JPS602536Y2 - Multi-room cooling system - Google Patents

Multi-room cooling system

Info

Publication number
JPS602536Y2
JPS602536Y2 JP3394179U JP3394179U JPS602536Y2 JP S602536 Y2 JPS602536 Y2 JP S602536Y2 JP 3394179 U JP3394179 U JP 3394179U JP 3394179 U JP3394179 U JP 3394179U JP S602536 Y2 JPS602536 Y2 JP S602536Y2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
room
capillary tube
branch pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3394179U
Other languages
Japanese (ja)
Other versions
JPS55133171U (en
Inventor
孝之 杉本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP3394179U priority Critical patent/JPS602536Y2/en
Publication of JPS55133171U publication Critical patent/JPS55133171U/ja
Application granted granted Critical
Publication of JPS602536Y2 publication Critical patent/JPS602536Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はキャピラリーチューブを減圧機構として使用し
た場合における該減圧機構の冷媒流量制御性能を向上せ
しめるとともに、全室運転の際に生じ易い冷媒偏流を防
いで液戻り、能力低下の問題を解消し得る多室用冷房装
置を提供しようとするものである。
[Detailed description of the invention] The present invention improves the refrigerant flow rate control performance of the pressure reduction mechanism when a capillary tube is used as a pressure reduction mechanism, and also prevents the refrigerant drift that tends to occur during full room operation and improves liquid return. The present invention aims to provide a multi-room cooling device that can solve the problem of cooling.

1台の室外ユニットに対して複数の室内ユニットを多重
接続する形式の冷房装置で装置を安価に提供する目的か
ら減圧器にキャピラリーチューブを使用したものがある
が、そのうちの最も多く用いられる2室用で1室運転時
と2室運転時とでは所要冷媒量に差があるのに対して、
キャピラリーチューブの制御性能が固定的であるために
冷媒の過不足を生じ安定した運転が得られないという欠
点があった。
There are cooling devices that connect multiple indoor units to one outdoor unit and use capillary tubes for the pressure reducer in order to provide the device at low cost. While there is a difference in the amount of refrigerant required for single-chamber operation and dual-chamber operation,
Since the control performance of the capillary tube is fixed, there is a problem in that there is an excess or deficiency of refrigerant and stable operation cannot be obtained.

かかる問題の解決手段として第2図に示す如き冷房装置
が特公昭52−18945号公報などによって公知であ
って、この装置は高圧分岐管の各分岐点と各開閉弁1
ta/、 1 lb’との間にキャピラリー10a’
tIO’bを設けて、この各キャピラリーチューブ10
a’9 10b’と各開閉弁11a’ilb′との間に
分岐管を並列に連絡するバイパス管12を設けて、1室
運転時と2室運転時とでは冷凍サイクル系中の減圧量を
調節できるようにしたものである。
As a solution to this problem, a cooling device as shown in FIG. 2 is known from Japanese Patent Publication No. 52-18945, etc.
capillary 10a' between ta/, 1 lb'
tIO'b is provided, and each capillary tube 10
A bypass pipe 12 connecting branch pipes in parallel is provided between a'9 10b' and each on-off valve 11a'ilb' to reduce the amount of pressure reduction in the refrigeration cycle system during one-chamber operation and two-chamber operation. It is adjustable.

ところが、この装置は次の如き欠侭がある。However, this device has the following shortcomings.

即ち高圧分岐管の流入側となる各分岐点が冷媒を液ガス
混合状態で流通せしめる部分となっているので、2室運
転時において各室内ユニット間で負荷の程度が異って運
転条件に差を有していたり、配管亘長、据付位置の高低
差などによる据付状態の違いがあると、両ユニットの冷
媒系に抵抗の不平衡が生じて、その結果としてバイパス
管12′を通じて抵抗の小さい方に冷媒液が多く流れる
如き偏流現象を起し、圧縮機への液戻り、装置の能力低
下などを招いて好ましくなかったのである。
In other words, each branch point on the inflow side of the high-pressure branch pipe is a part that allows the refrigerant to flow in a liquid-gas mixed state, so during two-room operation, the degree of load differs between each indoor unit, resulting in differences in operating conditions. If there is a difference in the installation condition due to the length of the piping or the difference in height of the installation location, an unbalanced resistance will occur in the refrigerant system of both units, and as a result, the refrigerant with low resistance will be This is undesirable because it causes a phenomenon where more refrigerant liquid flows in one direction, causing the liquid to return to the compressor and reducing the performance of the device.

このように従来の冷房装置が種々の問題を有していた事
実に鑑み、本考案は上記諸欠陥を根本的に排除すること
が可能で、しかも低コスト化を果し得る如き新規な冷房
装置を考案するに至ったものであり、その特徴とすると
ころは、2台の各室内ユニットに対応して設けたキャピ
ラリーチューブと、その出口側に設けた開閉弁とを備え
てなる2つの分岐管に対して、そのうちの各キャピラリ
ーチューブと各開閉弁との間の前記各分岐管相互を連絡
するバイパス管を設けて、各開閉弁入口間の導通可能と
なすと共に、このバイパス管に2室同時運転の際には閉
放し1室運転の際には開放せしめる開閉弁および1室運
転時の冷媒量を調節するためのキャピラリーチューブを
介設してなる構成にある。
In view of the fact that conventional cooling devices have had various problems, the present invention has developed a new cooling device that can fundamentally eliminate the above-mentioned defects and can also reduce costs. The company devised this system, and its characteristics are two branch pipes each equipped with a capillary tube corresponding to each of the two indoor units and an on-off valve installed on the outlet side of the capillary tube. For this purpose, a bypass pipe is provided to connect the branch pipes between each of the capillary tubes and each on-off valve to enable communication between the inlets of each on-off valve, and to connect two chambers simultaneously to this bypass pipe. The structure includes an on-off valve that is closed during operation and opened during single-chamber operation, and a capillary tube for adjusting the amount of refrigerant during single-chamber operation.

以下、本考案の内容を図面に示す実施例によって詳細に
説明する。
Hereinafter, the content of the present invention will be explained in detail with reference to embodiments shown in the drawings.

第1図において、1は室外ユニット、2a、2bは室内
ユニットであり、室外ユニット1は、圧縮機3、凝縮器
4、減圧機構5、アキュムレータ6により構成される一
方、室内ユニット2a、2bは蒸発器8a、8bおよび
図示しない室内ファンによって夫々構成される。
In FIG. 1, 1 is an outdoor unit, and 2a and 2b are indoor units.The outdoor unit 1 is composed of a compressor 3, a condenser 4, a pressure reducing mechanism 5, and an accumulator 6, while the indoor units 2a and 2b are Each of the evaporators 8a and 8b includes an indoor fan (not shown).

室外ユニット1の高圧液管7に設けた前記減圧機構5は
、前記液管7を室内ユニツ)2a、2bの数に対応して
分岐させて分岐管9a、9bとなし、この各分岐管9a
、9bに電磁弁の如き開閉弁11a、llbを夫々設け
、さらに分岐点15と各開閉弁11a、11bとの間に
キャピラリーチューブ10a、10bを夫々介設すると
ともに、各キャピラリーチューブ10a、10bと各開
閉弁11a、llbとの間に各分岐管9a、9b相互を
並列的に連絡するバイパス管12を設け、このバイパス
管12に開閉弁例えば電磁弁13および冷媒量調節用の
キャピラリーチューブ14を介設した構造をなしている
The pressure reducing mechanism 5 provided in the high pressure liquid pipe 7 of the outdoor unit 1 branches the liquid pipe 7 into branch pipes 9a and 9b corresponding to the number of indoor units 2a and 2b, and each of the branch pipes 9a
, 9b are provided with on-off valves 11a, llb such as electromagnetic valves, respectively, and capillary tubes 10a, 10b are interposed between the branch point 15 and each on-off valve 11a, 11b, respectively. A bypass pipe 12 is provided between each of the on-off valves 11a and llb to connect the branch pipes 9a and 9b in parallel, and an on-off valve such as a solenoid valve 13 and a capillary tube 14 for adjusting the amount of refrigerant are installed in this bypass pipe 12. It has an interposed structure.

しかして前記キャピラリーチューブ10a、10bは各
室内ユニット2ay2bに対応させて冷媒の制御を行う
ための主たる減圧器であって、それ等は例えば室内ユニ
ット2a、2bの同時作動による全室運転時において最
適な運転状態を呈し得る如く、それぞれが分担する減圧
量を適正な値に設定しておくが、室内ユニット2a、2
bが同能力である場合には、室外ユニット1の能力と見
合わせた上で当然同じ減圧量となることは言う迄もない
The capillary tubes 10a and 10b are the main pressure reducers for controlling the refrigerant in correspondence with each indoor unit 2ay2b, and they are suitable for, for example, all-room operation when the indoor units 2a and 2b are operated simultaneously. The amount of pressure reduction shared by each unit is set to an appropriate value so that the indoor units 2a, 2
It goes without saying that if b has the same capacity, the amount of pressure reduction will be the same, taking into account the capacity of the outdoor unit 1.

一方、前記キャピラリーチューブ14は一方の室内ユニ
ット2a又は2bのみの1室運転時に、キャピラリーチ
ューブ10a又は10bに対して、キャピラリーチュー
ブ10b又は10aとこのキャピラリーチューブ14と
の直列になる抵抗回路が並列に接続された状態になるこ
によって最適な冷媒量に制御し得るように適正な値に設
定しておくものである。
On the other hand, in the capillary tube 14, when only one indoor unit 2a or 2b is operated in one room, a resistance circuit in which the capillary tube 10b or 10a and the capillary tube 14 are connected in series is connected in parallel to the capillary tube 10a or 10b. It is set to an appropriate value so that the amount of refrigerant can be controlled to the optimum amount by entering the connected state.

上述の構成になる冷房装置において冷房を行う場合、充
填冷媒量を2台運転で最適になるよう設定した条件下で
2台運転を行うには、開閉弁13を閉止して圧縮機3を
駆動すると、圧縮機3から吐出された高温高圧の冷媒ガ
スは、凝縮器4で外気と熱交換し高圧液冷媒となり、分
岐管9a、9bに分流し、キャピラリーチューブ10a
、10bで夫々減圧した後、開閉弁11a、llbを経
て室内ユニット2a、2bの各蒸発器8a、8bに至り
、室内空気から吸熱蒸発し、冷媒ガスとなって低圧ガス
管16・・・を夫々経て、アキュムレータ6を通った後
、圧縮機1に吸入される。
When performing cooling with the cooling device configured as described above, in order to operate two units under conditions where the amount of charged refrigerant is set to be optimal for two unit operation, the on-off valve 13 should be closed and the compressor 3 should be driven. Then, the high-temperature, high-pressure refrigerant gas discharged from the compressor 3 exchanges heat with the outside air in the condenser 4 to become a high-pressure liquid refrigerant, which is divided into branch pipes 9a and 9b, and then flows into the capillary tube 10a.
, 10b, and then reach the evaporators 8a, 8b of the indoor units 2a, 2b through the on-off valves 11a, llb, where they absorb heat from the indoor air and evaporate, becoming refrigerant gas and flowing through the low-pressure gas pipes 16... After passing through the accumulator 6, the air is sucked into the compressor 1.

このようにして2室同時冷房が行われるが、前述の如く
バイパス管12の開閉弁13は閉止しているので、この
バイパス管12での冷媒バイパス現象は全熱なく、両室
内ユニツ)2a、2bは高圧液管7と吸入ガス配管16
の間で夫々が独立した冷媒流通系路を形成しており、従
って両ユニット2a、2b間の抵抗アンバランスによる
相互干渉即ち偏流の現象は生じなくて、両ユニット2a
、2bともに負荷に対応した冷媒の分流が行われて能力
不足を来さず、また、液戻りを防ぐことが可能となる。
In this way, simultaneous cooling of the two rooms is performed, but since the on-off valve 13 of the bypass pipe 12 is closed as described above, the refrigerant bypass phenomenon in the bypass pipe 12 does not cause any heat, and both indoor units) 2a, 2b is the high pressure liquid pipe 7 and the intake gas pipe 16
Each unit forms an independent refrigerant flow path between the units 2a and 2b, so that mutual interference due to resistance imbalance between the two units 2a and 2b, that is, the phenomenon of drifting, does not occur.
, 2b, the refrigerant is divided in accordance with the load, so there is no shortage of capacity, and liquid return can be prevented.

次に、2室のうちl室のみを運転せしめる個別運転の場
合には、例えば開閉弁11aを開放して一方の室内ユニ
ット2aを運転し、他方の室内ユニット2bは開閉弁1
1bを閉放して運転を停止し、−室運転を行うには、バ
イパス管12の開閉弁13を開放すれば凝縮器4を通っ
た冷媒液は分岐管9a、9bに分流して、キャピラリー
チューブ10aで減圧した冷媒とキャピラリーチューブ
10bとキャピラリーチューブ14との直列抵抗回路で
減圧した冷媒とが合流した後、開閉弁11aを通過して
室内ユニット2aの蒸発器8aに至り、ここで蒸発気化
した後、アキュムレータ6を経て圧縮機3に吸入される
Next, in the case of individual operation in which only room 1 of the two rooms is operated, for example, one indoor unit 2a is operated by opening the on-off valve 11a, and the other indoor unit 2b is operated with on-off valve 11a.
1b is closed to stop the operation and perform -chamber operation, by opening the on-off valve 13 of the bypass pipe 12, the refrigerant liquid that has passed through the condenser 4 is divided into branch pipes 9a and 9b, and the capillary tube After the refrigerant depressurized in step 10a and the refrigerant depressurized in the series resistance circuit of capillary tube 10b and capillary tube 14 join together, they pass through on-off valve 11a and reach evaporator 8a of indoor unit 2a, where they are evaporated and vaporized. Thereafter, it is sucked into the compressor 3 via the accumulator 6.

この場合においては冷媒をキャピラリーチューブ10a
単独の抵抗回路とキャピラリーチューブ10b、14か
らなる直列抵抗回路とに並流させることにより抵抗を半
減せしめて、蒸発器8aに流入する冷媒量を増加し、蒸
発器8a出口における冷媒の過熱度を過大にすることな
く、吐出温度の上昇を抑え得る。
In this case, the refrigerant is transferred to the capillary tube 10a.
By making a single resistance circuit and a series resistance circuit consisting of capillary tubes 10b and 14 flow in parallel, the resistance is halved, the amount of refrigerant flowing into the evaporator 8a is increased, and the degree of superheating of the refrigerant at the outlet of the evaporator 8a is reduced. The rise in discharge temperature can be suppressed without increasing the temperature excessively.

勿論、1室運転時には冷媒の偏流が生じる問題は全くな
い。
Of course, there is no problem of uneven flow of the refrigerant during single room operation.

上述した実施例において、各室内ユニット2at2b・
・・に対応させた各キャピラリーチューブ10a、10
b・・・は図示例の如き単一の構造のものに限らなくて
、それ等を2分割してそのうちの一方を室内ユニット2
a、2b・・・の各蒸発器8a、8b・・・に対して入
口側で直列に介装するとともに、他方を各図に示した位
置に配設するようにすることも可能であって、かかる変
型も赤本考案に包含されるものである。
In the embodiment described above, each indoor unit 2at2b.
Each capillary tube 10a, 10 corresponding to...
b... is not limited to a single structure as shown in the example shown, but it is divided into two parts and one of them is connected to the indoor unit 2.
It is also possible to interpose the evaporators 8a, 8b, . . . in series on the inlet side of each of the evaporators 8a, 8b, . , such modifications are also included in the red book invention.

本考案装置は成上の構成ならびに作用を有するものであ
って、2台の室内ユニット2a、2bを1台の室外ユニ
ット1に並列的に接続してなる多室用冷房装置において
、高圧液管7を前記各室内ユニット2a、2bに対し分
岐させて分岐管9a、9bとなし、この分岐管9a、9
bに開閉弁11a、llbを夫々設け、前記分岐管9a
、9bの分岐点15と各開閉弁11a、llbとの間に
キャピラリーチューブlea、10bを夫々設けるとと
もに、該各キャピラリーチューブ10a、10bと各開
閉弁11a、11bとの間の前記各分岐管9a、9b相
互を連絡するバイパス管12を設けて、該バイパス管1
2に、2室同時運転の際には閉威し1室運転の際には開
放せしめる開閉弁13および1室運転時の冷媒量を調節
するためのキャピラリーチューブ14を介設してなる構
成としたから、1室運転と2室運転時との冷媒循環量の
違いをキャピラリーチューブ10a、10b、14によ
って自動的に調整し適正量に保持することが可能となる
The device of the present invention has the above structure and function, and is used in a multi-room cooling device in which two indoor units 2a and 2b are connected in parallel to one outdoor unit 1. 7 is branched to each indoor unit 2a, 2b to form branch pipes 9a, 9b, and these branch pipes 9a, 9
On-off valves 11a and llb are provided in b, respectively, and the branch pipe 9a
, 9b and each of the on-off valves 11a, 11b, respectively, and each of the branch pipes 9a between each of the capillary tubes 10a, 10b and each on-off valve 11a, 11b. , 9b are provided with a bypass pipe 12 that communicates with each other, and the bypass pipe 1
2, a configuration in which an on-off valve 13 that is closed during simultaneous operation of two chambers and opened during operation of one chamber, and a capillary tube 14 for adjusting the amount of refrigerant during operation of one chamber; Therefore, it becomes possible to automatically adjust the difference in the amount of refrigerant circulation between the one-chamber operation and the two-chamber operation using the capillary tubes 10a, 10b, and 14, and maintain the amount at an appropriate level.

しかも2室運転の場合には、バイパス管12による偏流
作用の好ましくない状態を開閉弁13の閉成操作だけで
簡単にかつ未然に防止できて、その結果、一方の室内ユ
ニットでは能力不足を、他方の室内ユニットでは湿り運
転を来すなどの不都合は解消され、安定したかつ能力の
十分大なる冷房運転を維持するすぐれた効果を奏する。
Moreover, in the case of two-chamber operation, unfavorable flow bias caused by the bypass pipe 12 can be easily prevented by simply closing the on-off valve 13, and as a result, insufficient capacity in one indoor unit can be prevented. In the other indoor unit, inconveniences such as wet operation are eliminated, and an excellent effect of maintaining stable cooling operation with a sufficiently large capacity is achieved.

また、将来買増しの予定で取敢ず室内ユニットを1台設
置して運転する場合、室内ユニットを2台設置して1台
だけ運転する場合の何れにおいても何等支障なく運転で
きるので、各様のニーズに対応可能となり販売促進面に
もすぐれた特長を有している。
In addition, if you are planning to purchase more units in the future and are installing one indoor unit and operating it, or if you are installing two indoor units and operating only one unit, you can operate it without any problems. It can meet the needs of customers and has excellent features in terms of sales promotion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案冷房装置の1例に係る冷凍回路図、第2
図は従来の冷房装置の冷凍回路図である。 1・・・・・・室外ユニット、2a、2b・・・・・・
室内ユニット、7・・・・・・高圧液管、9a、9b・
・・・・・分岐管、10a、10b・・・・・・キャピ
ラリーチューブ、11a、llb・・・・・・開閉部、
12・・・・・・バイパス管、13・・・・・・開閉弁
、14・・・・・・冷媒量調節用のキャピラリーチュー
ブ。
Figure 1 is a refrigeration circuit diagram of one example of the cooling device of the present invention;
The figure is a refrigeration circuit diagram of a conventional cooling device. 1...Outdoor unit, 2a, 2b...
Indoor unit, 7... High pressure liquid pipe, 9a, 9b.
...Branch pipe, 10a, 10b...Capillary tube, 11a, llb...Opening/closing part,
12...Bypass pipe, 13...Opening/closing valve, 14...Capillary tube for adjusting the amount of refrigerant.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 2台の室内ユニット2a、2bを1台の室外ユニット1
に並列的に接続してなる多室用冷房装置において、高圧
液管7を前記各室内ユニット2at2bに対し分岐させ
て分岐管9a、9bとなし、該各分岐管9a、9bに開
閉弁11a、11bを夫々設け、前記各分岐管9a、9
bの分岐点15と前記各開閉弁11a、llbとの間に
キャピラリーチューブlea、10bを夫々設けるとと
もに、該各キャピラリーチューブ10a、10bと前記
各開閉弁11a、llbとの間の前記各分岐管9ay9
b相互を連絡するバイパス管12を設けて、該バイパス
管12に、2室同時運転の際は閉威し1室運転の際には
開放せしめる開閉弁13および1室運転時の冷媒量を調
節するためのキャピラリーチューブ14を介設してなる
ことを特徴とする多室用冷房装置。
Two indoor units 2a and 2b are combined into one outdoor unit 1
In the multi-room cooling device connected in parallel to each other, the high-pressure liquid pipe 7 is branched to each of the indoor units 2at2b to form branch pipes 9a and 9b, and each branch pipe 9a and 9b is provided with an on-off valve 11a, 11b are provided respectively, and each of the branch pipes 9a, 9
Capillary tubes lea and 10b are provided between the branch point 15 of b and each of the on-off valves 11a and llb, respectively, and each of the branch pipes is provided between each of the capillary tubes 10a and 10b and each of the on-off valves 11a and llb. 9ay9
b A bypass pipe 12 that communicates with each other is provided, and the bypass pipe 12 has an on-off valve 13 that is closed when two rooms are operated simultaneously and opened when one room is operated, and an on-off valve 13 that adjusts the amount of refrigerant during one room operation. A multi-room cooling device characterized by interposing a capillary tube 14 for cooling.
JP3394179U 1979-03-15 1979-03-15 Multi-room cooling system Expired JPS602536Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3394179U JPS602536Y2 (en) 1979-03-15 1979-03-15 Multi-room cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3394179U JPS602536Y2 (en) 1979-03-15 1979-03-15 Multi-room cooling system

Publications (2)

Publication Number Publication Date
JPS55133171U JPS55133171U (en) 1980-09-20
JPS602536Y2 true JPS602536Y2 (en) 1985-01-24

Family

ID=28890397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3394179U Expired JPS602536Y2 (en) 1979-03-15 1979-03-15 Multi-room cooling system

Country Status (1)

Country Link
JP (1) JPS602536Y2 (en)

Also Published As

Publication number Publication date
JPS55133171U (en) 1980-09-20

Similar Documents

Publication Publication Date Title
US4399664A (en) Heat pump water heater circuit
KR101706865B1 (en) Air conditioning system
JPH05223385A (en) Accumulation system of heat-pump and hot water
JPH03236570A (en) Air-conditioner
JP5283586B2 (en) Air conditioner
JP2011047622A (en) Air conditioner
JPS602536Y2 (en) Multi-room cooling system
CN213119316U (en) Air conditioning unit adopting throttle valve
JPS63279063A (en) Simultaneous air-conditioning method at plurality of position
CN107676902A (en) Air-conditioning system
JP2002340436A (en) Multi-chamber air conditioner
JPS5850212Y2 (en) Multi-room cooling system
JPS5850210Y2 (en) Multi-room air conditioner
JPH0424364Y2 (en)
JPS6011787B2 (en) Heat pump type multi-room air conditioning system
JPH0297847A (en) Separate type air conditioner designed for multi chambers
JPS6146347Y2 (en)
JPH0375459A (en) Multiple air conditioner
JPS593352Y2 (en) Air conditioning equipment
EP4008973A1 (en) Air conditioner
JPS5816622Y2 (en) air conditioner
JPS5850211Y2 (en) Air conditioner
JPS5919255Y2 (en) air conditioner
JPS6215734Y2 (en)
JPS6018754Y2 (en) outdoor unit