JPS60254492A - Quantum interference type josephson memory cell - Google Patents

Quantum interference type josephson memory cell

Info

Publication number
JPS60254492A
JPS60254492A JP59111425A JP11142584A JPS60254492A JP S60254492 A JPS60254492 A JP S60254492A JP 59111425 A JP59111425 A JP 59111425A JP 11142584 A JP11142584 A JP 11142584A JP S60254492 A JPS60254492 A JP S60254492A
Authority
JP
Japan
Prior art keywords
memory cell
josephson junction
josephson
magnetic flux
base electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59111425A
Other languages
Japanese (ja)
Inventor
Hideo Suzuki
秀雄 鈴木
Takeshi Igarashi
武司 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59111425A priority Critical patent/JPS60254492A/en
Publication of JPS60254492A publication Critical patent/JPS60254492A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/44Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using super-conductive elements, e.g. cryotron

Abstract

PURPOSE:To improve the operation margin of the writing and reading operation of the memory cell by providing a capacitance in parallel to the Josephson junction of a single magnetic flux quantum memory cell. CONSTITUTION:Capacitances 30 and 31 are formed between a counter electrode 32 and a base electrode 26 iin parallel to Josephson junction parts 27 and 28. Namely, the capacitances 30 and 31 are adjacent to the Josephson junction parts 27 and 28 and are on the base electrode 26, so they are formed by arranging insulating films between the counter electrode 32 and base electrode 26. Consequently, the design of the Josephson junction parts is given a degree of freedom.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明はジョセフソン素子によるメモリセルに係り、特
に量子干渉素子の磁束モードを利用した単一・磁束量子
メモリセルの動作マージンを改善するものに関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field of the invention The present invention relates to a memory cell using a Josephson element, and in particular to improving the operating margin of a single flux quantum memory cell that utilizes the magnetic flux mode of a quantum interference element. Regarding.

(2)技術の背景 ジョセフソン素子の発明により、より高速で小型、かつ
消費電力の少ないジョセフソンコンピュータの開発が望
まれている。特にメモリは専有面積が小さく、低消費電
力で、かつ動作マージンの大きなものが必要である。
(2) Background of the Technology With the invention of the Josephson element, there is a desire to develop a Josephson computer that is faster, smaller, and consumes less power. In particular, memory needs to have a small footprint, low power consumption, and a large operating margin.

(3)従来技術と問題点 上記の条件を満たすジョセフソンメモリとしては、従来
ブリッジ型単一磁束量子メモリがある。
(3) Prior Art and Problems As a Josephson memory that satisfies the above conditions, there is a conventional bridge type single flux quantum memory.

第1図はそのようなメモリのLSI基板上のメモリセル
の断面図である。グランドプレーン1の上に絶縁膜2が
蒸着され、その上にメモリセルの基部電極3が形成され
る。そしてその上にジョセフソン接合のための鉛酸化膜
などによって構成されるトンネル酸化膜4,5および絶
縁膜6,7.8が形成され、さらにそれらの上に対向電
極9が形成される。対向電極9のまわりは絶縁膜10で
被覆され、その上に制御線11が形成される。このよう
な単一磁束量子メモリセルにおいて、基部電極3と対向
電極9および二つのジョセフソン接合4.5は絶縁膜6
をはさんでインダクタンスブリッジを形成しており、二
つのジョセフソン接合4および5がこのインダクタンス
ブリッジを介して並列接続され超電導ループを形成して
いる。
FIG. 1 is a sectional view of a memory cell on an LSI substrate of such a memory. An insulating film 2 is deposited on a ground plane 1, and a base electrode 3 of a memory cell is formed thereon. Then, tunnel oxide films 4, 5 and insulating films 6, 7.8 made of a lead oxide film or the like for Josephson junction are formed thereon, and furthermore, a counter electrode 9 is formed thereon. The counter electrode 9 is covered with an insulating film 10, and a control line 11 is formed on the insulating film 10. In such a single flux quantum memory cell, the base electrode 3, the counter electrode 9 and the two Josephson junctions 4.5 are connected to the insulating film 6.
The two Josephson junctions 4 and 5 are connected in parallel via this inductance bridge to form a superconducting loop.

その等価回路を示したのが第2図である。端子12側は
第1図における対向電極9.端子13側が基部電極3に
相当し絶縁膜6を囲むインダクタンスブリッジによるイ
ンダクタンス14および15が、それぞれジョセフソン
接合4および5に接続された形となっている。また第1
図における制御線11は第2図において端子16と17
の間に相当し、対向電極9との間にインダクタンス18
および19が形成されている。このような構造によって
端子12と13の間には超電導ループが形成されている
FIG. 2 shows the equivalent circuit. The terminal 12 side is the counter electrode 9 in FIG. The terminal 13 side corresponds to the base electrode 3, and inductances 14 and 15 formed by an inductance bridge surrounding the insulating film 6 are connected to the Josephson junctions 4 and 5, respectively. Also the first
Control line 11 in the figure is connected to terminals 16 and 17 in FIG.
and an inductance 18 between the counter electrode 9 and the opposite electrode 9.
and 19 are formed. With this structure, a superconducting loop is formed between the terminals 12 and 13.

上記のような構造をもつ単一磁束量子メモリセルにおい
ては、端子12および13の間に流すバイアス電流と、
端子16と17の間に流す制御電流とを操作することに
よって、端子12と13の間の超電導ループに永久電流
を流す。この永久電流によって超電導ループ間に磁束が
形成されるが、その磁束は磁束量子と呼ばれる最小磁束
単位の整数倍の値をとる。換言すれば、第1図において
対向電極9と基板電極3の間に流れるバイアス電流。
In a single magnetic flux quantum memory cell having the above structure, a bias current flowing between terminals 12 and 13;
By manipulating the control current flowing between terminals 16 and 17, a persistent current is caused to flow in the superconducting loop between terminals 12 and 13. This persistent current forms a magnetic flux between the superconducting loops, and this magnetic flux takes a value that is an integral multiple of the minimum magnetic flux unit called a magnetic flux quantum. In other words, the bias current flows between the counter electrode 9 and the substrate electrode 3 in FIG.

および制御線11に流れる制御電流を操作することによ
って超電導ループに流れる永久電流を制御できる。そし
て、それによってインダクタンスブリッジで囲まれた絶
縁膜6の中に閉じ込められる磁束量子の数を制御するこ
とができる。ブリッジ型単一磁束量子メモリセルは、こ
の絶縁膜6の中の磁束量子の有無によって2進数゛l″
または“′0”を記憶させようという構造のメモリであ
る。
By manipulating the control current flowing through the control line 11, the persistent current flowing through the superconducting loop can be controlled. Accordingly, the number of magnetic flux quanta confined within the insulating film 6 surrounded by the inductance bridge can be controlled. The bridge type single magnetic flux quantum memory cell has a binary number "l" depending on the presence or absence of magnetic flux quanta in the insulating film 6.
Or, it is a memory structured to store "'0".

次にこのメモリセルの動作を第3図に従って説明する。Next, the operation of this memory cell will be explained with reference to FIG.

第1図のジョセフソン接合4または5の部分は、対向電
極9から基部電極3にバイアス電流が流れている状態に
おいて二つの状態を取り得る。一つは接合両端に電圧を
生しない零電圧状態で、もう一つは接合両端に電圧を生
じる電圧状態である。そしてその二つの状態の闇値を与
えるバイアス電流を臨界電流と呼び、この臨界電流は制
御線11 (第1図)に流れる制御電流によって変化す
る。その闇値特性を示したのが第3図の実線20および
21で表される曲線である。この図かられかるように、
臨界電流は制御電流に対して周期的に変化する。これは
インダクタンスブリッジで囲まれた絶縁膜6の中に磁束
量子が取り込まれるごとに、ジョセフソン接合4または
5の部分位相差が2πだけ変化し、同じ状態が再現され
るからである。そしてメモリセルの動作点が曲線2゜と
破線22で囲まれた中央の山の中にあるときは、対向電
極9とジョセフソン接合4.5および基部電極3で形成
される超電導ループにはほとんど永久電流は流れておら
ず、絶縁膜6の中には磁束量子は存在しない。動作点が
曲線21と破線23で囲まれた右側の山の中にあるとき
は、超電導ループには永久電流が流れ、絶縁膜6の中に
磁束量子1個が取り込まれる。単一磁束量子メモリセル
においては、メモリセルの動作点が中央の山と右側の山
の中央にあり磁束量子が絶縁膜6の中にない状態を2進
数の“0”、動作点が右の山の中にあり磁束量子が一つ
絶縁膜6の中に一つある状態を2進数の“1″に対応さ
せる。そしてメモリセルへの“0”または“1”の書き
込みは、動作点を破線22または23を横切らせること
によってジョセフソン接合4または5 (第1図)の電
圧状態を変化させることなしに、中央の山と右の山の転
移を行わせる(第3図中MB磁束モード転移)。
The portion of the Josephson junction 4 or 5 in FIG. 1 can assume two states when a bias current is flowing from the counter electrode 9 to the base electrode 3. One is a zero voltage state in which no voltage is generated across the junction, and the other is a voltage state in which voltage is generated across the junction. The bias current that gives the dark values of these two states is called a critical current, and this critical current changes depending on the control current flowing through the control line 11 (FIG. 1). The curves represented by solid lines 20 and 21 in FIG. 3 show the dark value characteristics. As you can see from this diagram,
The critical current changes periodically with respect to the control current. This is because each time a magnetic flux quantum is taken into the insulating film 6 surrounded by the inductance bridge, the partial phase difference of the Josephson junction 4 or 5 changes by 2π, and the same state is reproduced. When the operating point of the memory cell is within the central mountain surrounded by the curve 2° and the broken line 22, the superconducting loop formed by the counter electrode 9, the Josephson junction 4.5, and the base electrode 3 has almost no power. No persistent current flows, and no magnetic flux quanta exist in the insulating film 6. When the operating point is within the mountain on the right surrounded by the curve 21 and the broken line 23, a persistent current flows through the superconducting loop, and one magnetic flux quantum is taken into the insulating film 6. In a single magnetic flux quantum memory cell, the operating point of the memory cell is between the center peak and the right peak, and the state where no magnetic flux quantum is inside the insulating film 6 is a binary number "0", and the operating point is between the right peak and the right peak. The state in which there is one magnetic flux quantum in the mountain and one in the insulating film 6 corresponds to the binary number "1". Writing a ``0'' or ``1'' to a memory cell can then be done by moving the operating point across the dashed lines 22 or 23, at the center without changing the voltage state of the Josephson junction 4 or 5 (FIG. 1). A transition is made between the peak and the peak on the right (MB magnetic flux mode transition in Fig. 3).

また読み出しは、動作点を実線20または21を横切ら
せることによってジョセフソン接合4または5の電圧状
態を変化させることによって行う(第3図中MYは電圧
転移)。具体的には最初に制御線11 (第1図)に直
流電流を与え、動作点を第3図中a点におく。この状態
で“1”を書き込むためには、制御線11および対向電
極9.基部電極3の間の電流を制御して、動作点をa−
+−b−d点と移動させる。これによって磁束量子一つ
がメモリセルに書き込まれ、その後動作点とa点にもと
しても右の山の′中を出ないのでメモリセルは゛1パの
状態が保たれる。′o”を書き込むためには、同様に 
a−1−c−16点と動作点を移動させ、動作点を中央
の山の中に入れればよい。次に読み出す場合は動作点を
a −> f −> e点と移動させる。メモリセルに
0”が書き込まれていれば、動作点は中央の山の実線2
0を横切らないので、ジョセフソン接合4または5(第
1図)の両端電圧は零電圧のままである。メモリセルに
パ1°′が再き込まれていれば、動作点は右の山の実線
21を横切るので(ジョセフソン接合4または5の両?
IjjAに電圧が現れる。これによって読み出しを行え
る。
Further, reading is performed by changing the voltage state of the Josephson junction 4 or 5 by making the operating point cross the solid line 20 or 21 (MY in FIG. 3 indicates voltage transition). Specifically, first, a direct current is applied to the control line 11 (FIG. 1), and the operating point is set at point a in FIG. 3. In order to write "1" in this state, the control line 11 and the counter electrode 9. By controlling the current between the base electrodes 3, the operating point is set to a-
Move to +-b-d point. As a result, one magnetic flux quantum is written into the memory cell, and even if the operating point and the point a are then set, the memory cell remains in the ``1'' state because it does not go beyond the peak on the right. Similarly, to write 'o',
All you have to do is move the a-1-c-16 points and the operating point and place the operating point in the central mountain. When reading next time, the operating point is moved from point a to f to point e. If 0” is written in the memory cell, the operating point is the solid line 2 of the mountain in the center.
0 is not crossed, the voltage across the Josephson junction 4 or 5 (FIG. 1) remains at zero voltage. If PA 1°' is rewritten into the memory cell, the operating point crosses the solid line 21 of the right mountain (both Josephson junctions 4 or 5?
A voltage appears at IjjA. This allows reading.

以上のような動作を行う単−磁束量子メモリセルにおい
て、書き込み動作と読み出し動作における磁束モード転
移と電圧転移の境界を与える電流値1cr(第3図紺軸
)は、主にジョセフソン接合4または5の電圧状態にお
いて現れる非線形コンダクタンスや接合容量によって決
定される。そしてこのIcrの値によってa−+f点へ
動作点を移動させる場合などの電流値が異なってくるた
め、メモリセルの設計時における境界電流1crの決定
は非常に重要な要素である。しかしIcrは前記したよ
うにジョセフソン接合の特性によって定まり、この特性
はジョセフソン接合を形成しているトンネル酸化膜の材
質と膜厚によって定まってしまうため、メモリセル設計
時の自由度が制限されてしまうという問題点があった。
In a single-flux quantum memory cell that operates as described above, the current value 1cr (dark blue axis in Figure 3) that provides the boundary between magnetic flux mode transition and voltage transition in write and read operations is mainly caused by Josephson junction 4 or It is determined by the nonlinear conductance and junction capacitance that appear in the voltage state of 5. Since the current value when moving the operating point to point a-+f changes depending on the value of Icr, determining the boundary current 1cr at the time of designing the memory cell is a very important element. However, as mentioned above, Icr is determined by the characteristics of the Josephson junction, and these characteristics are determined by the material and thickness of the tunnel oxide film forming the Josephson junction, which limits the degree of freedom when designing memory cells. There was a problem with this.

(4)発明の目的 本発明は上記問題点を除くために、量子干渉素子を用い
た単一磁束量子メモリセルにおいて、ジョセフソン接合
と並列にキャパシタンスを設け、上記境界電流値Icr
を制御し、メモリ動作における動作マージンを改善する
ことのできる単一磁束量子メモリセルを提供することを
目的とする。
(4) Purpose of the Invention In order to eliminate the above-mentioned problems, the present invention provides a capacitance in parallel with the Josephson junction in a single-flux quantum memory cell using a quantum interference device, so that the above-mentioned boundary current value Icr
An object of the present invention is to provide a single flux quantum memory cell that can improve the operating margin in memory operation.

(5)発明の構成 本発明の目的とするところは、基部電極上に形成される
ジョセフソン接合を少なくとも2個並列に絶縁膜を介し
て接続した量子干渉素子から構成される単−磁*量子メ
モリセルにおいて、該各ジ・Jセソソン接合と並列にキ
ャパシタンス素子を接続することを特徴とする量子干渉
型ジョセフソンメモリセルを提供することにある。
(5) Structure of the Invention The object of the present invention is to provide a single-magnetic An object of the present invention is to provide a quantum interference type Josephson memory cell, which is characterized in that a capacitance element is connected in parallel to each di-J Seson junction.

(6)発明の実施例 以下本発明の実施例について詳細に説明を行う。(6) Examples of the invention Examples of the present invention will be described in detail below.

第4図は本発明による単一磁束量子メモリセルの一実施
例の断面図である。グランドプレーン24の上に絶縁膜
25が蒸着され、その上にメモリセルの基部電極26が
形成される。基部電極26の上にはジョセフソン接合の
ためのトンネル酸化膜27,28.絶縁膜29およびキ
ャパシタンス330.31が形成され、さらにそれらの
上には対向電極32が形成される。対向電極32のまわ
りは絶縁膜33で被覆され、その上に制御線34が形成
される。
FIG. 4 is a cross-sectional view of one embodiment of a single flux quantum memory cell according to the present invention. An insulating film 25 is deposited on the ground plane 24, and a base electrode 26 of the memory cell is formed thereon. On the base electrode 26 are tunnel oxide films 27, 28 . Insulating film 29 and capacitance 330.31 are formed, and counter electrode 32 is further formed thereon. The counter electrode 32 is covered with an insulating film 33, and a control line 34 is formed on the insulating film 33.

本発明と従来例の異なる点は、本発明が対向電極32と
基部電極26との間に、ジョセフソン接合27および2
8に並列にキャパシタンス30および31が形成されて
いる点である。すなわち。
The difference between the present invention and the conventional example is that the present invention provides Josephson junctions 27 and 2 between the counter electrode 32 and the base electrode 26.
8 is formed in parallel with capacitances 30 and 31. Namely.

キャパシタン30及び31は、ジョセフソン接合27及
び28とそれぞれ隣接しかつ基部電極26上に形成され
るので、対向電極32と基部電極26との間に絶縁膜を
配設することによって形成される。そして他の部分は従
来例と同様であるから、等価回路としては第2図の従来
例のジョセフソン素子4および5に並列に二つのキャパ
シタンスが接続された構造となる。このとき、キャパシ
タンス30.31はジョセフソン接合27.28と同じ
材質の酸化膜を用い、トンネル効果が起らないように数
百オングストロームの厚さで適切に調整し、さらにその
面積も適切にきめることによってそれらの容量値を設計
できる。(ジョセフソン接合27.28の厚さは数十オ
ングストームである。)または他の祠質の誘電体を用い
ても同様に構成できる。
Since the capacitors 30 and 31 are adjacent to the Josephson junctions 27 and 28, respectively, and are formed on the base electrode 26, they are formed by disposing an insulating film between the counter electrode 32 and the base electrode 26. . Since the other parts are the same as those of the conventional example, the equivalent circuit has a structure in which two capacitors are connected in parallel to the Josephson elements 4 and 5 of the conventional example shown in FIG. At this time, the capacitance 30.31 is made of an oxide film made of the same material as the Josephson junction 27.28, and the thickness is appropriately adjusted to several hundred angstroms to prevent tunneling effects, and its area is also determined appropriately. By doing so, we can design their capacitance values. (The thickness of the Josephson junction 27, 28 is several tens of angstroms.) Alternatively, other abrasive dielectrics can be used in a similar manner.

このようにしてジョセフソン接合と並列にキャパシタン
スを設けることにより、ジョセフソン接合部の設計に自
由度をもたせることができ、それに従って従来技術の問
題点であ、った電圧転移と磁束モード転移の境界電流[
crの値を制御することができる。これによりメモリセ
ルの動作マージンを改善することが可能となる。
By providing a capacitance in parallel with the Josephson junction in this way, flexibility can be gained in the design of the Josephson junction, thereby reducing the voltage and flux mode transitions that are problematic in the prior art. Boundary current [
The value of cr can be controlled. This makes it possible to improve the operating margin of the memory cell.

なお、第4図の実施例は、ブリッジ型のメモリセルに本
発明を通用した場合であるがジョセフソン接合に並列に
キャパシタンスを設けるという基本に従えば、他のブレ
ーナ型のメモリセルなどにも適用できる。
The embodiment shown in FIG. 4 is a case in which the present invention is applied to a bridge type memory cell, but if the basic principle of providing a capacitance in parallel to the Josephson junction is followed, it can also be applied to other Brainer type memory cells. Applicable.

(7)発明の効果 本発明によれば単一磁束量子メモリセルのジョセフソン
接合に並列にキャパシタンスを設けることによって、電
圧転移と磁束モード転移の境界電流1crの値をジョセ
フソン接合部の設計に依存せずに制御することができ、
これによってメモリセルの書き込みおよび読み出し動作
の動作マージンを改善することができる。
(7) Effects of the Invention According to the present invention, by providing a capacitance in parallel with the Josephson junction of a single flux quantum memory cell, the value of the boundary current 1cr of voltage transition and flux mode transition can be adjusted to the design of the Josephson junction. can be controlled independently,
This makes it possible to improve the operating margin for memory cell write and read operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単一磁束量子メモリセルの断面図、第2
図は単一磁束量子メモリセルの等価回路図、第3図は単
一磁束量子メモリセ、ルの動作特性図、第4図は本発明
による単−磁束量子メモリセルの断面図である。 26・・・基部電極、 27.28・・・ジョセフソン
接合、 30.31・・・キャパシタンス、 32・・
・対向電極、 34・・・制御線、 Icr・・・境界電流、M、・・
・磁束モード転移、 Mv・・・電圧転移。 代理人弁理士 検量 宏四部1..;::、 斑涜’j
第1図 第2図 第3図 第4図
Figure 1 is a cross-sectional view of a conventional single-flux quantum memory cell;
3 is an equivalent circuit diagram of a single-flux quantum memory cell, FIG. 3 is a diagram of operating characteristics of a single-flux quantum memory cell, and FIG. 4 is a cross-sectional view of a single-flux quantum memory cell according to the present invention. 26...Base electrode, 27.28...Josephson junction, 30.31...Capacitance, 32...
・Counter electrode, 34... Control line, Icr... Boundary current, M...
・Magnetic flux mode transition, Mv...voltage transition. Representative Patent Attorney Calibration Koshibe 1. .. ;::、 Madarasagi'j
Figure 1 Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)基部電極上に形成されるジョセフソン接合を少な
くとも2個並列に絶縁膜を介して接続した量子干渉素子
から構成される単一磁束量子メモリセルにおいて、該各
ジョセフソン接合と並列にキャパシタンス素子を接続す
ることを特徴とする量子干渉型ジョセフソンメモリセル
(1) In a single magnetic flux quantum memory cell consisting of a quantum interference device in which at least two Josephson junctions formed on a base electrode are connected in parallel via an insulating film, a capacitance is connected in parallel to each Josephson junction. A quantum interference type Josephson memory cell characterized by connecting elements.
(2)前記キャパシタンス素子は、前記各ジョセフソン
接合に近接して形成されることを特徴とする特許請求の
範囲第1項記載の量子干渉型ジョセフソンメモリセル。
(2) The quantum interference type Josephson memory cell according to claim 1, wherein the capacitance element is formed close to each Josephson junction.
(3)前記キャパシタンス素子は、前記基部電極上に形
成されることを特徴とする特許請求の範囲第1項記載の
量子干渉型ジョセフソンメモリセル。
(3) The quantum interference type Josephson memory cell according to claim 1, wherein the capacitance element is formed on the base electrode.
JP59111425A 1984-05-31 1984-05-31 Quantum interference type josephson memory cell Pending JPS60254492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111425A JPS60254492A (en) 1984-05-31 1984-05-31 Quantum interference type josephson memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111425A JPS60254492A (en) 1984-05-31 1984-05-31 Quantum interference type josephson memory cell

Publications (1)

Publication Number Publication Date
JPS60254492A true JPS60254492A (en) 1985-12-16

Family

ID=14560852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111425A Pending JPS60254492A (en) 1984-05-31 1984-05-31 Quantum interference type josephson memory cell

Country Status (1)

Country Link
JP (1) JPS60254492A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442195A (en) * 1991-01-11 1995-08-15 Hitachi, Ltd. Superconducting device including plural superconducting electrodes formed on a normal conductor
CN110501611A (en) * 2019-08-26 2019-11-26 珠海许继电气有限公司 A kind of power distribution network complete fibre Fault Locating Method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442195A (en) * 1991-01-11 1995-08-15 Hitachi, Ltd. Superconducting device including plural superconducting electrodes formed on a normal conductor
CN110501611A (en) * 2019-08-26 2019-11-26 珠海许继电气有限公司 A kind of power distribution network complete fibre Fault Locating Method and system
CN110501611B (en) * 2019-08-26 2021-07-06 珠海许继电气有限公司 Full-line quick-action fault positioning method and system for power distribution network

Similar Documents

Publication Publication Date Title
US6483740B2 (en) All metal giant magnetoresistive memory
US9443576B1 (en) Josephson magnetic random access memory with an inductive-shunt
US5929636A (en) All-metal giant magnetoresistive solid-state component
US5699293A (en) Method of operating a random access memory device having a plurality of pairs of memory cells as the memory device
KR100397246B1 (en) Ferromagnetic GMR material
US6531723B1 (en) Magnetoresistance random access memory for improved scalability
CA1214270A (en) High density josephson junction memory circuit
US5323344A (en) Quantum memory device
US5768183A (en) Multi-layer magnetic memory cells with improved switching characteristics
WO1997041601A9 (en) All-metal, giant magnetoresistive, solid-state component
GB2368982A (en) Nonvolatile semiconductor memory device and method for recording information
JP2001196658A (en) Magnetic element and magnetic memory device
US6992919B2 (en) All-metal three-dimensional circuits and memories
KR20050004160A (en) Magnetoresistive memory cell array and mram memory comprising such array
JP2005526351A (en) MRAM cell and array structure with maximum read signal and reduced electromagnetic interference
US6594175B2 (en) High density giant magnetoresistive memory cell
US4336523A (en) Superconductive switching and storage device
JPS60254492A (en) Quantum interference type josephson memory cell
US6768670B2 (en) Writing method for magnetic random access memory using a bipolar junction transistor
US20020146887A1 (en) Method for forming magnetoresistive random access memory with magnetic tunnelling junction
US10910544B2 (en) Using a magnetic Josephson junction device as a pi inverter
JP2001237388A (en) Magnetoresistive storage device and ferroelectric storage device
JPS60254491A (en) Josephson memory cell
Beha High density NDRO SFQ Joshepson interferometer momory cell
JPH07162044A (en) Single-electron tunnel element and circuit using the same