JPS60253813A - Non-contact displacement detection apparatus - Google Patents

Non-contact displacement detection apparatus

Info

Publication number
JPS60253813A
JPS60253813A JP10932384A JP10932384A JPS60253813A JP S60253813 A JPS60253813 A JP S60253813A JP 10932384 A JP10932384 A JP 10932384A JP 10932384 A JP10932384 A JP 10932384A JP S60253813 A JPS60253813 A JP S60253813A
Authority
JP
Japan
Prior art keywords
laser
light
detected
detection
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10932384A
Other languages
Japanese (ja)
Inventor
Osamu Koike
修 小池
Norio Kobayashi
紀雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP10932384A priority Critical patent/JPS60253813A/en
Publication of JPS60253813A publication Critical patent/JPS60253813A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To attain miniaturization, wt. reduction and the enhancement of accuracy while enlarging a measuring range, by guiding the beam of laser for visible rays of a first apparatus to a second apparatus equipped with laser for detection beam through a beam transmission line and setting both beams on the same optical axis to irradiate an article to be detected while detecting reflected beam therefrom. CONSTITUTION:First and second apparatuses 20, 30 are coupled by an optical fiber 40 in a spacially separated state and He-Ne gas laser 21 for visible rays, a condensing lens 22, a modulation drive circuit 23 and an operation circuit 14 are provided to the apparatus 20 while semiconductor laser 31 emitting detection beam, collimation lenses 32, 33, a dichroic mirror 34, a condensing lens 4 and an optical semiconductor position detector 5 are provided to the apparatus 30. Then, beam from the laser 21 is allowed to transmit through the mirror 34 through the fiber 34 and set on the same optical axis as the modulation beam of the beam from the laser 31 to irradiate an object 10 to be detected while the reflected beam therefrom is detected by the detector 5 and further detected in synchronous relation to the modulation of the laser 31 by the circuit 14 to be displayed on a display part 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば変形しやすい工業製品、生体。[Detailed description of the invention] [Technical field of invention] The present invention is applicable to, for example, industrial products and living bodies that are easily deformed.

文化財等の物体の形状測定や、生産ラインでの物体の厚
さ測定、あるいは物体に生じた傷等の大きさや位置の測
定などに用いられるレーザ利用の非接触変位検出装置に
関し、特に可視レーザ光を用いて測定点の目視を可能と
した非接触変位検出装置に関する。
Regarding non-contact displacement detection devices that use lasers, which are used to measure the shape of objects such as cultural properties, the thickness of objects on production lines, and the size and position of scratches on objects, we especially use visible lasers. The present invention relates to a non-contact displacement detection device that enables visual observation of measurement points using light.

〔従来技術〕[Prior art]

従来よシレーザ光を被検出物に照射し、被検出物で反射
・散乱された光を検出してその位置や強度の変化から被
検出物の変位を検出する各種の装置が用いられているが
、その場合、照射点つt、a測定点を目視で容易に確認
できることが、操作上ないし危険防止上要求される場合
がある。
Conventionally, various devices have been used to irradiate a target object with a laser beam, detect the light reflected and scattered by the target object, and detect the displacement of the target object from changes in its position and intensity. In that case, it may be required for operational reasons or to prevent danger that the irradiation point and measurement points t and a can be easily visually confirmed.

第1図に、従来用いられているこの種の装置の構成例を
示し、波長632.8nmの可視のレーザ光を発するH
e−Neガスレーザ1、音響光学変調器2、反射鏡3、
集光レンズ4および光半導体装置検出器5を同一ケース
内に組み込んだ構成を有する。
Figure 1 shows an example of the configuration of a conventionally used device of this kind, which emits visible laser light with a wavelength of 632.8 nm.
e-Ne gas laser 1, acousto-optic modulator 2, reflecting mirror 3,
It has a configuration in which a condenser lens 4 and an optical semiconductor device detector 5 are incorporated into the same case.

上記構成において、被検出物の検出は次のように行々わ
れる。まず、He−Neガスレーザ1から出射されたレ
ーザ光6・は、音響光学変調器2によって強度変調され
るとともに透過光7と回折光8とに分離される。このう
ち、透過光7は、反射鏡3による光軸調整の結果スリッ
ト9の壁によって遮断され、回折光8のみが、外部に出
射され、被検出物10の光照射点11に照射される。こ
の光照射点11で反射拳散乱された光と被検出物10の
周囲の背景光の一部12は、集光レンズ4によシ、光半
導体装置検出器5の受光面上の集光点13に集光される
。半導体位置検出器5は、この集光点13の位置を電気
信号として出力し、演算回路14でその電気信号を検出
して被検出物10の位置を算出する。その結果は、プロ
ッタやCRTなどの表示部15に表示される。なお、被
検出物10による反射・散乱光12、すなわち信号光に
よる電気信号と背景光による雑音とのS/N比を向上さ
せるため、演算回路14における信号検出は音響光学変
調器2による変調と同期して行々われる。
In the above configuration, detection of the object to be detected is performed as follows. First, the laser beam 6 emitted from the He--Ne gas laser 1 is intensity-modulated by the acousto-optic modulator 2 and is separated into transmitted light 7 and diffracted light 8 . Of these, the transmitted light 7 is blocked by the wall of the slit 9 as a result of the optical axis adjustment by the reflecting mirror 3, and only the diffracted light 8 is emitted to the outside and is irradiated onto the light irradiation point 11 of the object to be detected 10. The light reflected and scattered at this light irradiation point 11 and a part 12 of the background light around the object to be detected 10 are transferred to a condensing lens 4 at a condensing point on the light receiving surface of the optical semiconductor device detector 5. The light is focused on 13. The semiconductor position detector 5 outputs the position of the focal point 13 as an electrical signal, and the arithmetic circuit 14 detects the electrical signal to calculate the position of the object 10 to be detected. The results are displayed on a display unit 15 such as a plotter or CRT. Note that in order to improve the S/N ratio between the reflected/scattered light 12 by the object to be detected 10, that is, the electrical signal due to the signal light and the noise due to the background light, signal detection in the arithmetic circuit 14 is performed by modulation by the acousto-optic modulator 2. It is done synchronously.

一方、回折光8の光軸上を所定距離移動した被検出物1
0′については、光照射点11/で反射・散乱した光1
2′が集光点13′に集光され、上述したと・同様に被
検出物10′の位置がめられる。
On the other hand, the detected object 1 has moved a predetermined distance on the optical axis of the diffracted light 8.
For 0', the light 1 reflected and scattered at the light irradiation point 11/
2' is focused on a focal point 13', and the position of the object 10' to be detected is determined in the same manner as described above.

このように従来の非接触変位検出装置では、レーザ光源
、音響光学変調器等の光変調器1位置検出器およびこれ
らの駆動制御回路(例えば音響光学変調器用駆動回路1
6)、電源等が1ケース内に収容されているため形状・
重量が大きくなるとともに、位置検出器および集光レン
ズがレーザ光源からの熱の影響を受けて検出誤差を生じ
てしまう問題があった。特に、測定範囲を拡大するため
にレーザ光源の出力を大きくし、被検出物が遠い位置に
ある場合にも検出器5に必要な強度の反射・散乱光が得
られるようにしようとする場合にはこの傾向は著しく、
移動が困難になるとともに、検出精度が低下する。
As described above, in the conventional non-contact displacement detection device, a laser light source, an optical modulator 1 position detector such as an acousto-optic modulator, and their drive control circuit (for example, an acousto-optic modulator drive circuit 1) are used.
6) Since the power supply etc. are housed in one case, the shape and
As the weight increases, there is a problem in that the position detector and the condenser lens are affected by heat from the laser light source, resulting in detection errors. In particular, when increasing the output of the laser light source to expand the measurement range and ensuring that the detector 5 receives reflected and scattered light of the required intensity even when the object to be detected is located far away. This tendency is remarkable;
Movement becomes difficult and detection accuracy decreases.

〔発明の概要〕[Summary of the invention]

本発明はこのような事情に鑑みてなされたもので、その
目的は、光源の高出力化による測定範囲の拡大を可能と
し、しかも小形・軽量・低発熱で高い検出精度が得られ
る非接触変位検出装置を提供することにある。
The present invention was made in view of these circumstances, and its purpose is to provide a non-contact displacement sensor that enables expansion of the measurement range by increasing the output of the light source, and that also provides high detection accuracy with a small size, light weight, and low heat generation. The object of the present invention is to provide a detection device.

このような目的を達成するために、本発明は、レーザ光
源を検出用光源と目視用光源とに分離し、前者を小形・
軽量・低発熱で高出力が得られる半導体レーザとし、し
かもこの半導体レーザおよび被検出物に光を照射し反射
・散乱光を検出する部分を第2の装置として目視用の可
視レーザ光源を含む第1の装置から切勺離したものであ
る。目視用光は光ファイバ等の晃伝送路で第1の装置に
導かれるが、検出用光はこのような光伝送路を通さない
ため、光伝送路に振動2曲げ等が加わってもそれによっ
て検出用光の強度が変動するととはない。以下、実施例
を用いて本発明の詳細な説明する。
In order to achieve such an object, the present invention separates a laser light source into a detection light source and a visual light source, and makes the former compact and
The semiconductor laser is lightweight, has low heat generation, and can provide high output power, and the semiconductor laser and the part that irradiates light onto the object to be detected and detects reflected and scattered light are used as a second device, and a second device includes a visible laser light source for visual inspection. This is a device that has been separated from the device of No. 1. The visual light is guided to the first device through a light transmission line such as an optical fiber, but the detection light does not pass through such an optical transmission line, so even if the optical transmission line is subjected to vibrations, bending, etc. This does not mean that the intensity of the detection light varies. Hereinafter, the present invention will be explained in detail using Examples.

〔実施例〕〔Example〕

第2図は本発明の一実施例を示す構成図である。 FIG. 2 is a configuration diagram showing an embodiment of the present invention.

同図において、本装置は、第1の装置20と、これと空
間的に分離された第2の装置30、卦よび両者を結ぶ光
伝送路としての約3mの石英系光ファイバ(GI−50
)40を有する。
In the figure, the present device includes a first device 20, a second device 30 spatially separated from the first device 20, a square, and a quartz-based optical fiber (GI-50
) has 40.

こむで、第1の装置20は、目視用の可視光を発するH
e−Noガスレーザ(波長63.2.8mm 、出力1
mW)21 、集光レンズ22、後述する半導体し。
In this case, the first device 20 is equipped with an H
e-No gas laser (wavelength 63.2.8mm, output 1
mW) 21, a condensing lens 22, and a semiconductor to be described later.

−ザを安定化駆動・変調する変調駆動回路23および演
算回路14を含み、一方策2の装置30は、検出用光を
発する半導体レーザ(波長830nm、出力5mW)3
1 、=1リメート用レンズ32,33、波長632.
8mmの光は90%以上透過し波長830nm帯の光は
90%以上反射するダイクロイックミラー34、被検出
物10からの反射・散乱光と背景光の一部12を集光す
るレンズ4および一次元位置検出用PSD二81352
 (浜松ホトニクス製、有効受光面積34 X 2.5
m)からなる光半導体装置検出器Pを含む。
- The device 30 of the second option includes a semiconductor laser (wavelength 830 nm, output 5 mW) 3 that emits detection light.
1,=1 remating lenses 32, 33, wavelength 632.
A dichroic mirror 34 that transmits 90% or more of 8 mm light and reflects 90% or more of light in the 830 nm wavelength band, a lens 4 that condenses reflected/scattered light from the object 10 and part of the background light 12, and a one-dimensional Position detection PSD 281352
(Manufactured by Hamamatsu Photonics, effective light receiving area 34 x 2.5
m) includes an optical semiconductor device detector P consisting of:

上記構成において、H・−Noガスレーザ21から出射
した光24は、集光レンズ22によって、第1の装置2
0と第2の装置30とを結ぶ光ファイバ40の一端に結
合され伝搬する。そして第2の装置30内の他端から出
射した光35は、コリメート用レンズ33によってほぼ
平行光とされダイクロイックミラー34を透過して外部
へ出射され、被検出物1−0の光照射点11に照射され
る。
In the above configuration, the light 24 emitted from the H.-No gas laser 21 is transmitted to the first device 2 by the condenser lens 22.
0 and the second device 30 and is coupled to one end of an optical fiber 40 for propagation. The light 35 emitted from the other end of the second device 30 is made into almost parallel light by the collimating lens 33, passes through the dichroic mirror 34, and is emitted to the outside. is irradiated.

一方、半導体J−ザ31から変調周波数2kHzで変調
されて出射したレーザ光36は、クリメータ用レンズ3
2によってほぼ平行光とされ、ダイクロイックミラー3
4によって上記レーザ光35と同一光軸上にのせられ同
様に被検出物の光照射点13に照射される。そして、こ
こで反射・散乱した光と背景光の一部12は、集光レン
ズ4によって光半導体装置検出器5の受光面上の集光点
13に集光され、光半導体装置検出器5はとの集光点1
3の位置を電気信号として出力する。演算回路14は、
この電気信号を半導体レーザ31の変調と同期して検出
し、その検出結果から被検出物10の位置を算出し、ブ
ロックやCRTなどの表示部15に表示させる。
On the other hand, the laser beam 36 modulated at a modulation frequency of 2 kHz and emitted from the semiconductor J-za 31 is transmitted to the cremeter lens 3.
2 makes it almost parallel light, and dichroic mirror 3
4, it is placed on the same optical axis as the laser beam 35 and similarly irradiates the light irradiation point 13 of the object to be detected. Then, the light reflected and scattered here and a portion 12 of the background light are focused by the condensing lens 4 onto a condensing point 13 on the light receiving surface of the optical semiconductor device detector 5, and the optical semiconductor device detector 5 Focus point 1 with
Outputs position 3 as an electrical signal. The arithmetic circuit 14 is
This electrical signal is detected in synchronization with the modulation of the semiconductor laser 31, and the position of the detected object 10 is calculated from the detection result and displayed on a display unit 15 such as a block or CRT.

ここで、変調された半導体レーザ光の反射・散乱光は、
検出光として集光され電気信号に変換され演算回路14
によって効率良く検出される。これに対し、He−No
ガスレーザ光は低出力であシかつ変調されていないため
、その反射・散乱光は背景光と同様に雑音として扱われ
、その意味で被検出物10の変位検出に直接寄与しない
が、これによシ被検出物上の光照射点つまシ測定点を目
視することができる。すなわち、半導体レーザ31のみ
では波長の関係からその光照射点を見ることは困原Fで
あるが、He−Neガスレーザ21を目視用に使用する
ことによシ容易に測定点の確認が行なえ、また検出動作
中であることがわかるだめ危険の防止にもなる。また、
このような目視用としての役割を果たし得る範囲で、H
e−Neガスレーザ21は小形、低出力のものでよく、
他方、半導体レーザ31はきわめて小形・軽量で高出力
が得られ、発熱もほとんどないため、高出力で、しかも
小形・軽量かつ高精度の非接触変位検出装置が得られる
Here, the reflected and scattered light of the modulated semiconductor laser light is
The light is collected as detection light and converted into an electrical signal, and then sent to the arithmetic circuit 14.
can be detected efficiently by On the other hand, He-No
Since gas laser light has low output and is not modulated, its reflected and scattered light is treated as noise like background light, and in that sense does not directly contribute to detecting the displacement of the object to be detected 10. The light irradiation point and measurement point on the object to be detected can be visually observed. That is, it is difficult to see the light irradiation point using only the semiconductor laser 31 due to the wavelength, but by using the He-Ne gas laser 21 for visual inspection, the measurement point can be easily confirmed. Also, since it is possible to know that the detection operation is in progress, danger can be prevented. Also,
H
The e-Ne gas laser 21 may be small and low output.
On the other hand, the semiconductor laser 31 is extremely small and lightweight, can provide high output, and generates almost no heat, so that a non-contact displacement detection device that has high output, is small, lightweight, and highly accurate can be obtained.

特に、被検出物に光を照射し反射・散乱光を検出する部
分を、第2の装置30としてHe−Neガスレーザ21
を含む第1の装置30から分離したことによシ、測定時
において移動させる部分が軽量となるため、ロボットア
ームの誘動やステージ上での3次元測定等の際の被検出
物に合せた移動がきわめて容易になるとともに、集光レ
ンズ4や半導体装置検出器5がHe−Neガスレーザ2
1から熱を受けることによる検出誤差の発生を事実上皆
無とすることができる。
In particular, a He-Ne gas laser 21 is used as a second device 30 to irradiate light onto an object to be detected and detect reflected and scattered light.
By being separated from the first device 30 including the It is extremely easy to move, and the condenser lens 4 and semiconductor device detector 5 can be easily moved.
It is possible to virtually eliminate the occurrence of detection errors due to heat received from the sensor.

ここで、半導体レーザ31を第1の装置ではなく第2の
装置側に設け、検出用光は光ファイバ4゜内を伝搬させ
ずに被検出物に照射すゐ構成をとったことによシ、光フ
ァイバ40自体に加わる振動。
Here, the semiconductor laser 31 is provided on the second device side instead of the first device, and the detection light is irradiated onto the object to be detected without propagating through the optical fiber 4°. , vibrations applied to the optical fiber 40 itself.

曲は等によシその出射光強度が変動する場合でも、それ
は目視用光のみで、検出用光については常に一定の強度
が得られることから、高い検出精度が得られる。
Even if the intensity of the emitted light fluctuates depending on the song, etc., it is only the light for visual viewing, and the intensity of the detection light is always constant, so high detection accuracy can be obtained.

また、検出精度を向上させるためにレーザ光を変調する
場合に、従来のHe−Noガスレーザを用いたものでは
音響光学変調器を用いて行なったが、一般に音響光学変
調器は振動や熱の影響で回折角が変化し測定点の変動に
よって検出精度が悪化するという問題があった。これに
対し、半導体レーザは容易に直接変調が行なえることが
ら音響光学変調器およびその駆動回路が不要となシ、上
述した問題が解決されるとともに1この点でも高形・軽
量化がはかれる。
In addition, when modulating laser light to improve detection accuracy, conventional He-No gas lasers use an acousto-optic modulator, but in general, acousto-optic modulators are not affected by the effects of vibration or heat. There was a problem that the detection accuracy deteriorated due to the change in the diffraction angle and the fluctuation of the measurement point. On the other hand, since semiconductor lasers can be easily directly modulated, there is no need for an acousto-optic modulator and its driving circuit, which solves the above-mentioned problems, and also allows for a reduction in size and weight.

なお、本実施例では2本のレーザ光を同一光軸上にのせ
る手段としてダイクロイックミラー34を用いたが、本
発明はこれに限定されるものではなく、ハーフミラ−、
ビームスプリッタ、その他2本のレーザ光を同一光軸上
にのせることが可能なものであればよい。ただし、効率
良く合成するためには、波長選択性によってエネルギー
損失の小さいダイクロイックミラーが好ましい。
In this embodiment, the dichroic mirror 34 was used as a means for placing two laser beams on the same optical axis, but the present invention is not limited to this, and a half mirror,
A beam splitter or any other device that can place two laser beams on the same optical axis may be used. However, for efficient synthesis, a dichroic mirror is preferred because of its wavelength selectivity and low energy loss.

また、本実施例では光半導体装置検出器5の分光感度特
性から半導体レーザとして波長が830nmのものを用
いたが、とれに限定されるものではなく、例えは780
nmなど上記位置検出器の感度との関係で適宜選択すれ
ばよい。なお、上記位置検出器はPSDに限らず、CC
D−?MOSイメージセンサなと照射された光の位置を
検出できるものでおればよい。
Further, in this embodiment, a semiconductor laser with a wavelength of 830 nm was used in view of the spectral sensitivity characteristics of the optical semiconductor device detector 5, but the wavelength is not limited to 780 nm.
It may be selected as appropriate depending on the sensitivity of the position detector, such as nm. Note that the above position detector is not limited to PSD, but also CC.
D-? Any device that can detect the position of the irradiated light, such as a MOS image sensor, will suffice.

以上、レーザ光軸上の被検出物の変位を、反射・散乱光
の光半導体装置検出器上での照射点の変位として検出す
る方式について説明したが、本発明はこれに限定される
ものではなく、レーザ光を被検出物に照射し、その反射
・散乱光を検出して被検出物の変位を検出するものであ
れば、他の方式、例えば焦点利用法を用いた装置にも同
様に適用可能である。
Although the method for detecting the displacement of the object on the laser optical axis as the displacement of the irradiation point on the optical semiconductor device detector of reflected/scattered light has been described above, the present invention is not limited to this. However, as long as the object to be detected is irradiated with a laser beam and the reflected and scattered light is detected to detect the displacement of the object, other methods such as the focal point method can be used as well. Applicable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、光源を検出用と
目視用とに分離し、前者に半導体レーザ、後者にHe−
Neガスレーザを用いるとともに、半導体レーザおよび
被検出物に光を照射し反射・散乱光を検出する部分を第
2の装置として目視用の可視レーザ光源を含む第1の装
置から分離させたことによシ、測定範囲の拡大による高
出力化にかかわらず小形・形量、移動が容易であるとと
もに、発熱量が小さくて検出精度が高く、しかも測定点
の目視による確認が容易に行なえるレーザ利用の非接触
変位検出装置が実現できる。
As explained above, according to the present invention, the light source is separated into one for detection and one for visual observation, with the former being a semiconductor laser and the latter being a He-
In addition to using a Ne gas laser, the semiconductor laser and the part that irradiates the object to be detected and detects reflected and scattered light are separated from the first device that includes a visible laser light source for visual inspection as a second device. Despite increasing the output due to the expansion of the measurement range, the laser is small and easy to move, generates little heat, has high detection accuracy, and allows easy visual confirmation of the measurement point. A non-contact displacement detection device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の非接触変位検出器を示す構成図、第2図
は本発明の一実施例を示す構成図である。 4.22・i・・集光レンズ、5・・・・半導体装置検
出器、10・・・・被検出物、11・・・・光照射点、
12・・・・反射・散乱光、13・・・・集光点、14
・・・・演算回路、20・・・・第1の装置、21・・
・・目視用He −N。 ガスレーザ、23・・・・半導体レーザの変調駆動回路
、30・・・・第2の装置、31・・・・半導体レーザ
、32.33・・・・コリメート用レンズ、34・・・
・ダイクロイックミラー、40参・・・光ファイバ。 特許出願人 株式会社 保 谷 硝 子代理人 山川政
樹(tlか2名) 図面の降出−(内容に変更なし) 第1図 第2図 手続補正書(尤め 特許庁長官殿 59.9.−5 1、事件の表示 昭和5′?年特 許願第10’1323号21b祖の名
称− 非奏邑弘有(n枚比装置 3、補正をする者 事件との関係 特 許出願人 名称(氏名)株式会社保谷硝子 6補正の対象 (Iン明細書 ) c−、ン バ灯 !” ””a 、J 手続補正書(自発〕 1.事件の表示 昭和59年 特 許 願第109323号2、発明の名
称 非接触変位検出装置 3、補正をする者 事件との関係 特 許 出願人 名称(氏名) ホーヤ株式会社 fl) 明細書の特許請求の範囲を別紙の通シ補正する
。 (2)明細書第3頁第6行の「半導体装置検出器」を「
光半導体装置検出器」と補正する。 (3)同書第5頁第5行の[−第1の」を「第72の」
と補正する。 (4) 同書第6頁第20行の「クリメータ」を「コリ
メート」と補正する。 (5)同書第7頁第3〜4行の「光照射点13」を「光
照射点11」と補正する。 (6)同書第8頁第17行の「誘動」を「誘専」と補正
する。 (7)同書同頁第20行の「半導体装置検出器」を「光
半導体装置検出器」と補正する。 (8)同書第9頁第1行の「から熱を」を「からの熱を
」と補正する。 (9)同書同頁第19行の「高形」を「小形」と補正す
る。 (101同書第11頁第18行の「非接触変位検出器」
を「非接触変位検出装置」と補正する。 α1) 同省同頁第20行〜第12頁第1行の「半導体
装置検出器」を「光半導体装置検出器」と補正する。 (12)第2図を別紙の通シ補正する。 以上 別 紙 「目視用の可視光を発するレーザを備えた第1の装置と
、これと空間的に分離された第2の装置と、上記目視用
可視光を第2の装置に導く光伝送路とを備え、第2の装
置は、検出用光を発する半導体レーザと、この半導体レ
ーザの艙■月光と上記光伝送路によって導かれた目視用
可視光とを同一光軸上にのせて被検出物に照射する手段
と、被検出物で反射・散乱された光を検出する検出手段
とを備えたことを特徴とする非接触変位検出器置。」以
FIG. 1 is a block diagram showing a conventional non-contact displacement detector, and FIG. 2 is a block diagram showing an embodiment of the present invention. 4.22.i...Condensing lens, 5...Semiconductor device detector, 10...Detected object, 11...Light irradiation point,
12... Reflected/scattered light, 13... Focus point, 14
...Arithmetic circuit, 20...First device, 21...
...He-N for visual inspection. Gas laser, 23...Semiconductor laser modulation drive circuit, 30...Second device, 31...Semiconductor laser, 32.33...Collimating lens, 34...
・Dichroic mirror, 40th grade...Optical fiber. Patent applicant: Yasutani Glass Co., Ltd. Agent: Masaki Yamakawa (TL or 2 people) Release of drawings - (No change in content) Figure 1 Figure 2 Procedural amendment (to the Commissioner of the Japan Patent Office) 59.9. -5 1. Indication of the case 1939 Patent Application No. 10'1323 21b Name of the founder - Hiroyuki Nonoumura (n sheet ratio device 3, person making the amendment Relationship with the case Patent applicant name ( Name) Hoya Glass Co., Ltd. Subject of 6th Amendment (In Specification) c-, Nba Light!"""a, J Procedural Amendment (Sponsored) 1. Indication of the Case 1980 Patent Application No. 109323 2 , Name of the invention Non-contact displacement detection device 3, Relationship with the case of the person making the amendment Patent Name of applicant (Name) Hoya Co., Ltd. (fl) Amend the scope of claims in the specification in an attached document. (2) "Semiconductor device detector" on page 3, line 6 of the specification is replaced with "
"Optical semiconductor device detector". (3) In the same book, page 5, line 5, replace [-1st] with “72nd”
and correct it. (4) "Climeter" on page 6, line 20 of the same book is corrected to "collimate." (5) Correct "light irradiation point 13" in lines 3 and 4 of page 7 of the same book to "light irradiation point 11". (6) "Induction" in page 8, line 17 of the same book is amended to "induction". (7) "Semiconductor device detector" in line 20 of the same page of the same book is corrected to "optical semiconductor device detector." (8) In the first line of page 9 of the same book, ``kara-netsu wo'' is corrected to ``kara-no-netsu wo''. (9) Correct "takata" in line 19 of the same page of the same book to "kogata". (101 “Non-contact displacement detector” in the same book, page 11, line 18)
is corrected as a "non-contact displacement detection device". α1) "Semiconductor device detector" in line 20 of the same page to line 1 of page 12 of the same Ministry is corrected to "optical semiconductor device detector." (12) Correct the passage of Figure 2 on a separate sheet. The attached document ``A first device equipped with a laser that emits visible light for visual viewing, a second device spatially separated from this, and an optical transmission line that guides the visible visible light for visual viewing to the second device. The second device includes a semiconductor laser that emits detection light, a semiconductor laser that emits light for detection, and a second device that places the moonlight of this semiconductor laser and visible light guided by the optical transmission path on the same optical axis to be detected. A non-contact displacement detector device characterized by comprising means for irradiating light onto an object and detection means for detecting light reflected and scattered by the object to be detected.''

Claims (1)

【特許請求の範囲】[Claims] 目視用の可視光を発するレーザを備えた第1の装置と、
これと空間的に分離された第2の装置と、上記目視用可
視光を第2の装置に導く光伝送路とを備え、第2の装置
は、検出用光を発する半導体レーザと、この半導体レー
ザの出力光と上記光伝送路によって導かれた目視用可視
光とを同一光軸上にのせて被検出物に照射する手段と、
被検出物で反射・散乱された光を検出する検出手段とを
備えたことを特徴とする非接触変位測定装置。
a first device comprising a laser that emits visible light for visual viewing;
It is equipped with a second device spatially separated from this, and an optical transmission line that guides the visible light for visual viewing to the second device, and the second device includes a semiconductor laser that emits detection light and a semiconductor means for irradiating the output light of the laser and the visual visible light guided by the optical transmission path onto the detected object on the same optical axis;
1. A non-contact displacement measuring device comprising a detection means for detecting light reflected and scattered by an object to be detected.
JP10932384A 1984-05-31 1984-05-31 Non-contact displacement detection apparatus Pending JPS60253813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10932384A JPS60253813A (en) 1984-05-31 1984-05-31 Non-contact displacement detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10932384A JPS60253813A (en) 1984-05-31 1984-05-31 Non-contact displacement detection apparatus

Publications (1)

Publication Number Publication Date
JPS60253813A true JPS60253813A (en) 1985-12-14

Family

ID=14507312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10932384A Pending JPS60253813A (en) 1984-05-31 1984-05-31 Non-contact displacement detection apparatus

Country Status (1)

Country Link
JP (1) JPS60253813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195514A (en) * 1987-02-05 1988-08-12 カール・ツアイス‐スチフツング Optoelectronic distance sensor
JP2016176827A (en) * 2015-03-20 2016-10-06 株式会社小野測器 Laser measurement apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127804A (en) * 1981-02-02 1982-08-09 Toyota Central Res & Dev Lab Inc Device for measuring coordinate of hollow shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127804A (en) * 1981-02-02 1982-08-09 Toyota Central Res & Dev Lab Inc Device for measuring coordinate of hollow shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195514A (en) * 1987-02-05 1988-08-12 カール・ツアイス‐スチフツング Optoelectronic distance sensor
JP2016176827A (en) * 2015-03-20 2016-10-06 株式会社小野測器 Laser measurement apparatus

Similar Documents

Publication Publication Date Title
US5486926A (en) Method and a device for a highly accurate measurement of distances, which may change, if a necessary, between an object, for example a clamp workpiece, and a point of reference
US3768910A (en) Detecting the position of a surface by focus modulating the illuminating beam
EP0759538A3 (en) Laser system for surveying
ATE218904T1 (en) APPARATUS FOR CORNEA SURGERY
EP0428744A1 (en) Wavelength detector
EP2789968A1 (en) Shape-measuring device
CN109358435B (en) Device and method for adjusting perpendicularity of double telecentric lenses
EP1225420A3 (en) Laser-based interferometric measuring apparatus and method
JPS60253813A (en) Non-contact displacement detection apparatus
JP2008506146A (en) Optical fiber alignment apparatus and method
JPH05277075A (en) Eye axis length measuring aparatus
JPS60253814A (en) Non-contact displacement detection apparatus
US4952027A (en) Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device
DE69605404T2 (en) METHOD AND DEVICE FOR MEASURING A SHIFT
JP2000186912A (en) Method and device for measuring minute displacements
JPS612010A (en) Detecting non-contact device for displacement
JPS60253812A (en) Non-contact displacement detection apparatus
Kolesnik et al. Creation of a technological installation for adjustment and testing of laser rangefinders
WO2014156436A1 (en) Displacement measurement device and displacement measurement system
JP2823660B2 (en) Length measuring device
JPS6334963B2 (en)
JPS60253945A (en) Shape measuring instrument
JPH0338526B2 (en)
JPH05302825A (en) Alignment method and its device
US4813763A (en) Light beam fluctuation compensating device and method