JPS60253851A - Atomic absorption analyzer - Google Patents

Atomic absorption analyzer

Info

Publication number
JPS60253851A
JPS60253851A JP11212884A JP11212884A JPS60253851A JP S60253851 A JPS60253851 A JP S60253851A JP 11212884 A JP11212884 A JP 11212884A JP 11212884 A JP11212884 A JP 11212884A JP S60253851 A JPS60253851 A JP S60253851A
Authority
JP
Japan
Prior art keywords
temp
stage
tube
temperature
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11212884A
Other languages
Japanese (ja)
Other versions
JPH0527816B2 (en
Inventor
Kikuo Sasaki
佐々木 菊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP11212884A priority Critical patent/JPS60253851A/en
Publication of JPS60253851A publication Critical patent/JPS60253851A/en
Publication of JPH0527816B2 publication Critical patent/JPH0527816B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to enhance the reproducibility of measurement, by controlling a graphite tube to constant temp. to detect a current value and generating a signal having preset functional relation to control the current of the graphite tube. CONSTITUTION:The output Vs of a photodiode transmitting upon the reception of thermal radiation from the graphite tube GT connected to a voltage drop transformer T is inputted to a control amplifier CA and a temp. signal at each stage is applied to the amplifier CA as a reference level signal Vr from the temp. programmer TP in which the fuctional relation with the temp. of the tube GT was stored and the amplifier CA applies the signal of the difference between the signals Vs and Vr to a triac TA through a pulse generator PG and controls supply power from the triac TA so as to adjust the tube GT to indicated temp. By this method, the temp. change rate of a temp. rising process becomes constant.

Description

【発明の詳細な説明】 イ 産業上の利用分野 本発明はフレームレス原子吸光分析用試料原子他炉の温
度利口装置;こ関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a temperature efficient device for a sample nuclear reactor for flameless atomic absorption spectrometry analysis.

口 従来技術 フレームレス原子吸光分析用試料原子他炉はグラファイ
トチューブで、管軸方向に光を通し、チューブ内に滴下
した試料溶液をチューブ自体に通’Kして加熱するよう
lこなっている。こ\で通電は次のようなスケジュール
で行われる。第1段では小電流を流して試料を乾燥し、
第2段では中電流を流して試料を稍強熱灰化させ、最終
段で大電流を流して炉温を最高温ま゛で上げ、その昇温
の過程で試料を原子化させる。
Conventional technology The sample reactor for flameless atomic absorption spectrometry is a graphite tube in which light is passed in the direction of the tube axis, and the sample solution dropped into the tube is passed through the tube itself and heated. . The electricity is turned on according to the following schedule. In the first stage, a small current is applied to dry the sample.
In the second stage, a medium current is applied to slightly ignite the sample, and in the final stage, a large current is applied to raise the furnace temperature to the maximum temperature, atomizing the sample in the process of raising the temperature.

上述した通電スケジュールを実現する1こめの従来の定
温度制御方式では、第2段の中電流を流す灰化段階及び
最終段の最高温度の段階〔原子化段階)では定温度制御
がなされているが、灰化段階から原子化段階1コ温度が
昇温する中間過程は定温度制徂状態ではない。この中間
過程の昇温速度はグラファイトチューブ【こ印加される
最大電圧とグラファイトチューブの電気抵抗によって定
まり、電気抵抗はチューブ毎にばらついているし、同一
チューブでも何回も使用しているとチューブ自体が次第
に消耗して来ることtこよって変ってくる。
In the conventional one-time constant temperature control method that achieves the above-mentioned energization schedule, constant temperature control is performed in the second stage, the ashing stage where a medium current is passed, and the final stage, the highest temperature stage (atomization stage). However, the intermediate process in which the temperature rises from the ashing stage to the atomization stage is not a constant temperature limit state. The rate of temperature increase during this intermediate process is determined by the maximum voltage applied to the graphite tube and the electrical resistance of the graphite tube.The electrical resistance varies from tube to tube, and even if the same tube is used many times, the tube itself This will change because of the fact that it gradually wears out.

他方分析において必要な原子吸収のピークはこの中間過
程で発生するよう1こ最終段の原子化温度が設定しであ
るので、グラファイトデユープの電気抵抗値が分析結果
に影響し、分析結果の再現性が低下する。例えば昇温速
度が遅い場合は現れる原子吸収ピークの時間幅が広がる
が、試料の気化が遅いから原子蒸気の濃度が低く、ピー
ク高さは低くなり、かつ蒸発に時間がか\つているので
その間に散逸してしまう量が増えて昇温速度が高い場合
よりピーク面積が小さくなる。
On the other hand, the atomization temperature in the final stage is set so that the peak of atomic absorption necessary for analysis occurs during this intermediate process, so the electrical resistance value of the graphite duplex affects the analysis results and Reproducibility decreases. For example, if the heating rate is slow, the time width of the atomic absorption peak that appears will widen, but since the sample vaporizes slowly, the concentration of atomic vapor will be low, and the peak height will be low. The amount of heat dissipated increases, and the peak area becomes smaller than when the heating rate is high.

ハ 目的 本発明はグラファイトチューブのばらつきや使用による
劣化Iこ関係なく、灰化段階から原子化段階に移る昇温
過程の温度変化を一定1こして測定の再現性を向上させ
ることを目的とする。
C. Purpose The purpose of the present invention is to improve the reproducibility of measurements by keeping the temperature change during the heating process from the ashing stage to the atomization stage constant, regardless of variations in graphite tubes or deterioration due to use. .

二 、構成 通電の第1段階或は第2段階(灰化段階)等における通
電時を利用してグラファイトチューブの電気抵抗値を検
出しておき、上期中間過程での電流を制御してこの過程
での温度変化率を毎回一定にするようになっている。
2. Detect the electrical resistance value of the graphite tube by using the energization in the first stage or second stage (ashing stage) of the component energization, and control the current in the intermediate process of the first half to control this process. The temperature change rate at is kept constant each time.

ホ 実施例 第1図は本発明の一実施例を示す。GTが試料原子他炉
のグラファイトチューブで降圧トランスTの2次側に接
続されている。グラファイトチュー、/G Tへの電力
供給量はトライアックTAの点弧位相角の制御によって
調節される。DTはフォトダイオードであり、グラファ
イトチューブGTからの熱輻射線を受けて信号を出す。
E. Embodiment FIG. 1 shows an embodiment of the present invention. The GT is connected to the secondary side of the step-down transformer T by a graphite tube of the sample reactor. The amount of power supplied to the graphite chew/GT is adjusted by controlling the firing phase angle of the triac TA. DT is a photodiode which receives thermal radiation from the graphite tube GT and outputs a signal.

その信号はとグラファイトチューブGTの温度との関数
関係は予め調べておいて温度プログラマTPには第1段
、第2段等の温度データとして記憶させである。
The functional relationship between the signal and the temperature of the graphite tube GT is investigated in advance and stored in the temperature programmer TP as temperature data for the first stage, second stage, etc.

温度プログラマTPは予め設定されたスケジュート PGは入力信号に応じたタイミングでパルスを発生しト
ライアックTAの制御端子1こ印加して、TAの点弧位
相を制御し、グラファイトチューブGTが温度プログラ
マTPによって指定された温度になるよう1こ同チュー
ブへの供給電力が制御される。
The temperature programmer TP generates a pulse at a timing according to the input signal and applies it to the control terminal of the triac TA to control the firing phase of the TA, and the graphite tube GT controls the temperature programmer TP. The power supplied to the tube is controlled so that the temperature is maintained at the specified temperature.

第1図で鎖線で囲んだ部分が本発明に係る最大電流設定
回路である。トランスTの1次側には電流検出コイルC
Tが鎖交させてあり、同コイルの出力はアンプSA2を
介して関数発生器FIIこ入力される。アンプSA2の
出力はグラファイトチューブGTに供給する電流値1こ
対応した信号で、通電スケジュールの一つの段階例えば
第2段階の灰化段階において、グラファイトチューブが
劣化しておれば少くなる性質を有する。つまり、グラフ
ァイトチューブは使用を繰返していると、次第に消耗し
て肉厚が薄くなり抵抗が増大して来るから、同じ温度を
得るのに要する電流は少(てすむようになる。関数発生
器FIは通電スケジュールの一つの段階例えば第2段の
灰化段階におけるアンプSA2の出力と次段階の試料原
子化段階に移行する中間過程での温度変化率を毎回同じ
にするための最大電流値との関係関数を発生するもので
、この関数形は予め実験で決められている。S/Hはサ
ンプルホールド回路で、温度プログラマTPからの信号
で第2段階の終了直前の関数発生器FIの出力をホール
ドする。SWは通常OFFで、温度プログラマTPから
の上記サンプルホールド信号1こ応答してONされるス
イッチである。そこで通電スケジュールが最終段階に達
すると上記スイッチがQNとなり、パルスジェネレータ
PGの入力信号は抵抗と々゛イオードよりなるクランパ
ーCLによってサンプルホールド回路ソ令の出力まで引
下げられ、トライアックTAの点弧位相が進められて、
グラファイトチューブにはその劣化程度に応じた最大電
流が供給されるようになり、所定の昇温速度で昇温し、
試料の原子化が行われる。
The portion surrounded by a chain line in FIG. 1 is the maximum current setting circuit according to the present invention. A current detection coil C is installed on the primary side of the transformer T.
The outputs of the coils are input to the function generator FII via the amplifier SA2. The output of the amplifier SA2 is a signal corresponding to the current value 1 supplied to the graphite tube GT, and has the property of decreasing if the graphite tube has deteriorated at one stage of the energization schedule, for example, the second ashing stage. In other words, as a graphite tube is used repeatedly, it gradually wears out, its wall thickness becomes thinner, and its resistance increases, so less current is required to obtain the same temperature.Function generator FI Relationship between the output of amplifier SA2 at one stage of the energization schedule, for example, the second ashing stage, and the maximum current value to make the temperature change rate the same each time during the intermediate process of moving to the next stage, the sample atomization stage. This function generates a function, and the form of this function is determined in advance through experiments.S/H is a sample and hold circuit that holds the output of the function generator FI just before the end of the second stage using the signal from the temperature programmer TP. SW is a switch that is normally OFF and is turned ON in response to the above sample hold signal 1 from the temperature programmer TP.Therefore, when the energization schedule reaches the final stage, the above switch becomes QN, and the input signal of the pulse generator PG is turned ON. is pulled down to the output of the sample-and-hold circuit SO by a clamper CL consisting of a resistor and a diode, and the firing phase of the triac TA is advanced.
The maximum current is supplied to the graphite tube according to its degree of deterioration, and the temperature rises at a predetermined rate.
Atomization of the sample is performed.

なお1例で関数発生手段が二つ使われているが、これら
は温度プログラマTPを兼ねたコンピュータが与えられ
た実験式に基いて演算する構成にな関係を示すグラフで
ある。T1は通電の第1段階乾燥段階の温度、T2は多
2段の灰化段階の温度、T3は最終の原子化段階の温度
である。第2図すは原子化段階の時間軸を伸ばして表わ
したもので、鎖線は電流を示す。電流は灰化段階の終り
t3の時点で中電流から、上述した所tこよって設定さ
れる最大電流値まで一時iコ変化する。これに応答して
グラファイトチューブの温度は13時点から傾斜的に上
昇し、t3’の時点で最大値tこ達する。この昇温過程
のt3〜t 3’の時間幅内で原子吸光のピークが現れ
る。最大電流値Imを変えることで、この昇温傾斜を固
点線のように加減できる。上述構成はとの昇温過程の傾
斜が毎回同じになるようIこ作動しているのである。
In one example, two function generation means are used, but these are graphs showing the relationship between the configuration in which a computer that also serves as a temperature programmer TP calculates based on a given experimental formula. T1 is the temperature of the first drying stage of energization, T2 is the temperature of the multi-two stage ashing stage, and T3 is the temperature of the final atomization stage. Figure 2 shows an extended time axis of the atomization stage, and the chain line indicates the current. At the end of the ashing stage, at time t3, the current temporarily changes from the medium current to the maximum current value set by the above-mentioned point t. In response to this, the temperature of the graphite tube increases gradually from time 13 and reaches the maximum value t at time t3'. An atomic absorption peak appears within the time range from t3 to t3' during this temperature rising process. By changing the maximum current value Im, this temperature increase slope can be adjusted as shown by the solid dotted line. The above structure operates so that the slope of the temperature increase process is the same every time.

へ 効果 本発明は上述したような構成で、第2図すによって説明
すれば、従来は原子化段階で単にT、3が一定になるよ
うに制御していただけなので、昇温過程t3〜t 3’
間の昇温の傾斜角はグラファイトチューブの抵抗の違い
によって異なり、同一チューブでも使用する毎に劣化が
進行するから毎回変化し、測定の再現性iコ限界があっ
たのが、本発明■こよればt3〜t 3’間の昇温傾斜
が毎回同じになるので、測定の再現性が向上する。
Effects The present invention has the above-mentioned configuration, and will be explained with reference to FIG. 2. Conventionally, T, 3 was simply controlled to be constant during the atomization stage, so the temperature increase process t3 to t3 '
The angle of inclination of the temperature increase between the graphite tubes differs depending on the resistance of the graphite tube, and even the same tube deteriorates each time it is used, so it changes each time, and there was a limit to the reproducibility of measurement. Accordingly, the temperature increase slope between t3 and t3' is the same every time, so the reproducibility of measurement is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図aは温度化
のグラフ、同図すはalこおける一部の時間軸を拡大し
たグラフである。 GT、、、、グラファイトチューブ、DT、、、、温度
検出のためのホトタ゛イオード、TP、、、、温度プロ
グラマ、PG・・・・パルスジェネレータ、CT・・・
・電流検出コイル、F7・・・・関数発生器、S/H・
・・・サンプルホールド回路。 代理人 弁理士 縣 浩 介
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2a is a graph of temperature change, and FIG. GT, Graphite tube, DT, Photodiode for temperature detection, TP, Temperature programmer, PG...Pulse generator, CT...
・Current detection coil, F7...Function generator, S/H・
...Sample and hold circuit. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 試料原子他炉の通電スケジュールの適宜段階において、
一定温度に制■されている試料原子他炉のグラファイト
チューブに供給されている電流値を検出し、その電流値
と予め設定された関数関係を持つ信号を発生させ、その
信号によって試料原子化段階におけるグラファイトチュ
ーブへの供給電流を制画するようIこし1こことを特徴
とする原子吸光分析装置。
At the appropriate stage of the energization schedule for the sample reactor and other reactors,
The current value supplied to the graphite tube of the sample reactor, which is controlled at a constant temperature, is detected, a signal having a preset functional relationship with the current value is generated, and the signal is used to control the sample atomization stage. An atomic absorption spectrometer characterized by an I-type strainer to control the current supplied to the graphite tube.
JP11212884A 1984-05-30 1984-05-30 Atomic absorption analyzer Granted JPS60253851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212884A JPS60253851A (en) 1984-05-30 1984-05-30 Atomic absorption analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212884A JPS60253851A (en) 1984-05-30 1984-05-30 Atomic absorption analyzer

Publications (2)

Publication Number Publication Date
JPS60253851A true JPS60253851A (en) 1985-12-14
JPH0527816B2 JPH0527816B2 (en) 1993-04-22

Family

ID=14578896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212884A Granted JPS60253851A (en) 1984-05-30 1984-05-30 Atomic absorption analyzer

Country Status (1)

Country Link
JP (1) JPS60253851A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355347A (en) * 1991-05-31 1992-12-09 Shimadzu Corp Atomic absorption spectrophotometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355347A (en) * 1991-05-31 1992-12-09 Shimadzu Corp Atomic absorption spectrophotometer

Also Published As

Publication number Publication date
JPH0527816B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
US5703342A (en) Temperature control method using empirically determined characteristics
JP2008300632A (en) Solar simulator
JPS5818719A (en) Phase control/adjusting type power supply circuit
EP0797100B1 (en) Method and apparatus for measurement of current-voltage characteristic curves of solar panels
EP0043060B1 (en) Electron emission regulator for an x-ray tube filament
US4629852A (en) Regulator circuit for control of heat output of a heating element
JPS60253851A (en) Atomic absorption analyzer
JPH03201492A (en) Light volume control device of laser oscillator
JPH03202368A (en) Device for controlling light quantity for laser oscillator
JPH03202807A (en) Light quantity controller for laser oscillator
GB2072887A (en) Control of electrical heating elements
US5585920A (en) Device for generating a magnetic field in an atomic absorption spectrometer
US3967904A (en) Precision radiation source regulation circuit
JPS58192117A (en) Temperature controller
US4134685A (en) Flameless atomization
JPS6412492A (en) High-frequency heating device
JPH0678980B2 (en) Heating control device for sample atomization furnace
JPS5578452A (en) Electron gun
JPH10160568A (en) Infrared spectrophotometer
US8664887B2 (en) Xenon lamp drive unit, method for driving xenon lamp, and artificial solar light irradiation unit
JPH0473093B2 (en)
SU1499283A1 (en) Method of determining the flow of irradiation of semiconductor radiator
SU1597964A1 (en) Ion source with surface ionization
SU1172097A1 (en) X-ray unit
JP3597055B2 (en) Mass spectrometer direct probe