ、T r 2はその一方
のトランジスタである。 出願人 富士通株式会社 代理人弁理士 青 柳 稔
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the operation. In the drawing, T'6 and Tr7 are M connected to the source follower.
OS) transistor circuit, Tr7 is a MOS that serves as a load resistance
) The transistors Try and Tr2 are transistors of a load bias circuit that divides the power supply voltage, and T r 2 is one of the transistors. Applicant Fujitsu Limited Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】 ソースホロアに接続したMO3I−ランジスタ回路と、
該回路の負荷抵抗となるMOS)ランジスタのゲートに
、ゲートをドレインへ接続した一対のMOS)ランジス
タで電源電圧を分圧して得たバイアス電圧を加える負荷
バイアス回路を備えるMOSアナログアンプ回路におい
て、 該負荷バイアス回路を構成する一対のMOS)ランジス
タの一方をデプリーション型としかつ非飽和領域で動作
させて該負荷バイアス回路に、電源電圧変動時に、ソー
スホロアの出力電圧が電源電圧変動で変動しないように
変動する電圧を出力させるようにしてなることを特徴と
するMOSアナログアンプ回路。
[Claims] A MO3I-transistor circuit connected to a source follower,
In a MOS analog amplifier circuit comprising a load bias circuit that applies a bias voltage obtained by dividing the power supply voltage with a pair of MOS transistors whose gates are connected to drains to the gates of MOS transistors serving as load resistances of the circuit, One of the pair of MOS transistors constituting the load bias circuit is a depletion type and is operated in a non-saturation region, so that the output voltage of the source follower fluctuates when the power supply voltage fluctuates so that the output voltage of the source follower does not fluctuate due to the power supply voltage fluctuation. 1. A MOS analog amplifier circuit configured to output a voltage of
JP59111792A 1984-05-31 1984-05-31 Mos analog amplifier circuit Granted JPS60254904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111792A JPS60254904A (en) 1984-05-31 1984-05-31 Mos analog amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111792A JPS60254904A (en) 1984-05-31 1984-05-31 Mos analog amplifier circuit

Publications (2)

Publication Number Publication Date
JPS60254904A true JPS60254904A (en) 1985-12-16
JPH0249049B2 JPH0249049B2 (en) 1990-10-29

Family

ID=14570265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111792A Granted JPS60254904A (en) 1984-05-31 1984-05-31 Mos analog amplifier circuit

Country Status (1)

Country Link
JP (1) JPS60254904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403037B2 (en) 2004-04-30 2008-07-22 Nec Electronics Corporation Signal amplifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979301U (en) * 1982-11-22 1984-05-29 アイカ工業株式会社 Decorative plywood

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979301U (en) * 1982-11-22 1984-05-29 アイカ工業株式会社 Decorative plywood

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403037B2 (en) 2004-04-30 2008-07-22 Nec Electronics Corporation Signal amplifier

Also Published As

Publication number Publication date
JPH0249049B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
US5525897A (en) Transistor circuit for use in a voltage to current converter circuit
US4048575A (en) Operational amplifier
US5266887A (en) Bidirectional voltage to current converter
EP0045841A1 (en) Linear voltage-current converter
JP2891297B2 (en) Voltage-current converter
KR101018950B1 (en) Constant voltage outputting circuit
US4484148A (en) Current source frequency compensation for a CMOS amplifier
KR890004970B1 (en) Semiconductor integrated circuit with improved load driving character
JPH0520924B2 (en)
US4524329A (en) Operational amplifier circuit
US5182525A (en) CMOS transconductance amplifier with floating operating point
US3956708A (en) MOSFET comparator
JPH0679262B2 (en) Reference voltage circuit
JPS6119134B2 (en)
US4749955A (en) Low voltage comparator circuit
US4752704A (en) Noise suppression interface circuit for non-superimposed two-phase timing signal generator
JPS60254904A (en) Mos analog amplifier circuit
JPH05250050A (en) Reference voltage generating circuit
JPH0612856B2 (en) Amplifier circuit
JPH0732261B2 (en) Semiconductor light receiving device
JPH03166806A (en) Amplitude stabilization inversion amplifier
JPH0257721B2 (en)
US11025213B2 (en) Output pole-compensated operational amplifier
JPH0344692B2 (en)
JPH0566765B2 (en)