JPS6025468A - Wave radar observation system - Google Patents

Wave radar observation system

Info

Publication number
JPS6025468A
JPS6025468A JP13471283A JP13471283A JPS6025468A JP S6025468 A JPS6025468 A JP S6025468A JP 13471283 A JP13471283 A JP 13471283A JP 13471283 A JP13471283 A JP 13471283A JP S6025468 A JPS6025468 A JP S6025468A
Authority
JP
Japan
Prior art keywords
polar coordinate
coordinate data
spectrum
radar
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13471283A
Other languages
Japanese (ja)
Other versions
JPH0231835B2 (en
Inventor
Yoshizo Hagino
芳造 萩野
Hitoshi Takayama
仁 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nihon Musen KK
Original Assignee
Japan Radio Co Ltd
Nihon Musen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nihon Musen KK filed Critical Japan Radio Co Ltd
Priority to JP13471283A priority Critical patent/JPH0231835B2/en
Publication of JPS6025468A publication Critical patent/JPS6025468A/en
Publication of JPH0231835B2 publication Critical patent/JPH0231835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To maintain the real time of processing and prevent the range of data itself from being spoiled by taking a direct polar coordinate two-dimensional frequency analysis of a sea surface reflected signal, and displaying the image of a calculated spectrum. CONSTITUTION:The sea surface reflected signal from a radar antenna 1 is received by a receiver 3, and inputted to and stored in a memory 6 for polar coordinate data through an A/D converter 4 and an intensity correcting circuit 5 which makes correction by distance. A signal read out of this memory 6 is processed by the 1st azimuth direction FFT circuit 7, a Bessel function weighting circuit 8, and the 2nd azimuth direction FFT circuit 9, and then an adjustment limiter 10 makes a level adjustment and supplies the resulting signal to a polar coordinate spectrum display device 12.

Description

【発明の詳細な説明】 本発明は、船舶用レーダにおいて海面反射信号を利用し
、波浪の方向および波長を測定するレーダ方式に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radar system for measuring the direction and wavelength of waves using sea surface reflection signals in a marine radar.

波浪によって生じる海面からの反射は、船舶等の目標と
する信号の検出をさまたげるため、従来では不要な信号
として除去されるべき装置が実用化されてきた。ところ
が、ここ数年のうちに波−浪によって生じる海面からの
反射信号を積極的に利用し、波浪によって生じる海面か
らの反射信号を積極的に利用し波浪の波長1.方向等を
算出する方式が実用化されつつある。
Reflection from the sea surface caused by waves hinders the detection of signals aimed at ships, etc., and thus devices have been put into practical use that should be removed as unnecessary signals. However, in the past few years, waves have actively utilized the signals reflected from the sea surface caused by waves, and the signals reflected from the sea surface caused by waves have been actively utilized. Methods for calculating directions, etc. are being put into practical use.

これは、レーダ指示機からPPIスコープ写真を撮り、
この写真からフォトセノザを使いXY方向にスキャンし
てアナログからデジタルに変換した直交系データに対し
、直交系2次元フーリエ変換を用いて空間スペクトルを
算出するかあるいはレーダ受信機出力を直接アナログ・
デジタル変換して得られる極座標系データを補間や間引
きを行なってデータ密度を均一にした後、矩形部分を切
り取り直交系2次元フーリエ変換を用いて空間スペクト
ルを算出し、波浪の方向および波長なめる方式である。
This takes a PPI scope photo from the radar indicator,
From this photograph, the spatial spectrum can be calculated using orthogonal two-dimensional Fourier transform for the orthogonal data that was scanned in the X and Y directions using a photo sensor and converted from analog to digital, or the radar receiver output can be directly converted into analog data.
After making the data density uniform by interpolating and thinning the polar coordinate system data obtained by digital conversion, a rectangular part is cut out and a spatial spectrum is calculated using orthogonal two-dimensional Fourier transform, and the wave direction and wavelength are calculated. It is.

しかしながら、上記の前者の方法では写真という媒体か
らデータを得るために処理の実時間性は望めず、またデ
ータ自体のダイナミックレンジも著しく損なわれるし、
また後者の方法では補間や間引きというプロセスが必要
であり、データも一部しか使用出来ないという欠点があ
り、また、波浪の方向および波長やその逆数の波数も直
交座標から方位とその方向の波長を読み取らなければな
らない不便があった。
However, in the former method mentioned above, since data is obtained from the photographic medium, real-time processing cannot be expected, and the dynamic range of the data itself is significantly impaired.
In addition, the latter method requires processes such as interpolation and thinning, and has the disadvantage that only a portion of the data can be used.In addition, the direction and wavelength of waves and their reciprocal wavenumbers can be calculated from Cartesian coordinates by the direction and wavelength in that direction. There was the inconvenience of having to read the

本発明はこれら欠点の解消をはかることができる波浪レ
ーダ観測万代を提供するもので、具体的には、レーダ空
中線の1回転ごとに得られる海面反射信号をアナログ・
デジタル変換した極座標データに対して、補間や間引き
、あるいはデータの切り取りというプロセス無しに直接
極座標2次元周波数分析を行ってスペク(・ルを算出し
、画面認識可能な大きい順からの数個の振幅のスペクト
ルについて波長または波長の逆数の波数をR軸とし、方
向をz軸とする極座標。
The present invention provides a wave radar observation system that can eliminate these drawbacks. Specifically, the present invention aims to provide an analog wave radar observation system that uses sea surface reflection signals obtained every rotation of the radar antenna.
Direct polar coordinate two-dimensional frequency analysis is performed on digitally converted polar coordinate data without the process of interpolation, thinning, or data cutting. Polar coordinates where the R axis is the wavelength or the wave number of the reciprocal of the wavelength and the Z axis is the direction of the spectrum.

または前記R軸及びy軸のほか振幅のスペクトろ ルを2軸と1玖極座標俯瞼図として画像表示づ−ろ方°
鎧であるため、処理の実時間性は勿論、データ自体のレ
ンジも損われず観測の辺速性も確保することを目的とす
るものである。
Alternatively, in addition to the R-axis and y-axis, the amplitude spectrum can be displayed as an overhead view of two axes and one square in polar coordinates.
Because it is an armor, it aims to ensure not only real-time processing but also the speed of observation without compromising the range of the data itself.

丁 以上にこれを図面に基づき、詳細に説明する。Ding This will be explained in detail above based on the drawings.

第1図は本発明方式の一実施例を示すブ07り図である
。1はレーダ空中線、2は送信機、3は受信機、4はA
、/ I)変換器である。5は距離による強度補正回路
で、これは、波浪からの信号ヱ不ルギーがほぼ距離の3
乗に逆比例するので、この特性を補正して波浪信号をリ
ニアな特性とするためのものである。6は極座標データ
用メモリ、7は第1方位方向FFT回路、8はべ、セル
関数収録ROM および距離方向ベッセル関数重み利は
回路、9は第2方位方向FFT回路、10は設定レベル
以上のスペクトルを出力するだめの調整リミッタ、11
は調整リミッタ100レベル設定用調整つまみ、12は
極座標スペクトル表示器である。
FIG. 1 is a block diagram showing an embodiment of the method of the present invention. 1 is radar antenna, 2 is transmitter, 3 is receiver, 4 is A
,/I) is a converter. 5 is an intensity correction circuit based on distance, which means that the signal intensity from waves is approximately 3 of the distance.
Since it is inversely proportional to the power of the wave signal, this characteristic is corrected to make the wave signal linear. 6 is a memory for polar coordinate data, 7 is a first azimuth direction FFT circuit, 8 is a cell function recording ROM and distance direction Bessel function weighting circuit, 9 is a second azimuth direction FFT circuit, 10 is a spectrum above the set level Adjustment limiter for outputting 11
1 is an adjustment knob for setting the adjustment limiter 100 level, and 12 is a polar coordinate spectrum display.

第2図は、波浪からの受信信号のP P I表示のモデ
ル図で波浪は2次元に広がった縞模用どなり、第2図で
示された極座標データは、A、/D変換器4でアナログ
からデジタルに変換され、レーダ波浪からの信号の距離
による強度補正回路5を通して、6のデータ用メモリに
収録される。
FIG. 2 is a model diagram of the PPI display of the received signal from waves. The waves are a two-dimensionally spread striped pattern. The polar coordinate data shown in FIG. The signal is converted from analog to digital, passed through an intensity correction circuit 5 based on the distance of the signal from the radar wave, and recorded in a data memory 6.

ここで、極座標2次元周波数分析のバンケル変換につし
・て説明する5、極j坐標で2次冗フーリエ変傅を表わ
すと、 ・r−dr・dθ (−j kO)−exp(jk$、lexp(km/2
) ・drdθとなる。ここにf(乙θ)は図2で示し
たレーダPPIデータであり、F(R,In)は極座標
2次元スペクトル分布である。
Here, we will explain the Wankel transformation of two-dimensional frequency analysis in polar coordinates. 5. Expressing the quadratic redundant Fourier transformation in the polar j position, ・r−dr・dθ (−j kO)−exp(jk$ , lexp(km/2
) ・drdθ. Here, f(θ) is the radar PPI data shown in FIG. 2, and F(R, In) is the polar coordinate two-dimensional spectral distribution.

離散系では 上記の極座標2次元周波数分析は太き(分レナて、3つ
の部分から成っている。
In a discrete system, the polar coordinate two-dimensional frequency analysis described above consists of three parts.

1;レンジが一定なデータに関する方位方向に対するF
 I(” T 11;■でまった方位データに関し、距離方向にベッセ
ル関数および距離重み付け Ill ; ITでまったレンジ一定データに関し、再
び方位方向に対するF F ’J’ ここで、上記式の各項と第1図の各構成要素との対応関
係に触れる。
1; F for the azimuth direction regarding data with a constant range
I(" T 11; ■ Regarding the azimuth data, Bessel function and distance weighting Ill in the distance direction; Regarding the constant range data determined by IT, F F 'J' again in the azimuth direction. Here, each term in the above equation We will touch on the correspondence between this and each component in Figure 1.

■は第1方位方向FFT回路7に、■はベッセル関数収
録ROMおよび距離方向ベッセル関数重み付は回路8に
、また、mは第2方位方向FFT回路9にそれぞれ相当
する。
(2) corresponds to the first azimuth direction FFT circuit 7, (2) corresponds to the Bessel function recording ROM and distance direction Bessel function weighting circuit 8, and m corresponds to the second azimuth direction FFT circuit 9.

なお、各FFT回路の処理データ数やベッセル関数収録
ROMの使用範囲は、レーダくり返し周波数および予め
決定しである距離範囲と方位幅に含まれるデータ数の処
理に対応させる。
The number of data processed by each FFT circuit and the usage range of the Bessel function recording ROM correspond to the processing of the number of data included in the radar repetition frequency and the predetermined distance range and azimuth width.

1(、OMにはベンセル関数を収録するようにしている
が、その意味は、■の計算はフーIJ工計算のみの場合
とは異なり、FFTのような方法が確立されてはいない
ことから、計算に必要なベッセル関数の数値や演算式を
予め別に用意しておいて必要な数値を出力させることに
より高速処理を行わせるためのものである。
1 (, OM includes the Bensel function, but the meaning of this is that the calculation of This is to perform high-speed processing by separately preparing the Bessel function values and arithmetic expressions necessary for calculation and outputting the necessary values.

第2図に示す波浪からの受信信号モデルが完全な正弦波
列であれば2.上記の極座標2次元周波数分析結果は、
第3図に示す様に原点に対称な2つの点にスペクトルの
ピークを持つ8距離方向データ数をN、サンプリング距
離をΔr、原点からの距離をRとすると第3図で波浪の
方向は矢印であり、波長は t である。
2. If the received signal model from the waves shown in Figure 2 is a complete sine wave train. The above polar coordinate two-dimensional frequency analysis results are
As shown in Figure 3, the spectrum has peaks at two points symmetrical to the origin.8 If the number of data in the distance direction is N, the sampling distance is Δr, and the distance from the origin is R, the direction of the waves is indicated by the arrow in Figure 3. and the wavelength is t.

ところで実際の波浪からの受信信号は第2図の様な正弦
波列ではなく、また周波等の反射信号による影響を受け
、上記周波数分析結果は第4図に示す様に、方位的にも
また周波数的にもスペクトルは広がりを生ずる。第4図
は実際の海面反射信号を本装置を用いて極座標周波数分
析のバンケル変換を行なった実測結果゛て・ある。
Incidentally, the received signal from actual waves is not a sine wave train as shown in Fig. 2, but is also affected by reflected signals such as frequencies, and the above frequency analysis results are also directional and directional as shown in Fig. 4. The spectrum also broadens in terms of frequency. FIG. 4 shows the results of actual measurements of an actual sea surface reflection signal, which was subjected to Wankel transformation for polar coordinate frequency analysis using this device.

第4図の様に大きな振幅のスペクトルについて、原点か
らの距離Rにより波浪の波数あるいは、その逆数である
波長が、また、方位ダにより波浪の方向が極座標表示ス
ペクトル表示器12で直読でき視覚的に認識することが
できる。
For a spectrum with a large amplitude as shown in Fig. 4, the wave number or its reciprocal wavelength can be determined by the distance R from the origin, and the direction of the wave can be visually read by the polar coordinate display spectrum display 12 by the direction D. can be recognized.

同図に示しである数字はスペクトルの振幅を9を最大と
する数値で表わしである。この数値を3次元のZ軸に対
応させた振幅値として極座標表示スペクトル表示器J2
に極座標値I敢図の表示を行うことができる。
The numbers shown in the figure represent the amplitude of the spectrum with 9 being the maximum value. Polar coordinate display spectrum display J2 displays this value as an amplitude value corresponding to the three-dimensional Z axis.
It is possible to display a polar coordinate value diagram.

また、極座標表示スペクトル表示器12は、極座標の方
位ダを横軸に延長したBスコープによりカラーブラウン
管でスペクトル振幅をカラー別の表示とすることも可能
である。
Further, the polar coordinate display spectrum display device 12 can also display the spectrum amplitude in different colors on a color cathode ray tube using a B scope in which the direction of polar coordinates is extended along the horizontal axis.

さらに表示しようとするスペクトルの数が多 。There are too many spectra to display.

過ぎて画面上の混雑を防ぐためには、12の表示画面を
見ながら調整ダイヤル11を左、右に回(−ながら調整
することにより、調整リミング10で限度以下の小さい
振幅のスペクトルを取除いて極座標スペクトル表示器1
2/\出力すればよい。
To prevent overcrowding on the screen, turn the adjustment dial 11 left and right while looking at the display screen 12. Polar coordinate spectrum display 1
2/\ Just output it.

この方法によると、第4図の様に同じ模様が波浪が近づ
く方向と遠ざかる方向に1800対称な二つの方向に表
示されることにもなるが、アンテナ回転ごとの信号につ
いて、比較を行い、選択を行うことにより一つの方向に
限定できる。
According to this method, as shown in Figure 4, the same pattern will be displayed in two directions that are 1800 degrees symmetrical in the direction in which waves approach and the direction in which waves move away, but the signals for each antenna rotation are compared and selected. By doing this, it can be limited to one direction.

以上説明し、た様に、本発明によるときは、実時間でし
かもデータに不用な操作を施す事]、「シに波浪の方向
と波数あるいはその逆数である波長が定量的に画面上で
直読することができるし、自船だけでなく、これら情報
を他船へも通報−[ろことにより該他船の海難防止や最
適コースの選択が採れ、広く船舶の安全航行に寄与させ
ることができるという顕著な効果を呈するものである。
As explained above, according to the present invention, the direction of the waves and the wave number or the wavelength, which is the reciprocal thereof, can be quantitatively read directly on the screen. This information can be reported not only to one's own ship, but also to other ships.By doing so, it is possible to prevent marine accidents for other ships, select the optimal course, and widely contribute to the safe navigation of ships. This has a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方式の一実施例のブロック図第2図は波
浪からの受信信号のPP■表示のモデル図、第3図は第
2図のモデル信号の極座標周波数分析結果を示す図、第
4図は実際の海面反射信号の極座標周波数分析結果を示
す図である。 1・・・レーダ空中線、2・・・送信機3・・受信機 
4・・・A/D変換器 5・・・距離による強度補正回路、 6・・・極座標データ用メモリ 7・・第1方位方向FFT回路 8・・・ベッセル関数収録ROMおよび距離方向ベッセ
ル関数重み伺げ回路 特許出願人 日本無線株式会社
Fig. 1 is a block diagram of an embodiment of the method of the present invention; Fig. 2 is a model diagram of a PP■ display of a signal received from waves; Fig. 3 is a diagram showing the results of polar coordinate frequency analysis of the model signal of Fig. 2; FIG. 4 is a diagram showing the results of polar coordinate frequency analysis of an actual sea surface reflection signal. 1...Radar antenna, 2...Transmitter 3...Receiver
4... A/D converter 5... Intensity correction circuit based on distance, 6... Memory for polar coordinate data 7... First azimuth direction FFT circuit 8... Bessel function recording ROM and distance direction Bessel function weight Hige circuit patent applicant Japan Radio Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)船舶用レーダにおいて海面反射からの信号をアナ
ログからデジタルに変換し、レーダ空中線の1回転ごと
に得られる極座標データに極座標2次元周波数分析の・
・ンケル変換を施すため該極座標データの数に対応させ
て予めベンセル関数をROM に記憶させ、読出した該
ベッセル関数と該極座標データを用いてスペクトルを算
出し、画面上で認識できる数個の振幅のスペクトルにつ
いて、波長又は該波長の逆数の波数をR軸とし波浪の方
向をX軸とする極座標で画像表示することを特徴と1−
石波浪レーダ観測方式。
(1) In a marine radar, the signal from the sea surface reflection is converted from analog to digital, and polar coordinate two-dimensional frequency analysis is performed on the polar coordinate data obtained every rotation of the radar antenna.
・In order to perform the Nckel transformation, a Benssel function is stored in the ROM in advance in correspondence with the number of polar coordinate data, and a spectrum is calculated using the read Bessel function and the polar coordinate data, and several amplitudes that can be recognized on the screen are calculated. The spectrum of the image is displayed in polar coordinates with the R axis representing the wavelength or the wave number of the reciprocal of the wavelength and the X axis representing the direction of the waves.1-
Stone wave radar observation method.
(2)船舶用レーダにおいて海面反射からの信号をアナ
ログからデジタルに変換し、レーダ空中線の1回転ごと
に得られる極座標データに極座標2次元周波数分析のバ
ンケル変換を施すため該極座標データの数に対応させて
予めべ、セル関数をROM に記憶させ、読出した該ベ
ッセル関数と該極座標データを用いてスペクトルを算出
し、画面上で認識できる数個の振幅のスペクトルについ
て、波長又は該波長の逆数の波数をR軸とし、波浪の方
向をφ軸、さらにスペクトルの振幅をZ軸とする極座標
データとして画像表示することを特徴とする波浪レーダ
観測方式。
(2) In ship radar, signals from sea surface reflections are converted from analog to digital, and the polar coordinate data obtained every rotation of the radar antenna is subjected to Wankel transformation of polar coordinate two-dimensional frequency analysis, so that the number of polar coordinate data corresponds to the number of polar coordinate data. The cell function is stored in ROM in advance, and spectra are calculated using the read Bessel function and the polar coordinate data, and for the spectra of several amplitudes that can be recognized on the screen, the wavelength or the reciprocal of the wavelength is calculated. A wave radar observation method characterized by displaying an image as polar coordinate data with the wave number as the R axis, the wave direction as the φ axis, and the spectrum amplitude as the Z axis.
JP13471283A 1983-07-22 1983-07-22 HAROREEDAKANSOKUHOSHIKI Expired - Lifetime JPH0231835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13471283A JPH0231835B2 (en) 1983-07-22 1983-07-22 HAROREEDAKANSOKUHOSHIKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13471283A JPH0231835B2 (en) 1983-07-22 1983-07-22 HAROREEDAKANSOKUHOSHIKI

Publications (2)

Publication Number Publication Date
JPS6025468A true JPS6025468A (en) 1985-02-08
JPH0231835B2 JPH0231835B2 (en) 1990-07-17

Family

ID=15134832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13471283A Expired - Lifetime JPH0231835B2 (en) 1983-07-22 1983-07-22 HAROREEDAKANSOKUHOSHIKI

Country Status (1)

Country Link
JP (1) JPH0231835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270682A (en) * 1985-05-25 1986-11-29 Japan Radio Co Ltd Wave display device of ship radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270682A (en) * 1985-05-25 1986-11-29 Japan Radio Co Ltd Wave display device of ship radar

Also Published As

Publication number Publication date
JPH0231835B2 (en) 1990-07-17

Similar Documents

Publication Publication Date Title
JP3088174B2 (en) Underwater detector
US5349524A (en) Color flow imaging system utilizing a time domain adaptive wall filter
US7450470B2 (en) High resolution images from reflected wave energy
US5349525A (en) Color flow imaging system utilizing a frequency domain wall filter
CN109859271B (en) Combined calibration method for underwater camera and forward-looking sonar
EP3444632A1 (en) Signal processing device and radar apparatus
GB2138253A (en) Display for classification sonars
JPS6025468A (en) Wave radar observation system
RU167401U1 (en) Side-View Interferometric Sonar
JPH0385476A (en) Sea bottom searching apparatus
JP2642459B2 (en) Ultrasonic inspection image processing equipment
JP6689961B2 (en) Signal processing device, radar device, and signal processing method
Glenn Multi-narrow beam sonar systems
Lacker et al. Wideband monopulse sonar performance: Cylindrical target simulation using an acoustic scattering center model
CN112526464B (en) Method for estimating azimuth beam width based on multi-channel radar measured data
JP3583908B2 (en) Target measuring device
JPH0833625A (en) Ultrasonic blood flow measuring instrument
JPS6022680A (en) Wave radar observation system
Talukdar et al. Digital processing of sidescan images from bottom backscatter data collected by sea beam
JPH0648453Y2 (en) Fish finder for fish length discrimination
JP2605218B2 (en) 3D underwater attitude measurement system for linear towed bodies
GB2580726A (en) Underwater detection apparatus and underwater detection method
JPS63286706A (en) Method for measuring water bottom depth
US2919423A (en) Submarine bottom scanner
EP1774360B1 (en) High resolution images from reflected wave energy