JPS60252718A - Intermediate of high-performance composite material - Google Patents

Intermediate of high-performance composite material

Info

Publication number
JPS60252718A
JPS60252718A JP10429484A JP10429484A JPS60252718A JP S60252718 A JPS60252718 A JP S60252718A JP 10429484 A JP10429484 A JP 10429484A JP 10429484 A JP10429484 A JP 10429484A JP S60252718 A JPS60252718 A JP S60252718A
Authority
JP
Japan
Prior art keywords
strength
carbon fiber
fiber
composite material
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10429484A
Other languages
Japanese (ja)
Other versions
JPH0559934B2 (en
Inventor
Hajime Asai
浅井 肇
Fujio Nakao
中尾 富士夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP10429484A priority Critical patent/JPS60252718A/en
Priority to US06/735,749 priority patent/US4603157A/en
Publication of JPS60252718A publication Critical patent/JPS60252718A/en
Publication of JPH0559934B2 publication Critical patent/JPH0559934B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:An intermediate product that is obtained by using, as a reinforcing fiber, a high-elasticity carbon fiber and graphite fiber with an electric current in a specific range per unit area, when measured by the potential scanning method, thus showing high tenacity and flexural strength. CONSTITUTION:The objective intermediate product is obtained by using a high- elasticity carbon fiber such as PAN carbon fiber having 30-50t/mm.<2> of strand elasticity, more than 300kg/mm.<2> of strand strength and 0.100-0.400muA/cm<2> of electric current measured by the potential scanning method with a Poltum- metry analyzer or graphite fiber calcinating the above carbon fiber.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、高強度の高弾性炭素繊維を補強材とした引張
強度および曲げ強度に優れた複合材料の中間体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a composite material intermediate having excellent tensile strength and bending strength using high-strength, high-modulus carbon fiber as a reinforcing material.

〔背景技術〕[Background technology]

炭素繊維の高性能化の要望が年々強(なってきて2つ、
しかも繊維そのものの特性値よりむしろそれらを用いた
複合材料成型体としての特徴をより増強する方向で、具
体的には高弾性化と高強度化の方向で、性能向上が強く
指向されてきている。
The demand for improved performance of carbon fiber is getting stronger year by year.
Moreover, rather than focusing on the characteristic values of the fibers themselves, there is a strong focus on improving performance by enhancing the characteristics of the composite material molded product using them, specifically by increasing the elasticity and strength. .

こういう市場の要請の中にあって弾性率が30t/龍2
から50 t/ml”の範囲にあるPAN系炭素繊維で
は、プレカーサーの改良や焼成技術の最適化をふまえて
ストランド強度は著しく向上し、実験室段階では強度3
00 kl!/+t’以上のものが開発されつつある。
Given these market demands, the elastic modulus is 30t/Ryu2
For PAN-based carbon fibers in the range from 50 t/ml to
00kl! /+t' or more are being developed.

しかし、これら高強度の炭素繊維であっても複合材料と
し又の曲げ強度は弾性率とは異なり複合側から予想され
る値から大巾に低下してしまう。すなわち繊維強度利用
率が大巾に低下してしまう場合があり、しかもこの繊維
強度利用率は引張強度が増大する程低下する傾向を示す
ことが明らかになってきている。
However, even with these high-strength carbon fibers, the bending strength of the composite material differs from the elastic modulus, and is significantly lower than the value expected from the composite side. That is, there are cases where the fiber strength utilization rate decreases significantly, and it has become clear that this fiber strength utilization rate tends to decrease as the tensile strength increases.

これは複合材料での曲げ強度には繊維とマトリックス樹
脂との界面結合力および破断時の破壊の進行具合が太き
(影響しており、その影響の仕方、程度が加えた応力の
種類によって太き(異なり、しかも繊維の強度特性が向
上し、破断エネルギーが大きくなる程この影響が強まる
ためであると考えられる。
This is because the bending strength of composite materials is influenced by the interfacial bonding force between the fibers and the matrix resin and the progress of the fracture at breakage, and the manner and degree of influence depends on the type of stress applied. It is thought that this is because the strength characteristics of the fibers are improved and this effect becomes stronger as the breaking energy increases.

又一方、高温で焼成された高弾性糸はど焼成後の表面処
理条件をきつくする必要があるが、一方では表面処理条
件をきっ(するとストランド強度のみならず、場合によ
っては弾性率も大巾に低下して(ることがあるため、繊
維の強度特性をそこなわない範囲で表面処理が実施され
ているのが現状である。
On the other hand, it is necessary to tighten the surface treatment conditions after firing for highly elastic yarns fired at high temperatures. Therefore, surface treatments are currently carried out within a range that does not impair the strength characteristics of the fibers.

従ってこうして表面処理を施した炭素繊維では、ストラ
ンド強度に対して最適な表面状態が必ずしも複合材料と
しての曲げ強度発現性に対して最適とはならないために
、曲げ強度等の利用率が低下して(ることになり、スト
ランド強度を向上させたメリットが出せないことになる
Therefore, in carbon fibers that have been surface-treated in this way, the optimal surface condition for strand strength is not necessarily optimal for the development of bending strength as a composite material, resulting in a decrease in the utilization rate of bending strength, etc. (This means that the benefits of improving strand strength cannot be achieved.

更に又、同一表面処理条件であっても用いる原料繊維あ
るいは焼成条件の違いによって表面状態が太き(異なる
ため、その変化に対応した表面処理を施さない限り、複
合材料としての強度特性をコントロールすることができ
なくなって(る。
Furthermore, even if the surface treatment conditions are the same, the surface condition will vary depending on the raw material fibers used or the firing conditions (because they differ, so unless surface treatment is applied to accommodate these changes, the strength characteristics of the composite material cannot be controlled. I can't do it anymore.

この様に、炭素繊維の表面形態は、特に高強度、高弾性
糸で非常に重要な特性となって(る。
In this way, the surface morphology of carbon fibers is a very important characteristic, especially for high strength and high elasticity yarns.

従来から、表面処理条件と複合材料特性との関連は数多
(研究されてきているが、原料繊維や製造条件等の差異
によりその結果は太ぎく異なっており、複合材料特性を
最も発現し得る最適表面状態というものは明らかになっ
ていない。
There have been many studies on the relationship between surface treatment conditions and composite material properties, but the results vary widely due to differences in raw material fibers, manufacturing conditions, etc. The optimal surface condition is not clear.

そこで我々は高強度、高弾性炭素繊維についてストラン
ド強度と複合材料での曲げ強度をバラ7スさせる最適表
面状態について検討を加えた結果、本発明に到達した。
Therefore, we investigated the optimal surface conditions for high-strength, high-modulus carbon fibers that balance the strand strength and the bending strength of composite materials, and as a result, we arrived at the present invention.

〔発明の目的〕[Purpose of the invention]

本発明は、引張強度と曲げ強度に優れた複合材料をつ(
る高弾性炭素繊維からなる中間体を提供することを目的
とする。
The present invention uses a composite material with excellent tensile strength and bending strength.
The purpose of the present invention is to provide an intermediate body made of high modulus carbon fiber.

〔発明の構成〕[Structure of the invention]

即ち、本発明の要旨とするところは、ストランド弾性率
が30 t/ms’から50t/龍2の範囲にあって、
且つストランド強度が300 kg/mu”以上である
高弾性炭素繊維もしくは黒鉛繊維に8いて、電位走査法
によって測定される単位面積当りの電流値が0.100
μA/α2から0.400μA/ cm”の範囲にある
高弾性炭素繊維もしくは黒鉛繊維を補強用繊維として用
いた複合材料の中間体にある。
That is, the gist of the present invention is that the strand elastic modulus is in the range of 30 t/ms' to 50 t/ryu2,
In addition, high elastic carbon fiber or graphite fiber with a strand strength of 300 kg/mu" or more has a current value per unit area of 0.100 as measured by the potential scanning method.
It is an intermediate of a composite material using high modulus carbon fiber or graphite fiber in the range of μA/α2 to 0.400 μA/cm” as a reinforcing fiber.

本発明で言う電位走査法というのは、一般にポルタム・
メトリー・アナライザーと称せられるポテンショ・スタ
ットとファ/クショ/・ゼネレーターからなる分析装置
でもって、炭素繊維を一方の電極に用いて測定するもの
を言う。
The potential scanning method referred to in the present invention generally refers to the
It is an analytical device called a metric analyzer, which consists of a potentiostat and a filter generator, and uses carbon fiber as one electrode to perform measurements.

本発明では5%す/酸水溶液を用いてpH3,0に設定
し、窒素をバブリングさせ、溶存酸素の影響を除いてい
る。参照電極としてはAg/AgC1標準電極を用い、
電解液に炭素繊維を一方の電極として浸漬し、対極とし
て充分な表面積を有゛する白金電極を用いる。
In the present invention, the pH is set to 3.0 using a 5% sour/acid aqueous solution, and nitrogen is bubbled through to remove the influence of dissolved oxygen. An Ag/AgC1 standard electrode was used as the reference electrode,
A carbon fiber is immersed in an electrolytic solution as one electrode, and a platinum electrode with sufficient surface area is used as a counter electrode.

試料形態としては、トウ、シート、クロス、ヘー パー
等電極として固定できるものであればいかなるものも測
定でき、又試料にサイジング剤あるいはマトリックス樹
脂等の樹脂成分が付着していても測定は可能であるがこ
の場合は、有効表面積が異なって(るため、あらかじめ
樹脂成分を抽出除去し−cg<のが望ましい。又試料の
大きさの目安としては試料長50朋 の12.000フ
イラメントトウを標準としたが、本発明で定義する単位
面積当りの電流値tpaに換算すれば試料量を特に限定
する必要はない。
Any type of sample can be measured, such as tow, sheet, cloth, or tape, as long as it can be fixed as an electrode.Measurement is also possible even if the sample has resin components such as sizing agent or matrix resin attached. However, in this case, since the effective surface area is different, it is desirable to extract and remove the resin component in advance. Also, as a guideline for the sample size, the standard sample length is 12,000 filament tow with a sample length of 50 mm. However, there is no need to particularly limit the sample amount if it is converted to the current value tpa per unit area defined in the present invention.

炭素繊維電極と白金電極の間にかげる電位の走査範囲は
、電解電圧を越えない範囲に設定する必要があり、5%
す/酸水溶液では一〇、2■かも+0.8vの範囲を標
準にとる。電位走査によって生じる電流値は、走査速度
依存性を有するため、走査速度は常に一定に保持する必
要があり、本発明では20yriV/see を標準速
度と決めている。X−Yレコーダーにより電流−電圧曲
線を描き、3回以上掃引させ、曲線が安定した段階でA
g/AgC1標準電極に対して+0.4■での電位を基
準電位として電流値番を読み取り、次式に従って呻aを
算出した。
The scanning range of the electric potential applied between the carbon fiber electrode and the platinum electrode must be set within a range that does not exceed the electrolytic voltage, and must be set at 5%.
For acid/acid aqueous solutions, the standard range is 10, 2, or +0.8v. Since the current value generated by potential scanning is dependent on the scanning speed, the scanning speed must always be kept constant, and in the present invention, 20 yriV/see is determined as the standard speed. Draw a current-voltage curve with an X-Y recorder, sweep it three times or more, and when the curve becomes stable, press A.
The current value number was read using the potential at +0.4 .mu.g/AgC1 as a reference potential with respect to the standard electrode, and the angular value a was calculated according to the following formula.

試料重量とJIS−R7601に記載されている方法に
よってめられた試料密度と目付から見掛けの表面積を算
出し電流値tを除して龜paとした。
The apparent surface area was calculated from the sample weight and the sample density and basis weight determined by the method described in JIS-R7601, and the value was divided by the current value t to obtain the pa.

実施例からも明らかな様に電位走査法で得られるjpa
は複合材料の強度特性とよく対応しており、tpaを本
発明でいう範囲にコントロールすることによって複合材
料の引張強度と曲げ強度を最も発現させることができる
ことが明らかとなった。
As is clear from the examples, the jpa obtained by the potential scanning method
corresponds well with the strength characteristics of the composite material, and it has become clear that the tensile strength and bending strength of the composite material can be maximized by controlling tpa within the range defined in the present invention.

電位走査法での特性値tpaが0.100 tiA/c
a’未満では引張強度の割には曲げ強度が小さく、% 
0.400μA/α2を趙えると曲げ強度の割には1.
1よウラ。8,3、あ4..0、。−。ワ、−5ては見
劣りするものとなる゛。
Characteristic value tpa by potential scanning method is 0.100 tiA/c
Below a', the bending strength is small compared to the tensile strength, and %
If 0.400 μA/α2 is applied, the bending strength is 1.
1, back. 8, 3, a4. .. 0,. −. Wow, -5 is inferior.

本発明でいり高弾性炭素繊維はPAN系のものには限定
されず、いわゆるピッチ系およびセルロース系炭素繊維
にも適用され、それらの製造方法についても何ら制限さ
れるものはな(、炭素繊維を更に高温で焼成した黒鉛繊
維であってもさしつかえない。
The high-modulus carbon fibers used in the present invention are not limited to PAN-based ones, but can also be applied to so-called pitch-based and cellulose-based carbon fibers, and there are no restrictions on the method for producing them. Further, graphite fibers fired at a high temperature may also be used.

本発明でいり中間体とは、マトリックス樹脂が含浸され
た炭素繊維のテープ状、シート状、クロス状あるいはペ
レット状のものを言い、いjっゆるUDプリプレグ、ク
ロスプリプレグ、スリーブ、SMC,BMC中間体更に
はF RT、P用チョプあるいはペレット等を含む。こ
れら中間体の特性値jpaを測定する場合は付着された
樹脂を溶剤によって抽出除去することによって供試する
のが好ましい。
In the present invention, the "intermediate" refers to carbon fibers impregnated with matrix resin in the form of tapes, sheets, cloths, or pellets, and includes all types of UD prepregs, cross prepregs, sleeves, SMC, and BMC intermediates. It also includes F RT, chops or pellets for P. When measuring the characteristic value jpa of these intermediates, it is preferable to sample them by extracting and removing the attached resin with a solvent.

本発明でい’l [位走査法は電気化学業界では衆知の
手法であるが、電位走査法から得られる特性値Lpaが
複合材料の強度特性と関連づけて検討された例は未だか
つてな(、我々が鋭意検討した結果始めて明らかにされ
た事冥である。
[Although the potential scanning method is a well-known technique in the electrochemical industry, there has never been an example in which the characteristic value Lpa obtained from the potential scanning method has been studied in relation to the strength characteristics of a composite material. This is a mystery that was only revealed after our intensive investigation.

電位走査法で得られるipaは詳細は不明であるが、恐
らく炭素繊維表面の酸化還元反応にあずかる官能基濃度
と物理的表面積とに対応した特性を反映しているものと
思われる。
Although the details of ipa obtained by the potential scanning method are unknown, it probably reflects characteristics corresponding to the concentration of functional groups that participate in redox reactions on the carbon fiber surface and the physical surface area.

過去炭素繊維の表面状態は色々な手法でもって解析評価
されてきているが、いずれも単独では複合材料の強度特
性を充分に把握できるものではな(、実用上有効な特性
値は未だ明らかにされていない。
In the past, the surface condition of carbon fibers has been analyzed and evaluated using various methods, but none of these methods alone can fully grasp the strength characteristics of composite materials (practically effective characteristic values have not yet been clarified). Not yet.

本発明でいう特性値は物理的特性と化学的特性双方に関
するものであり、しかも観察視野が任意に選べ、簡便な
手法であるため、実用上非常に意義が太きい。
The characteristic values referred to in the present invention relate to both physical characteristics and chemical characteristics, and since the observation field can be arbitrarily selected and it is a simple method, it is of great practical significance.

〔実施例〕 以下実施例によって本発明の詳細な説明する。〔Example〕 The present invention will be described in detail below with reference to Examples.

実施例1 アクリル系プレカーサーを焼成して得られた弾性率30
 t/y+@’のノンサイズド炭素繊維につキ柳本製作
所製のサイクリック・ポル、タム・メトリー・アナライ
ザーP−1100型を用い工ipaを測定した。電位走
査は、pH3の5%リン酸水溶液中で試料長50朋の炭
素繊維6.000フイラメントトウを一万の電極とし、
白金電極を対極として、その間にかける電位の走査範囲
を一〇、2vから+0.8vの範囲とし、20 ?iV
/seeの走査速度で電位走査を行い電流変化を検出し
た。Ag/AiCjl!電極に対して十〇、4vでの電
流値iを読みとり試料目付3,8 X 10 1/C1
l、試料密度1.750 P/cWL”を用いてjpB
を算出した。
Example 1 Elastic modulus of 30 obtained by firing acrylic precursor
The IPA of the non-sized carbon fiber of t/y+@' was measured using a Cyclic Pol Tam Metry Analyzer Model P-1100 manufactured by Yanagimoto Seisakusho. Potential scanning was performed using 6,000 carbon fiber filament tows with a sample length of 50 mm as electrodes in a 5% phosphoric acid aqueous solution at pH 3.
With the platinum electrode as the counter electrode, the scanning range of the potential applied between them was from 10.2V to +0.8V, and 20.2V to +0.8V. iV
Potential scanning was performed at a scanning speed of /see to detect current changes. Ag/AiCjl! Read the current value i at 10.4V with respect to the electrode, and the sample basis weight is 3.8 x 10 1/C1
jpB using sample density 1.750 P/cWL”
was calculated.

コンポジット特性の評価は、パイロフィル+:5ZO(
三菱レイ3フ社製商標)をマトリックス樹脂として用い
、引張試験は平板クーポンに代えて JIS−R760
1に従ってストランドでの試験を行い、曲げ試験につい
ては一方向ブリプレグを炸裂し130℃X 3 hrで
硬化成型を行ってVf = 60%の平板コンポジット
を得、10mgX 100+stX :’+rttのテ
ストピースを切り出して3点曲げ試験を行った。
Evaluation of composite properties was performed using Pyrophil +: 5ZO (
Mitsubishi Ray 3F Co., Ltd. trademark) was used as the matrix resin, and the tensile test was performed using JIS-R760 instead of a flat coupon.
A strand test was conducted according to 1, and for the bending test, a unidirectional blip preg was exploded and cured at 130°C for 3 hours to obtain a flat plate composite with Vf = 60%, and a test piece of 10 mg x 100+stX:'+rtt was cut out. A three-point bending test was conducted.

第1表にjpa’、ストランド試験およびコンポジット
の曲げ試験の結果を示した。rh1〜6は同−焼成条件
で表面処理条件を変えた場合であり、引張強度と曲げ強
度の最適条件が異なってM’) jpaヲo、10〜0
.40 ttA/cIIL’ (D範囲ニコントロール
することで強度特性が最も発揮される。N7〜11は焼
成における耐炎化条件と表面処理条件を変えた場合の結
果であるが、引張強度が大きくてもipaが最適範囲に
ないと曲げ強度が太き(ならず、強度利用率が著しく低
下して(ることがわかる。
Table 1 shows the results of the jpa', strand test, and composite bending test. rh1 to 6 are the cases where the surface treatment conditions were changed under the same firing conditions, and the optimum conditions for tensile strength and bending strength were different.
.. 40 ttA/cIIL' (Strength properties are best exhibited by controlling the D range.N7 to 11 are the results when the flame resistance conditions and surface treatment conditions in firing were changed, but even if the tensile strength is high, It can be seen that when ipa is not within the optimum range, the bending strength is not large and the strength utilization rate is significantly reduced.

第 1 表 実施例2 アクリル系プレカーサーを焼成し、得られた弾性率24
 t/nu”の炭素繊維を更に高温で熱処理し、弾性率
的40 t/in’の黒鉛繊維を得た。
Table 1 Example 2 The elastic modulus obtained by firing the acrylic precursor 24
The carbon fibers having an elastic modulus of 40 t/in' were further heat-treated at a high temperature to obtain graphite fibers having an elastic modulus of 40 t/in'.

黒鉛化条件と表面処理条件を変えて実施例1と同様にし
てipa、ストランド試験、コンポジット試験を行い第
2表に結果を示した。繊維目付は7.3 X 10 /
/m、密度は1.81 P/an、”、フィラメント数
は12,000本で計算した。ipaが0.30付近で
曲げ強度および利用率共に太き(なることがわかる。
IPA, strand test, and composite test were conducted in the same manner as in Example 1, changing the graphitization conditions and surface treatment conditions, and the results are shown in Table 2. Fiber basis weight is 7.3 x 10/
/m, the density is 1.81 P/an," and the number of filaments is 12,000. It can be seen that both the bending strength and the utilization rate become thick when the ipa is around 0.30.

第 2 表 〔発明の効果〕 本発明で得られる複合材料の中間体は、従来にない優れ
たコンポジット特性を示す複合材料を提供することが可
能となる。
Table 2 [Effects of the Invention] The composite material intermediate obtained by the present invention makes it possible to provide a composite material exhibiting excellent composite properties not seen before.

手続補正書(自発) 1.事件の表示 特願昭59−104294号 2、発明の名称 高性能複合材料の中間体 3、補正をする者 事件との関係 出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長 河 崎 晃 夫 4、代理 人 東京都中央区京橋二丁目3番19号 目 発 7頁7行「1を」→「1から」 以上Procedural amendment (voluntary) 1. Display of incidents Patent Application No. 1983-104294 2. Name of the invention Intermediates for high-performance composite materials 3. Person who makes corrections Relationship to the case: Applicant 2-3-19 Kyobashi, Chuo-ku, Tokyo (603) Mitsubishi Rayon Co., Ltd. President and Director Akio Kawasaki 4. Agent 2-3-19 Kyobashi, Chuo-ku, Tokyo eyes Page 7, line 7 “1” → “From 1” that's all

Claims (1)

【特許請求の範囲】[Claims] ストランド弾性率が30 t/m”から50 t/m”
の範囲にあって、且つストランド強度が300に9/y
m’以上である高弾性炭素繊維もしくは黒鉛繊維におい
て、電位走査法によって測定される単位面積当りの電蝉
値が0.100μA/♂から0.400μA/cm”の
範囲にある高弾性炭素繊維もしくは黒鉛繊維を補強用繊
維として用いた複合材料の中間体。
Strand elastic modulus from 30 t/m" to 50 t/m"
and the strand strength is 300 to 9/y
m' or more, high elastic carbon fibers or graphite fibers with a voltage value per unit area measured by potential scanning method in the range of 0.100 μA/♂ to 0.400 μA/cm" A composite material intermediate using graphite fibers as reinforcing fibers.
JP10429484A 1984-05-23 1984-05-23 Intermediate of high-performance composite material Granted JPS60252718A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10429484A JPS60252718A (en) 1984-05-23 1984-05-23 Intermediate of high-performance composite material
US06/735,749 US4603157A (en) 1984-05-23 1985-05-20 Intermediate for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10429484A JPS60252718A (en) 1984-05-23 1984-05-23 Intermediate of high-performance composite material

Publications (2)

Publication Number Publication Date
JPS60252718A true JPS60252718A (en) 1985-12-13
JPH0559934B2 JPH0559934B2 (en) 1993-09-01

Family

ID=14376909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10429484A Granted JPS60252718A (en) 1984-05-23 1984-05-23 Intermediate of high-performance composite material

Country Status (1)

Country Link
JP (1) JPS60252718A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190025A (en) * 1987-01-29 1988-08-05 Mitsubishi Rayon Co Ltd High-performance acrylic carbon fiber and production thereof
JPS63270889A (en) * 1987-04-30 1988-11-08 三菱レイヨン株式会社 Doctor knife blade
EP0484447A1 (en) * 1989-07-27 1992-05-13 Hyperion Catalysis International, Inc. Composites and methods for making same
EP0754121A4 (en) * 1994-04-01 1997-07-09 Hexcel Corp Thermally conductive non-metallic honeycomb and process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419491A (en) * 1977-07-15 1979-02-14 Filtrol Corp Hydrodesulfurization catalyst containing anatase and its manufacture
JPS60239521A (en) * 1984-05-14 1985-11-28 Toray Ind Inc Acryl-based carbon fiber bundle exhibiting excellent composite property, and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419491A (en) * 1977-07-15 1979-02-14 Filtrol Corp Hydrodesulfurization catalyst containing anatase and its manufacture
JPS60239521A (en) * 1984-05-14 1985-11-28 Toray Ind Inc Acryl-based carbon fiber bundle exhibiting excellent composite property, and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190025A (en) * 1987-01-29 1988-08-05 Mitsubishi Rayon Co Ltd High-performance acrylic carbon fiber and production thereof
JPS63270889A (en) * 1987-04-30 1988-11-08 三菱レイヨン株式会社 Doctor knife blade
EP0484447A1 (en) * 1989-07-27 1992-05-13 Hyperion Catalysis International, Inc. Composites and methods for making same
EP0754121A4 (en) * 1994-04-01 1997-07-09 Hexcel Corp Thermally conductive non-metallic honeycomb and process

Also Published As

Publication number Publication date
JPH0559934B2 (en) 1993-09-01

Similar Documents

Publication Publication Date Title
EP1961847B1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
EP2441866B1 (en) Carbon fiber bundle that develops excellent mechanical performance
CN108193482A (en) A kind of processing method for carbon fiber surface modification
KR930011306B1 (en) Surface-improved carbon fiber and production thererof
JPS60252718A (en) Intermediate of high-performance composite material
JP4726102B2 (en) Carbon fiber and method for producing the same
Li et al. High Young's modulus carbon fibers are fouling resistant with fast-scan cyclic voltammetry
Wu et al. Effects of basic chemical surface treatment on PBO and PBO fiber reinforced epoxy composites
US4603157A (en) Intermediate for composite material
Mathur et al. Bimodification of polyacrylonitrile (PAN) fibers
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
JP2546809B2 (en) Carbon fiber composite material
JP2002180370A (en) Carbon fiber for metal oxide coating and method for producing the same
JPS60248739A (en) Heat-resistant epoxy resin prepreg
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
GB2161273A (en) Testing carbon fibre
JP2943073B2 (en) Method for producing surface-modified carbon fiber
EP3862469A1 (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
DE2647901C2 (en) Process for the production of carbon fibers
JP3012885B2 (en) Method for producing surface-modified carbon fiber
JPH0192470A (en) Surface treatment of carbon fiber
JP2002004175A (en) Pan based precursor for carbon fiber and method of producing the same
DE2534988A1 (en) CARBON FIBERS WITH NEW SURFACE FEATURES AND METHODS FOR THEIR PRODUCTION
JPH03185181A (en) Method for treating surface of carbon fiber
JPH0813256A (en) Carbon fiber for reinforcing resin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term