JPS60253863A - Ultrasonic non-linear type parameter distribution measuring apparatus - Google Patents

Ultrasonic non-linear type parameter distribution measuring apparatus

Info

Publication number
JPS60253863A
JPS60253863A JP59109830A JP10983084A JPS60253863A JP S60253863 A JPS60253863 A JP S60253863A JP 59109830 A JP59109830 A JP 59109830A JP 10983084 A JP10983084 A JP 10983084A JP S60253863 A JPS60253863 A JP S60253863A
Authority
JP
Japan
Prior art keywords
ultrasonic
pumping
wave
measurement
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59109830A
Other languages
Japanese (ja)
Inventor
Hirokuni Sato
佐藤 拓宋
Nobuyuki Ichida
市田 信行
Osamu Hayashi
治 林
Keiichi Murakami
敬一 村上
Hiroshi Igarashi
寛 五十嵐
Nobushiro Shimura
孚城 志村
Hirohide Miwa
三輪 博秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59109830A priority Critical patent/JPS60253863A/en
Publication of JPS60253863A publication Critical patent/JPS60253863A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable a highly accurate measurement of distribution by providing an ultrasonic vibrator and a means of detecting a spatial distribution of phase transition level of a measuring wave as a pumping wave to determine a coded geometrical means of the phase transition level by a special formula. CONSTITUTION:A distribution measuring apparatus is made up of a timing control section 1 for generating a transmission timing of a pumping wave, an oscillator 2, drivers 3 and 4 which produces an output in response to the output of the oscillator 2 to drive vibrators as controlled by the control section 1, vibrators 5 and 6, phase detectors 10 and 11, drivers 12 and 13 for pumping waves and the like. Vibrators 14 and 15 for generation of pumping waves are provided. The results of measurement are fed to an arithmetic circuit 17 to determine the distribution of non-linear parameters by calculating the geometrical mean according to a specified formula. This can reduce the pumping pulse to measure a highly accurate distribution.

Description

【発明の詳細な説明】 (A)発明の技術分野 本発明は、超音波非線形パラメータ分布測定装置、特に
、生体組織等の超音波媒体の物理特性の空間分布を測定
する方式に係わり、音速が音圧に対し、−次近似として
は一定値であるが、二次近似としてば音圧に比例すると
いう非線形性を示すのを利用し、この非線形パラメータ
の空間的分布を媒体の特性値として測定し、更には必要
に応してその空間的分布の映像化を高速且つ容易に行う
ようにした測定装置において、ボンピングパルスの音圧
減衰の影響を除去できる様にした装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Technical Field of the Invention The present invention relates to an ultrasonic nonlinear parameter distribution measuring device, and particularly to a method for measuring the spatial distribution of physical properties of an ultrasonic medium such as a biological tissue. The spatial distribution of this nonlinear parameter is measured as a characteristic value of the medium by taking advantage of the fact that the sound pressure exhibits nonlinearity, which is a constant value in the − order approximation, but is proportional to the sound pressure in the quadratic approximation. Furthermore, the present invention relates to a measuring device capable of quickly and easily visualizing the spatial distribution of the pumping pulse, if necessary, which is capable of eliminating the influence of sound pressure attenuation of the pumping pulse.

(B)技術の背景と問題点 本発明が利用する非線形パラメータ映像法の原理は特願
昭58−119100号に詳述されている。そこでは、
第1図(blに示す様に比較的高周波の測定用連続超音
波ビームと同軸状で、且つ、進行方向が測定用ビームと
逆方向になる様に比較的低周波のボンピング用パルス波
を与え、ボンピングパルスによって位相変調された測定
波を位相復調する事によって、測定波ビーム走査線上の
非線形パラメ−ターを高速にめていた。しかし、この方
法にはなお以下の様な問題がある。
(B) Technical Background and Problems The principle of the nonlinear parameter imaging method used in the present invention is detailed in Japanese Patent Application No. 119100/1982. Where,
As shown in Figure 1 (bl), a relatively low-frequency pumping pulse wave is applied coaxially with the relatively high-frequency continuous ultrasonic beam for measurement and whose traveling direction is opposite to that of the measurement beam. The nonlinear parameters on the measurement wave beam scanning line were determined at high speed by phase demodulating the measurement wave phase-modulated by the pumping pulse.However, this method still has the following problems.

即ち、ボンピングパルスは、比較的低周波であるから超
音波媒体中での減衰は少ないがそれでも。
That is, since the pumping pulse has a relatively low frequency, there is less attenuation in the ultrasonic medium.

例えば生体組織においては、 1dB / (MHz−
cn+)程度の減衰があり、ボンピング波として例えば
中心周波数500 Ktlzのパルスを用いると、1c
m進む毎に0.5 dB程度減衰する事になる。したが
って、ボンピング用振動子から離れるに従って、測定波
ビームに及ぼすボンピングパルスの影響が小さくなり1
位相変調の程度も小さくなり、最終的に得られるB/A
の分布も、実際には例えば第1図(alの如き分布のB
/Aがあって、第1図(d)の如き出力が期待されるに
も拘わらず、得られるB/Aの空間分布は第1図(el
の如く、ポンピング用振動子から離れるに従って見かけ
上小さく評価されたものとなる。
For example, in living tissue, 1dB/(MHz-
cn+), and if a pulse with a center frequency of 500 Ktlz is used as the pumping wave, for example, 1c
This means that the attenuation will be approximately 0.5 dB for every m distance. Therefore, as the distance from the pumping transducer increases, the effect of the pumping pulse on the measurement wave beam decreases.
The degree of phase modulation also becomes smaller, and the final B/A
In reality, the distribution of
/A, and the output shown in Figure 1(d) is expected, but the spatial distribution of B/A obtained is as shown in Figure 1(el
As shown in the figure, the evaluation becomes smaller as the distance from the pumping vibrator increases.

この様な影響を除くため、特願昭58−119100号
においては、その特許請求の範囲第9項に示した如く1
位相復調出力を1時間と共に変化する利得を与える事の
できる増幅器に通す、という処理を行っていた。この方
法はポンピング用振動子からの各距離におけるボンピン
グパルスの音圧が予め知られている場合には有効である
が、実際に超音波診断装置として用いる場合には被観察
超音波媒体である人体内部での音圧の変化の様子は正確
には知る事ができず、経験的に妥当なり/Aの分布が分
布をめるのが困難であった。
In order to eliminate this kind of influence, Japanese Patent Application No. 119100/1983 discloses the following:
The process involved passing the phase demodulated output through an amplifier that can provide a gain that changes over time. This method is effective when the sound pressure of the pumping pulse at each distance from the pumping transducer is known in advance, but when actually used as an ultrasound diagnostic device, the ultrasound medium to be observed It is not possible to know exactly how the sound pressure changes inside the human body, and it has been difficult to determine the distribution of the distribution of A that is empirically valid.

(C)発明の目的と構成 本発明は、第1図fblに示す様に、測定用連続超音疲
ビームが測定用振動子XAからXBへ向かっでいる状態
で得たB/Aの分布(第1図(e))と、第1図fc)
に示す様に測定用連続超音波ビーム及びボンピングパル
スの方向が第1図(blとは逆向きになった状態で得た
B/^の分布(第1図(f))との幾何平均をめる事に
よって、第1図(glの如くボンピングパルスの減衰の
影響を除去したB/Aの分布を得る事ができる様にした
もので、特許請求の範囲記載の構成をもつことを特徴と
している。以下具体的に説明する。
(C) Object and structure of the invention As shown in FIG. 1 fbl, the present invention provides a B/A distribution ( Figure 1(e)) and Figure 1fc)
As shown in Figure 1, the geometric mean of the B/^ distribution (Figure 1 (f)) obtained when the direction of the continuous ultrasonic beam for measurement and the bombing pulse were opposite to Figure 1 (bl). By adjusting It is a feature.It will be explained in detail below.

(D)発明の実施例 本発明において使用する非線形パラメータ〜。(D) Examples of the invention Nonlinear parameters used in the present invention.

及び−とボンピング波の圧力とによって生じる。and - and the pressure of the pumping wave.

測定波の位相変調については、特願昭58−11910
0号に詳述されている。
Regarding the phase modulation of the measurement wave, please refer to Japanese Patent Application No. 11910/1986.
It is detailed in No. 0.

当該比IQβにおいてもよ、超音波媒体内の音圧が零の
時の音速をC6,密度をρ。、媒体の非線形パラメータ
を−とすると、測定波の音速がポンピンΔ グ波の音圧1〕により 2ρ。Co A なる変化を受い、第3図に示す如き構成の装置による位
相復調比ノjをφ(Zi)、ポンピング波の波形をP(
Z)、位置Zにおける非線形パラメータを−(Z) と
すると φ(Zi)−−(f(い* g (y) ) −−−−
−−−−−−−−−(21が成立し、従って、−(Z)
は1位相復調出力φ(Z)し、G(ω)はP (−27
> のフーリエ変換)に通す事によって得られる事が述
べられている。
Also for the ratio IQβ, the sound speed when the sound pressure in the ultrasound medium is zero is C6, and the density is ρ. , the nonlinear parameter of the medium is −, then the sound velocity of the measurement wave is 2ρ due to the pumping wave sound pressure 1]. Due to the change Co A, the phase demodulation ratio j of the device configured as shown in Fig. 3 is changed to φ(Zi), and the waveform of the pumping wave is changed to P(
Z), and the nonlinear parameter at position Z is −(Z), then φ(Zi)−−(f(i*g(y))−−−−
−−−−−−−−−(21 holds, therefore −(Z)
is the 1-phase demodulated output φ(Z), and G(ω) is P (-27
It is stated that what can be obtained by passing it through the Fourier transform of

この方法によれば、ボンピング波が減衰を受けずにZの
如何にかかわらず一定の波形を保つ場合には2式(2)
のφ(Zi)は正しく−(Zi)に比例した出数特性の
フィルタの出力から正しく−(Zl)が得られる。
According to this method, if the pumping wave is not attenuated and maintains a constant waveform regardless of Z, then Equation 2 (2)
-(Zl) can be correctly obtained from the output of a filter having an output characteristic proportional to -(Zi).

しかし、一般には、ポンピング波は距離と共に減衰を受
ける。今、ポンピング波の帯域はそれほど広くなく、従
って、その減衰定数はポンピング波の周波数帯域内では
ほぼ一定で、距離Zにおいてα(Z)なる形で表現され
ているとする。この場合、ボンピング用振動子から出た
時のポンピング波の波形をP。(Z)とすると、第2図
(at、 (blのZ−ZiにおけるP (Z)は、第
1図(b)に対応する第2図(81の場合には となり、第1図(C)に対応する第2図(b)の場合に
は−f α(Z)dZ P b (Zi) = P o (Z) e ’ −−
−−(41となる。従って、第2図(al、 fb)の
場合の位相復調出力ψa(Zi) 、φb(Zi)はそ
れぞれ。
However, in general, pump waves undergo attenuation with distance. Assume now that the band of the pumping wave is not so wide, and therefore its attenuation constant is approximately constant within the frequency band of the pumping wave, and is expressed in the form α(Z) at distance Z. In this case, the waveform of the pumping wave when it comes out from the pumping vibrator is P. (Z), then P (Z) in Z-Zi of Figure 2 (at, (bl) becomes in the case of Figure 2 (81) corresponding to Figure 1 (b), and ) in the case of Fig. 2(b) corresponding to -f α(Z)dZ P b (Zi) = P o (Z) e ' --
--(41) Therefore, the phase demodulation outputs ψa(Zi) and φb(Zi) in the case of FIG. 2 (al, fb) are respectively.

ン (但し、g o(Zi−y)=P(y−Zi) )とな
り、従って、指数関数項は定積分であり、Zに依存しな
い定数だから φ、 (Zi)・φb(Zi)= 定数だから 5gn−1$a (Zi「$b (Zi肩1に゛ −(f(y)*go(y) )−一−−−−−−−(s
1となる。po(z)はボンピング用振動子を出た直後
のボンピング波形であり、従って。
(However, go(Zi-y)=P(y-Zi)) Therefore, the exponential function term is a definite integral and is a constant that does not depend on Z, so φ, (Zi)・φb(Zi)= constant Therefore, 5gn-1$a (Zi ``$b (Zi shoulder 1 ゛-(f(y)*go(y))-1--------(s
It becomes 1. po(z) is the pumping waveform immediately after leaving the pumping vibrator, and therefore.

go(Zi−y) = Po(y−Zi)はZの如何に
かかわらず一定の波形であるから。
This is because go(Zi-y) = Po(y-Zi) has a constant waveform regardless of Z.

式(8)は、ポンピング波の減衰による影響を受ける事
なく。
Equation (8) is not affected by the attenuation of the pumping wave.

f (y) =f(2Z) = −(Z)にのみ依存す
る(比例する)量を表す事になる。
It represents a quantity that depends (proportional) only on f (y) = f (2Z) = - (Z).

従って、go(y)のフーリエ変換をG。(ω)とした
時2位相復調出力の符号付幾何平均である式(8)をな
る一定の周波数特性を持つフィルタに通す事により、 
−(Zi)を得る事ができる。
Therefore, the Fourier transform of go(y) is G. By passing equation (8), which is the signed geometric mean of the two-phase demodulated output when (ω), through a filter with a constant frequency characteristic,
−(Zi) can be obtained.

、A Z=0からZ=Lに到るまでの間に受ける総減衰量であ
り、−(Zi)の測定に先立って実測しておく事ができ
るのは言うまでもない。
, AZ is the total attenuation received from Z=0 to Z=L, and it goes without saying that it can be actually measured prior to measuring -(Zi).

以上、理論的な説明を行ったが1次に1本発明の一実施
例について7第4図を用いて説明する。
Although the theoretical explanation has been given above, one embodiment of the present invention will now be explained with reference to FIG. 4.

第4図において、1はポンピング波の送信のタイミング
及び測定波の送・受信の切換のタイミングを発生するタ
イミング制御部、2は測定用連続波のための発振器、3
及び4は発振器出力を受けて振動子を駆動するためのド
ライバでその出力がタイミング制御部1から与えられる
制御信号により0N10FF可能にされるもの、5及び
6は測定波の送信・受信兼用の振動子xA及びxi、7
は被測定超音波媒体T、8及び9は受信増幅器。
In FIG. 4, 1 is a timing control unit that generates the timing for transmitting a pumping wave and the timing for switching between transmission and reception of a measurement wave; 2 is an oscillator for continuous waves for measurement; and 3
and 4 is a driver for driving the vibrator upon receiving the oscillator output, and its output is made 0N10FF possible by the control signal given from the timing control section 1; 5 and 6 are vibrations used for both transmission and reception of measurement waves. children xA and xi, 7
is the ultrasonic medium T to be measured, and 8 and 9 are receiving amplifiers.

10及び11は位相検出器、12及び13はポンピング
波用のドライバを示す。また14及び15はポンピング
波発生用振動子Xn及びXcであり。
10 and 11 are phase detectors, and 12 and 13 are pumping wave drivers. Further, 14 and 15 are pumping wave generation oscillators Xn and Xc.

第4図においては、見取図及び断面図を第4図(B)及
び(C)に示す如き、送受信兼用振動子X6又はXAの
周囲をリング状に囲むものである場合を示しである。1
Gは振動子14によるポンピング波の送信タイミンクか
ら、振動子15によるポンピング波の送信タイミングま
での時間に相当する遅延時間を持ち入力の時間的順序を
前後逆にして出力する遅延回路、17は式(8)に示す
如き幾何平均をめる回路、18はピーク検出回路、19
はサンプ波発生用振動子I4から出される超音波パルス
ビームの有効範囲を破線で示しであるが、斜線を施した
領域が、測定波に位相変調を引き起こす領域となる。第
4図(A)において、振動子5゜6.14.’15の配
置は2便宜上2図の如く左右対称であるとする。
FIG. 4 shows a case in which a transmitting/receiving transducer X6 or XA is surrounded in a ring shape, as shown in FIGS. 4(B) and 4(C). 1
G is a delay circuit that has a delay time corresponding to the time from the timing at which the pumping wave is transmitted by the oscillator 14 to the timing at which the pumping wave is transmitted by the oscillator 15, and outputs the input with the temporal order reversed; A circuit for calculating the geometric mean as shown in (8), 18 is a peak detection circuit, 19
The effective range of the ultrasonic pulse beam emitted from the sump wave generation transducer I4 is shown by a broken line, and the shaded area is the area that causes phase modulation in the measurement wave. In FIG. 4(A), the vibrator 5°6.14. For convenience, the arrangement of '15 is assumed to be symmetrical as shown in Figure 2.

Z2ば被測定区間つまり測定波に位相変調の生しる区間
の距離、Z+ は被測定区間と振動子5又は6との距離
である。被測定区間と、ボンピング波発生用振動子14
又は15との距離は、z+ と若干異なるが以下の説明
では便宜上Z1に等しいものとする。第5図には第4図
の主要部の時間波形を示しており、第5図には第4図と
同し信号名称を記しである。先ず、タイミング制御部1
からの送信指示信号DvB (第5図(a))により、
トライバI2により振動子14が駆動され、ポンピング
波が送出される。この時には、測定波トライバ3ば、既
にデー1−信号G、によって動作可能になって振動子5
を駆動しており、測定用連続波が被測定媒体内を通過し
て振動子6に到着し始めていとの和を 1 tc+に示す様に振動子14によるポンピング波の送信
から時間も、の後に位相変調を受け始め、ボン発振器2
の出力とVIIBとの位相を比較し、第5図(e+に示
ず様に■。の位相を時間の関数ψB(t)として、従っ
て座標2の関数として出力する。この出力が、遅延回路
16に人力される。
Z2 is the distance of the section to be measured, that is, the section where phase modulation occurs in the measurement wave, and Z+ is the distance between the section to be measured and the vibrator 5 or 6. Measurement section and bombing wave generation vibrator 14
15 is slightly different from z+, but in the following explanation, it is assumed to be equal to Z1 for convenience. FIG. 5 shows time waveforms of the main parts of FIG. 4, and FIG. 5 shows the same signal names as FIG. 4. First, the timing control section 1
According to the transmission instruction signal DvB (Fig. 5(a)) from
The vibrator 14 is driven by the driver I2, and a pumping wave is sent out. At this time, the measurement wave driver 3 has already been enabled to operate by the data 1 signal G, and the transducer 5
The time from when the continuous wave for measurement passes through the medium to be measured and begins to arrive at the transducer 6 is 1tc+, the time from the transmission of the pumping wave by the transducer 14 is Later it starts to undergo phase modulation and the Bonn oscillator 2
Compare the phase of the output of VIIB with the phase of It will be man-powered by 16.

振動子14によるポンピング波の送信から時間Tの後に
、第5図(b)に示す様に制御信号DV、を1−リガと
して先の場合とは逆方向にポンピング波が送信され、先
の場合と全く同様にして2位相検出器11からは位相復
調出力φAft+が第5図(flの様に出力される。但
し、先の場合には第5図(e)に示す如く2位相復調出
力φl1(t)はZ=Z、+Z2に対応するものが最初
に得られZ=Z、に対応するものが最後に得られていた
が、φ7(t)の場合には、第5図(flに示す如<、
Z=ZIに対応するものが最初に得られZ=ZI÷z2
に対応するものが最後に得られる。という事になり、φ
8(t)とZ軸の(従って時間軸の)前後が逆になる。
After a time T from the transmission of the pumping wave by the vibrator 14, as shown in FIG. 5(b), the pumping wave is transmitted in the opposite direction to that in the previous case with the control signal DV set to 1-RIG. In exactly the same manner, the phase demodulation output φAft+ is outputted from the two-phase detector 11 as shown in FIG. (t), the one corresponding to Z=Z, +Z2 was obtained first, and the one corresponding to Z=Z, was obtained last, but in the case of φ7(t), the one corresponding to As shown,
The one corresponding to Z=ZI is obtained first, Z=ZI÷z2
The one corresponding to is finally obtained. So, φ
8(t) and the Z axis (therefore, the time axis) are reversed.

遅延回路16は、第5図tel (g)に示す如く、φ
8(t)の前後を逆にした波形φD (tlを、第5図
(flのφ、(t)のタイミングに合わせて出力するも
ので1例えば第6図に示す如く。
As shown in FIG. 5, tel (g), the delay circuit 16 has a φ
The waveform φD (tl) obtained by reversing the front and rear of 8(t) is outputted in accordance with the timing of φ of FIG.

A/D変換器、メモリ、D/A変換器及びメモリアドレ
ス制御回路によって構成できる事は言うまでもない。又
、逆方向に転送可能なりBDあるいはCCD等によって
構成できる事も言うまでもない。この様にして得られた
φ。(tlは、φ7(t)と共に演算回路17に送られ
2式(8)で示される幾何平均、D−(t) a n 
(tl−が出力される。演算回路17は2例えば第7図
に示す如<、A/D変換器2符号変換回路(通常はRO
M)、D、l/A変換器から成る回路で実現できる事は
言うまでもない。又。
Needless to say, it can be configured by an A/D converter, a memory, a D/A converter, and a memory address control circuit. Furthermore, it goes without saying that data can be transferred in the opposite direction and can be configured using a BD, CCD, or the like. φ obtained in this way. (tl is the geometric mean sent to the arithmetic circuit 17 together with φ7(t) and shown in equation 2 (8), D-(t) a n
(tl- is output. The arithmetic circuit 17 has two signals, for example, as shown in FIG.
It goes without saying that this can be realized with a circuit consisting of M), D, and l/A converters. or.

アナログ乗算器を用いた乗算・開平回路によって実現で
きる事も言うまでもない。
Needless to say, this can be realized by a multiplication/square root circuit using an analog multiplier.

以上の如き構成を用いれば、特許請求の範囲第1項の機
能を実現できる事は明らかである。
It is clear that the function set forth in claim 1 can be realized by using the configuration as described above.

本発明は、更に1診断位置の変化による総減衰量の変化
を補償する手段も提供している。式(7)か−f α(
Z) dZ ら明らかな様に、総減衰量e 0 の太きさが変わると
φ、 (Zi)・φb (Zi)も変化する。つ−f 
α(Z) dZ まり、減衰が大きいためにe ′3 が小さくなると、
φ、 (Zi)・φb (Zi)も小さくなる。従I( って、正しく −(f(y) *go(y))をめ、正
しくsgn−rラ−=聞コー を除する必要がある。第
4図図示の構成18ないし21はこのためのもので、ピ
ーク検出回路18は振動子5が受信した信号のピーク値
を出力する。づンプルホールド回路19は、タイミング
制御回路1からの制御信号S A M P L Eによ
って、振動子14から送出されたポンピング波が振動子
5によって受信されたタイミングのピーク検出回路出力
電圧を保持すは明らかである。■、は開平回路20に送
られ。
The present invention further provides means for compensating for changes in total attenuation due to changes in one diagnostic location. Equation (7) or −f α(
Z) dZ As is clear from the above, when the thickness of the total attenuation amount e 0 changes, φ, (Zi)·φb (Zi) also changes. -f
α(Z) dZ So, when e '3 becomes smaller due to large attenuation,
φ, (Zi)·φb (Zi) also becomes smaller. Therefore, it is necessary to correctly calculate -(f(y) *go(y)) and correctly divide sgn-rra-=gonko.Constitutions 18 to 21 shown in Fig. 4 are for this reason. The peak detection circuit 18 outputs the peak value of the signal received by the transducer 5. The sample hold circuit 19 outputs the peak value of the signal received by the transducer 5. It is clear that the pumping wave sent out maintains the output voltage of the peak detection circuit at the timing received by the vibrator 5. ■ is sent to the square root circuit 20.

除算回路21に送られ、 5Bn−ζ17而T7丁面丁
を除する事になる。
It is sent to the division circuit 21 and is divided by 5Bn-ζ17 and T7.

以上の如くすれば9診断位置の変化による減衰量による
影響を除去して真の−・f (y)木g。(y)をめる
事ができ、更に、第4図(A)に示す如<、−に により、減衰による影響を受ける事なく−(Z)に比例
した出力−(1)が得られる事は明らかである。
By doing the above, the influence of the amount of attenuation caused by the change in the diagnosis position is removed and the true −·f (y) tree g is obtained. (y), and furthermore, as shown in Figure 4 (A), as shown in Fig. 4 (A), due to <, -, an output -(1) proportional to -(Z) can be obtained without being affected by attenuation. is clear.

以上の説明では、検出した位相φA(tl、φ、(t)
の幾何平均をめているが。
In the above explanation, the detected phase φA(tl, φ, (t)
The geometric mean of .

log it= (tL to (t)−< logφ
A<tl+をめることにより、Zに依存した減衰量の影
響を除去した出力が得られるごとは言うまでもない。
log it= (tL to (t)−< logφ
It goes without saying that by setting A<tl+, an output can be obtained in which the influence of the attenuation amount dependent on Z is removed.

(E)発明の効果 以上述べた如く1本発明によれば、以前に提案した超音
波媒体の非線形パラメーター(Z)の測定に比べ、減衰
の影響を軽減してより高精度にその分布を測定する事か
できる。
(E) Effects of the Invention As described above, according to the present invention, compared to the previously proposed measurement of the nonlinear parameter (Z) of an ultrasonic medium, the influence of attenuation is reduced and its distribution can be measured with higher precision. I can do something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図GJ本発明の詳細な説明する説明図
、第4図は本発明の−・実施例、第5図は第4図図示構
成についての動作説明図、第6図は第4図図示の遅延回
路(DL)の一実施例構成、第7図は第4図図示の演算
回路(CALC)の一実施例構成を示す。 図中、1はタイミング制御部、2ば発振器、3゜4は夫
々ドライバ、5,6は夫々送受信用振動子。 7は被測定超音波媒体、8.9は夫々受信増幅器。 12.13ば夫々ボンピング波相のドライバ、14゜1
5は夫々ポンピング波発生用振動子を表す。 特許出願人 富士通株式会社 代理人弁理士 森 1) 寛(外1名)(’f) [」
]」]」]」]− d ^ Nノ −ノ ナ4図 (3)(C) d 山 心 檀 3 ら 邑 −
FIGS. 1 to 3 are explanatory diagrams for explaining detailed explanations of the present invention, FIG. 4 is an embodiment of the present invention, FIG. 5 is an explanatory diagram of the operation of the configuration shown in FIG. 4, and FIG. 4 shows the structure of an embodiment of the delay circuit (DL) shown in FIG. 4, and FIG. 7 shows the structure of an embodiment of the arithmetic circuit (CALC) shown in FIG. In the figure, 1 is a timing control section, 2 is an oscillator, 3 and 4 are drivers, and 5 and 6 are transducers for transmission and reception, respectively. 7 is an ultrasonic medium to be measured, and 8 and 9 are receiving amplifiers, respectively. 12.13 is the driver of the pumping wave phase, 14゜1
5 represents a pumping wave generating vibrator. Patent applicant: Fujitsu Ltd. Representative Patent Attorney Mori 1) Hiroshi (1 other person) ('f) [''
]”]”]”] - d ^ Nノ - NONA Figure 4 (3) (C) d Yama Shin Dan 3 Ra Village -

Claims (1)

【特許請求の範囲】 (t)(4)超音波媒体を透過する比較的高周波低音圧
の測定用連続超音波ビームを振動子XAがらXBへ又は
振動子XBがらXAへ時分割的に送信・受信するXA、
XBなる一対の超音波振動子又は超音波振動子アレイと
。 (ロ)上記連続超音波ビームと平行又は殆ど平行で、且
つ、上記送信・受信超音波振動子対間の殆ど到る所で上
記連続超音波ビームと共通部分を持ち、且つ超音波の進
行方向が上記連続超音波ビームと逆向きである様な比較
的低周波高音圧のポンピングパルス用超音波を振動子X
Dから、又は振動子xcがら時分割的に送信するXC,
XDなる一対の超音波振動子又は超音波振動子アレイと
。 (ハ)測定用連続超音波ビームが測定用振動子XAから
XBに向かっている時に該超音波ビームと逆方同に進行
するポンピング波による測定波の位相遷移量の該連続超
音波ビーム軸上の空間的分布φhB(Z)を検出する手
段と。 (ニ)測定用連続超音波ビームが測定用振動子XBから
XAに向かっている時に、該超音波ビームと逆方向に進
行するポンピング波による測定波の位相遷移量の、該連
続超音波ビーム軸上の空間的分布φIIA(Z)を検出
する手段と。 (ボ)上記連続超音波ビーム軸上の、同一の空間座標Z
における上記(ハ)及び(ニ)でめた位相遷移量の符号
付幾何平均sgn (φAB (Z)・φBA(Z))
 ・Iψ^B(Z)・φBA(Z) l をめる1とい
う操作を、該連続超音波ビーム軸上の被観察領域全体に
わたって行い、 (ハ)及び(ニ)でめた位相遷移量の
符号付幾何平均の空間分布をめる手段と。 を持つ事を特徴とする超音波非線形パラメータ分布測定
装置。 (2)振動子又は振動子アレイXA又はxp、から送出
された連続超音波ビームが、振動子又は振動子アレイX
B又はXAに到るまでの間に受けた減衰量を測定する手
段と、該減衰量で以て上記位相遷移量の符号付幾何平均
を除算する手段と。 を持つ事を特徴とする特許請求の範囲第(1)項記載の
超音波非線形パラメータ分布測定装置。 (3) ボンピング波の周波数特性のほぼ逆特性に等し
い特性のフィルタをもうけたことを特徴とする特許請求
の範囲第(1)項又は第(2)項記載の超音波非線形パ
ラメータ分布測定装置。
[Claims] (t) (4) Time-divisionally transmitting a continuous ultrasonic beam for measurement of relatively high frequency and low sound pressure that passes through an ultrasonic medium from transducer XA to XB or from transducer XB to XA. receiving XA,
A pair of ultrasonic transducers or an ultrasonic transducer array called XB. (b) Parallel or almost parallel to the continuous ultrasonic beam, and having common parts with the continuous ultrasonic beam almost everywhere between the pair of transmitting and receiving ultrasonic transducers, and in the direction of propagation of the ultrasonic wave. A pumping pulse ultrasonic wave of relatively low frequency and high sound pressure is transmitted to the transducer
XC transmitted from D or from the vibrator xc in a time-sharing manner;
A pair of ultrasonic transducers or an ultrasonic transducer array named XD. (c) When the continuous ultrasonic beam for measurement is heading from the measurement transducer XA to XB, the amount of phase transition of the measurement wave due to the pumping wave traveling in the opposite direction to the ultrasonic beam is on the axis of the continuous ultrasonic beam. means for detecting the spatial distribution φhB(Z). (d) When the continuous ultrasonic beam for measurement is heading from the measurement transducer XB to XA, the continuous ultrasonic beam axis of the amount of phase transition of the measurement wave due to the pumping wave traveling in the opposite direction to the ultrasonic beam and means for detecting the spatial distribution φIIA(Z) above. (B) Same spatial coordinate Z on the above continuous ultrasound beam axis
Signed geometric mean sgn (φAB (Z)・φBA (Z)) of the phase transition amounts determined in (c) and (d) above in
・Iψ^B(Z)・φBA(Z) l Perform the operation 1 over the entire observation area on the continuous ultrasound beam axis, and calculate the amount of phase transition determined in (c) and (d). A means of determining the spatial distribution of the signed geometric mean. An ultrasonic nonlinear parameter distribution measuring device characterized by: (2) The continuous ultrasound beam sent out from the transducer or transducer array XA or xp
means for measuring the amount of attenuation received until reaching B or XA; and means for dividing the signed geometric mean of the amount of phase transition by the amount of attenuation. An ultrasonic nonlinear parameter distribution measuring device according to claim (1), characterized in that: (3) The ultrasonic nonlinear parameter distribution measuring device according to claim (1) or (2), further comprising a filter having characteristics substantially equal to the inverse characteristics of the frequency characteristics of the pumping wave.
JP59109830A 1984-05-30 1984-05-30 Ultrasonic non-linear type parameter distribution measuring apparatus Pending JPS60253863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59109830A JPS60253863A (en) 1984-05-30 1984-05-30 Ultrasonic non-linear type parameter distribution measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109830A JPS60253863A (en) 1984-05-30 1984-05-30 Ultrasonic non-linear type parameter distribution measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60253863A true JPS60253863A (en) 1985-12-14

Family

ID=14520285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109830A Pending JPS60253863A (en) 1984-05-30 1984-05-30 Ultrasonic non-linear type parameter distribution measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60253863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439656B1 (en) * 2002-01-04 2004-07-12 (주)휴먼정보통신 Non-contact type temperature distribution instrumentation system by using ultrasonics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439656B1 (en) * 2002-01-04 2004-07-12 (주)휴먼정보통신 Non-contact type temperature distribution instrumentation system by using ultrasonics

Similar Documents

Publication Publication Date Title
US4754760A (en) Ultrasonic pulse temperature determination method and apparatus
EP0147955B1 (en) Ultrasonic non-linear parameter measuring system
US7785259B2 (en) Detection of motion in vibro-acoustography
EP0128635A2 (en) Measuring non-linear parameter of acoustic medium
US9642600B2 (en) Shear wave attenuation from k-space analysis system
JPS60253863A (en) Ultrasonic non-linear type parameter distribution measuring apparatus
US20170156701A1 (en) System and method for gradient-based k-space search for shear wave velocity dispersion estimation
JPH0548130B2 (en)
JPH0222660B2 (en)
JPS62170830A (en) Stress distribution measuring instrument
JPH05172793A (en) Sound characteristic value measuring device
JPS63194644A (en) Ultrasonic measuring apparatus
SU593135A1 (en) Device for measuring ultrasound speed
JPH066124B2 (en) Ultrasonic measuring device
JPS62179437A (en) Apparatus for measuring ultrasonic non-linear parameter distribution
JPH056142B2 (en)
JPH0961145A (en) Method and apparatus for measurement of thickness or sound velocity
SU569854A1 (en) Ultrasonic flowmeter for
SU735922A1 (en) Correlation rate-of-flow meter
JPS6024829A (en) Ultrasonic diagnostic apparatus
JP2749908B2 (en) Pulse type ultrasonic distance measuring device
JPH01118790A (en) Ultrasonic distance measuring instrument
JPH02236449A (en) Ultrasonic measuring method and ultrasonic measurer for this method
SU822013A1 (en) Device for measuring ultrasound propagation velocity
JPH0428376B2 (en)