JPS6025212A - Manufacture of magnetic alloy film - Google Patents

Manufacture of magnetic alloy film

Info

Publication number
JPS6025212A
JPS6025212A JP13325083A JP13325083A JPS6025212A JP S6025212 A JPS6025212 A JP S6025212A JP 13325083 A JP13325083 A JP 13325083A JP 13325083 A JP13325083 A JP 13325083A JP S6025212 A JPS6025212 A JP S6025212A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic alloy
substrate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13325083A
Other languages
Japanese (ja)
Inventor
Katsuya Mitsuoka
光岡 勝也
Kunihiro Tamahashi
邦裕 玉橋
Masaaki Sano
雅章 佐野
Shinichi Hara
真一 原
Shinji Narushige
成重 真治
Tadashi Sato
忠 佐藤
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13325083A priority Critical patent/JPS6025212A/en
Publication of JPS6025212A publication Critical patent/JPS6025212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enable to manufacture a film body having small coercive force according to a simple method by a method wherein the magnetic alloy film is formed on a substrate according to sputtering in the specified high vacuum. CONSTITUTION:When sputtering is performed in the high vacuum of 10<-4>torr or more, coercive force of thus obtained magnetic alloy film is made small as to 0.4Oe or less. For example, gas such as Ar, etc. is introduced into an ion source 1 as to enable to perform sputtering in a high vacuum, and ions generated in the ion source 1 are led into a high vacuum region 11 to be utilized. The led out ion beam is made to collide with a target material 3 used as to form a film and put on a target holder 4 inclining to the beam, the atoms of the target material 3 are sputtered therefrom according to the ion beam, and deposited on a substrate 7. Coils 6 are provided on both the sides of the substrate 7 to apply a magnetic field in one direction at magnetic film depositing time, a heater 5 is equipped on the back side of the substrate, and the heating temperature of the substrate 7 is regulated by a thermocouple.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、薄膜磁気へラドコア材料、磁気的感知デバイ
ス等に用いるのに好適な磁性合金膜の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing a magnetic alloy film suitable for use in thin film magnetic herad core materials, magnetic sensing devices, and the like.

〔発明の背景〕[Background of the invention]

従来、磁気デバイスの材料には約81M錠%N1−pe
金合金以下パーマロイと呼ぶ)や鉄基磁性合金が使用さ
れている。磁気デバイスとして用いる場合、IN体を形
成する際に、配向するだめの磁界の作用の下に上記磁性
合金を電気メッキ、蒸着およびスパッタリングを単独に
まだは組み合わせて用いることによって争えられる磁気
異方性を活用していた。このような方法で得られる膜体
は平面内で磁気異方性を示す。膜作製中に配向するだめ
の磁界を印加する方向は磁化容易軸に還ばれ、その結果
薄膜の平面内における磁化容易軸と直交する方向は磁化
困難軸となる。上記磁性膜はこの磁化困難軸方向を用い
て高周波領域で高速のスイッチング動作をおこなえる点
に特徴がちシ、膜厚2μmのパーマロゴ1莫では困難軸
方向の保磁力は0、290 eであシ、これに滲ない高
周波領域での透磁率が1500以上となる。
Conventionally, magnetic device materials include approximately 81M tablets%N1-pe.
Gold alloys (hereinafter referred to as permalloy) and iron-based magnetic alloys are used. When used as a magnetic device, the magnetic anisotropy can be achieved by using electroplating, vapor deposition and sputtering, either alone or in combination, of the magnetic alloy under the action of an orienting magnetic field when forming an IN body. was utilized. A film obtained by such a method exhibits in-plane magnetic anisotropy. The direction in which a magnetic field is applied for orientation during film fabrication returns to the axis of easy magnetization, and as a result, the direction perpendicular to the axis of easy magnetization in the plane of the thin film becomes the axis of hard magnetization. The above-mentioned magnetic film is characterized in that it can perform high-speed switching operations in the high frequency range using this difficult axis direction, and the coercive force in the difficult axis direction is 0.290 e with a film thickness of 2 μm. The magnetic permeability in a high frequency region that does not bleed is 1500 or more.

磁気デバイスとしては一般に高速で使用するだめ高周波
領域で透磁率が出来る限シ大きいこと、即ち一軸異方性
を付与し、困難軸方向の保磁力を小さくすることが望ま
しい。そこでj膜体の低保磁力化には磁性j莫自体の保
磁力盆小さくすることが必ヅである。従来、磁性膜の磁
気特性は主に磁気弾性効果に左右されているため、膜形
成において組成の制御を精度よくおこない磁わい定数を
小さくしたシ、あるいは基板温度の調整やバイアスd位
を印加するととくより膜中の応力を低減し、磁気弾性効
果を無視できるようにするととf試みられてきた。捷た
、適度な熱処理により膜全体の異方性を低減することも
なされてきた。しかし、熱処理の工程が入ると、堆積す
る基板の選択を厳しく行う8鮫があり、また手間と多く
の時間を要する問題があった。
As a magnetic device, it is generally desirable to have as large a magnetic permeability as possible in the high frequency region, that is, to impart uniaxial anisotropy and to reduce the coercive force in the hard axis direction, since it is not intended to be used at high speeds. Therefore, in order to reduce the coercive force of the magnetic film, it is necessary to reduce the coercive force of the magnetic film itself. Conventionally, the magnetic properties of magnetic films are mainly influenced by the magnetoelastic effect. In particular, attempts have been made to reduce the stress in the film so that the magnetoelastic effect can be ignored. It has also been attempted to reduce the anisotropy of the entire film by subjecting it to a moderate heat treatment. However, when the heat treatment step is started, there is a problem in that the selection of the substrate to be deposited is strictly required, and it also requires a lot of effort and time.

〔発明の目的〕[Purpose of the invention]

本発明は、簡単な方法で小さな保磁力を有する膜体を製
造することができる磁性合金膜の製造方法に関する。
The present invention relates to a method for manufacturing a magnetic alloy film that allows a film body having a small coercive force to be manufactured by a simple method.

〔発明の概要〕[Summary of the invention]

磁性膜の磁気特性は組成、膜厚、膜形成条件(基板温度
、膜形成速度、真空度那)、下地および膜形成後の熱処
理によって変わることが知られている。保磁力は磁性膜
の磁気特性のなかでも磁気異方性に大いに依存している
。磁性理論によると磁気異方性は磁気弾性効果、方向性
規則格子による効果、結晶磁気異方性の効果、形状異方
性の効果等が関係する。一般に膜全体の異方性は、前記
効果の総和として与えられる。ところで、磁性膜の低保
磁力化には方向性規則格子による異方性以外他の異方性
は全て小さくする必要がある。そこで、膜全体の異方性
を小さくするだめに、従来試みられていた磁気弾性効果
による異方性の低減の他に結晶磁気異方性の効果および
形状異方性の効果等を小さくする膜形成条件を探索した
。その結果、上記異方性効果を低減するには膜構造の結
晶粒を小さくしなければならないことが判った。
It is known that the magnetic properties of a magnetic film vary depending on the composition, film thickness, film formation conditions (substrate temperature, film formation speed, degree of vacuum), underlayer, and heat treatment after film formation. Among the magnetic properties of a magnetic film, coercive force is highly dependent on magnetic anisotropy. According to magnetic theory, magnetic anisotropy is related to magnetoelastic effects, effects due to directional regular lattices, effects of magnetocrystalline anisotropy, effects of shape anisotropy, etc. Generally, the anisotropy of the entire film is given as the sum of the above effects. By the way, in order to reduce the coercive force of a magnetic film, it is necessary to reduce all anisotropies other than the anisotropy caused by the directional regular lattice. Therefore, in order to reduce the anisotropy of the entire film, in addition to the previously attempted reduction of anisotropy using the magnetoelastic effect, films that reduce the effects of magnetocrystalline anisotropy and shape anisotropy, etc. The formation conditions were explored. As a result, it was found that in order to reduce the above-mentioned anisotropic effect, the crystal grains of the film structure must be made smaller.

本発明は、膜構造の結晶粒を小さくするためにはスパッ
タ時の真空度を高くシ、またこれと同時に磁性合金膜に
水素をドーピングすることが極めて有効であることを見
い出した結果到達されたものである。
The present invention was achieved as a result of the discovery that it is extremely effective to increase the degree of vacuum during sputtering and to simultaneously dope hydrogen into the magnetic alloy film in order to reduce the crystal grain size of the film structure. It is something.

すなわち、第1の発明は10””Torr以上の高真空
中でスパッタリングにより基体上に磁性合金膜を製造す
る方法であり、第2の発明は1O−4T□rr以上の高
真空中でスパッタリングによシ基体上に磁性合金膜を形
成すると同時に磁性合金S中に水素をドーピングする磁
性合金膜の製造方法である。
That is, the first invention is a method of manufacturing a magnetic alloy film on a substrate by sputtering in a high vacuum of 10"" Torr or more, and the second invention is a method of manufacturing a magnetic alloy film on a substrate by sputtering in a high vacuum of 1O-4T□rr or more. This is a method for manufacturing a magnetic alloy film in which a magnetic alloy film is formed on a substrate and at the same time hydrogen is doped into the magnetic alloy S.

1O−4TOrr以上の高真空中でスパッタリングを行
うと、得られる磁性合金膜の保磁力は0.40e以下に
小さくなるが、10−’Torr以上の高真空中とする
ことは装置上の問題があるので、特に10−4〜10”
6TOrr の高真空中とすることが望ましい。
When sputtering is performed in a high vacuum of 10-4 Torr or more, the coercive force of the resulting magnetic alloy film is reduced to 0.40e or less, but sputtering in a high vacuum of 10-'Torr or more poses equipment problems. Especially 10-4 to 10”
It is preferable to use a high vacuum of 6 TOrr.

このような高真空中でスパッタリングを行うと同時に磁
性合金膜に水素をドーピングすることによって磁性合金
膜の保磁力を小さくすることができる。この場合、磁性
合金膜中にドーピングする水素を4 vo1%以下とす
ることが望ましい。
By performing sputtering in such a high vacuum and simultaneously doping the magnetic alloy film with hydrogen, the coercive force of the magnetic alloy film can be reduced. In this case, it is desirable that the amount of hydrogen doped into the magnetic alloy film be 4 vol % or less.

第1図は、本発明の製造方法に用いられるスノ(ツタ装
置の構成の一例を示す。高真空中でス・くツタリングで
きるように、Ar等のガスをイオン源1に導入し、イオ
ン源1で発生したイオンを高真空・領域11に引出して
利用するものであり、引出されたイオンビームをターゲ
ットホルダー4上にビームに対して傾いて1滑かれた膜
となるべきターゲット物質3に衝突させ、ターゲット物
質3からイオンビームによシその原子をスノくツタリン
グし基板7上に堆積させる装置である。ここでチャンバ
ー内の真壁度は真空計12でモニターする。また、基板
7の両側面側に磁性膜堆積時、磁界を一方向に印加する
だめのコイル6が設けられ基板の裏面側にはヒータ5が
取を付けられ、基板7の加熱温度は熱電対によシ調整さ
れるようになっている。
FIG. 1 shows an example of the configuration of the spool apparatus used in the manufacturing method of the present invention. In order to perform spooling in a high vacuum, a gas such as Ar is introduced into the ion source 1, and the ion source The ions generated in step 1 are extracted into a high vacuum region 11 and utilized, and the extracted ion beam is placed on a target holder 4 at an angle to the beam and collides with the target material 3, which is to become a film. This device uses an ion beam to collect atoms from the target material 3 and deposits them on the substrate 7.The degree of wall thickness inside the chamber is monitored with a vacuum gauge 12. A coil 6 is provided on the side for applying a magnetic field in one direction during magnetic film deposition, and a heater 5 is attached to the back side of the substrate so that the heating temperature of the substrate 7 can be adjusted by a thermocouple. It has become.

なお、第1図中、8はビーム収束用コイル、9はニュー
トライザー、10はフイラメンを示してbる。
In FIG. 1, 8 is a beam converging coil, 9 is a neutrizer, and 10 is a filament.

従って、この装[4で積層磁性体を形成するにはターゲ
ットを4種類とりかえられることが可能なので、ターゲ
ットを回転することにより積層磁性体を簡単に製造でき
る。ところが、ターゲット間にすき間があると、膜内に
ターゲツト材以外の不純物が混入することがある。そこ
で、イオンビームの発生とターゲットの回転とを電気的
に同期をとりビームを所定の時間オン、オフすることに
より不純物防止が可能となる。さらに、イオン源2より
水素等のガスを導入してイオンビームを発生し、膜内に
ガスをドーピングてきるようにしである。
Therefore, in order to form a laminated magnetic body using this device [4], it is possible to change four types of targets, so that the laminated magnetic body can be easily manufactured by rotating the targets. However, if there is a gap between the targets, impurities other than the target material may be mixed into the film. Therefore, impurities can be prevented by electrically synchronizing the generation of the ion beam and the rotation of the target and turning the beam on and off for a predetermined period of time. Further, a gas such as hydrogen is introduced from the ion source 2 to generate an ion beam, thereby doping the film with the gas.

このような装置では、渦電流損を小さくするため磁性合
金膜の間に絶f&層を介在させる磁性体層を形成する際
、次のような効果がある。
In such a device, when forming a magnetic layer in which a f& layer is interposed between magnetic alloy films in order to reduce eddy current loss, the following effects can be obtained.

即ち、従来方法では同−装置膜内に磁性合金層と絶縁層
を形成するためのターゲットを別個に用意し基板を動か
してji免影形成ていた。また、一つの電源で複数のタ
ーゲットをまかなうと’ii:j源回路のマツチングが
とれず所定のパワーが出力できず多くの時間を8快とす
る。
That is, in the conventional method, targets for forming the magnetic alloy layer and the insulating layer within the film of the same device were separately prepared and the substrate was moved to perform the ji-irradiation formation. Furthermore, if one power source is used to supply multiple targets, the 'ii:j source circuits cannot be matched and the specified power cannot be output, resulting in 8-speed operation most of the time.

更に複数のターゲット用に複数の電源を設置する必要が
ちシ、装置が複雑化する。このような問題点は第1図に
示す装置によシ解消される。
Furthermore, it is often necessary to install multiple power supplies for multiple targets, complicating the equipment. Such problems are solved by the apparatus shown in FIG.

本発明において、磁性合金としては、特にニッケルー鉄
合金又は峡−チタン合金が架ましい。
In the present invention, the magnetic alloy is particularly preferably a nickel-iron alloy or a titanium alloy.

〔発明の実施例〕[Embodiments of the invention]

81図における基板7上には6006以上の磁場を印加
し、ヒータ5によシ最太800Cまで基板を加熱できる
A magnetic field of 6006 or more is applied to the substrate 7 in FIG. 81, and the substrate can be heated to a maximum thickness of 800 C by the heater 5.

第2図は下記スパッタリング条件下で膜形成した厚さ2
μmのパーマロイ膜の困難’1411方向の保磁力とス
パッタリング時のチャンバー圧力との関係を示す。
Figure 2 shows the thickness 2 of the film formed under the following sputtering conditions.
The relationship between the coercive force in the difficult '1411 direction of a μm permalloy film and the chamber pressure during sputtering is shown.

ターゲット組成 81重す%Nj−Fe到達真空度 8
 X 10−7Torr以下プレスパツタ時間 30分 Ar i、r、量 10 800M 加速電圧 600Vott (スパッタリング用) 基板温度 300p 外部磁場 基板上で6006 基板タ一ゲツト間距離 100町 この結果よシ、スパッタリング時のチャンバー圧力が5
 X 10−′Torr以上の高真空側で磁気特性が良
好となる。第3図に形成膜の断面組織をSEMによる観
察した結果を示す。第3図(イ)は5XIO’″”To
rr のときの形成膜の断面組織であり、これは粗い組
織であシ、かつ困難軸方向の保磁力は90eである。第
3同色)は5X10−IITorrのときの形成膜の断
面組織であり、これはち密な組織となっておシ、かつ困
難軸方向の保磁力は0.2806である。したがって磁
性合金膜をスパッタリングによ膜形成する場合、高真空
側の方が組織がち密となシ、かつ低い保磁力となること
が判る。
Target composition 81wt%Nj-Fe Achieved vacuum degree 8
X 10-7 Torr or less Press sputtering time 30 minutesAr i, r, amount 10 800M Acceleration voltage 600Vott (for sputtering) Substrate temperature 300p External magnetic field 600mm on the substrate Distance between substrate targets 100mm As a result, the chamber during sputtering pressure is 5
The magnetic properties are good on the high vacuum side of X 10-'Torr or more. FIG. 3 shows the results of SEM observation of the cross-sectional structure of the formed film. Figure 3 (a) is 5XIO'''”To
This is a cross-sectional structure of the film formed when rr is formed, and this is a coarse structure, and the coercive force in the hard axis direction is 90e. The third same color) is the cross-sectional structure of the formed film at 5×10-II Torr, which is a dense structure and has a coercive force in the hard axis direction of 0.2806. Therefore, when forming a magnetic alloy film by sputtering, it can be seen that the structure is denser and the coercive force is lower on the high vacuum side.

次に1.膜中に水素をドーピングした効果について調べ
だ。
Next 1. We will investigate the effect of doping hydrogen into the film.

ターゲット組織 8重量%Ti−Fe 到達真空度 8 X 1O−7Torr以下プレスパツ
タ時間 30分 Arガスt 10 800M 水素ガス量 最大30 800M 加速電圧(スパッタ用) 600V (ドーピング用)600V 基板温度 200C 外部磁場 基板上で6006 第4図に上記スパッタリング条件下で膜形成した厚さ1
μmの鉄基磁性合金膜の困難軸方向の保磁力とドープし
た水素計との関係を示す。この結果より、ドープした水
素量が4 vo1%以下で磁気特性は良好となる。この
原因を調べるために水素を1vo1%ドーピングした膜
と水素を5vo1%ドーピングした膜との断面組織を比
較すると、水素を1 vo1%ドーピングした膜の断面
組織がち密な構造であった。
Target structure 8 wt% Ti-Fe Ultimate vacuum 8 X 1O-7 Torr or less Press sputtering time 30 minutes Ar gas t 10 800M Hydrogen gas amount Max. 30 800M Acceleration voltage (for sputtering) 600V (for doping) 600V Substrate temperature 200C External magnetic field Substrate Above 6006 Figure 4 shows the thickness 1 of the film formed under the above sputtering conditions.
The relationship between the coercive force in the hard axis direction of a μm iron-based magnetic alloy film and a doped hydrogen meter is shown. From this result, the magnetic properties are good when the amount of doped hydrogen is 4 vol% or less. In order to investigate the cause of this, we compared the cross-sectional structures of a film doped with 1 vol % hydrogen and a film doped with 5 vol 1 % hydrogen, and found that the cross-sectional structure of the film doped with 1 vol 1 % hydrogen had a dense structure.

次に、パーマロイ膜とアルミナ膜の積層磁性体を形成し
てみた。第1図に示す装置において、ターゲット数を4
枚にして下記スパッタリング条件でパーマロイとアルミ
ナの積層磁性体を形成した。
Next, we formed a laminated magnetic material consisting of a permalloy film and an alumina film. In the apparatus shown in Figure 1, the number of targets is 4.
A laminated magnetic material of permalloy and alumina was formed using the following sputtering conditions.

この時のターゲット回転の動作時間とイオン源の動作時
間の時間チャートを第5図に示す。これによシ、膜中に
ターゲツト材以外の不純物混入を防止することができた
A time chart of the operating time of the target rotation and the operating time of the ion source at this time is shown in FIG. This made it possible to prevent impurities other than the target material from entering the film.

Arガxil 10 SCCM スパッタ時のチャンバー内圧力 5X10−” Tor
r茫板温度板温度 300C 外部磁場 基板上で600e パーマロイターゲツト 3枚 アルミナターゲット 1枚 回転保持台停滞時間 任意 ターゲット回転中 イオン源の電源オフその結果、次の
ような磁気特性を示した。ここで、磁性膜の総厚は2μ
mとし、中間層のアルミまた、5Jg栴造の磁性体で中
間アルミナ膜厚を変えた時の磁気特性について検討した
Ar gasil 10 SCCM Chamber pressure during sputtering 5X10-” Tor
r plate temperature Plate temperature 300C External magnetic field 600e on the substrate Permalloist target 3 alumina targets 1 rotation holding table Residence time Any target rotating Ion source power off As a result, the following magnetic characteristics were exhibited. Here, the total thickness of the magnetic film is 2μ
The magnetic properties were studied when the thickness of the intermediate alumina film was changed using the intermediate layer aluminum and 5Jg Seizo magnetic material.

くするには、全層数を多くする程並びに中間絶縁層の厚
さを薄くする程一段と効果があることが判る。
It can be seen that the greater the total number of layers and the thinner the thickness of the intermediate insulating layer, the more effective the reduction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、困難軸方向の保磁力が小さい磁性合金
膜を簡単な方法で得ることができる。したがって、本発
明によって得られる磁性合金膜は、高周波領域での透磁
率の大きな一軸異方性膜として磁気記録用の1.・ネ膜
ヘッドのコア材料に適用でき、高記録滑匿化に対処でき
る。
According to the present invention, a magnetic alloy film having a small coercive force in the hard axis direction can be obtained by a simple method. Therefore, the magnetic alloy film obtained by the present invention can be used as a uniaxially anisotropic film with high magnetic permeability in the high frequency region for magnetic recording.・It can be applied to the core material of the membrane head and can handle high recording slippage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に部用されるスパッタリング
装置の一例全示す構成図、第2図は厚さ2μInのパー
マロイ膜での困難軸方向の保磁力とスパッタリング時の
チャンバー圧力との関係を示す線図、第3図蹴(13)
はスパッタリング時のチャンバー圧力を変えて形成した
膜断面I1.ll識図、第4図はFeTtJ漢の困難軸
方向の保磁力と)膜中にドープした水素惜との関係を示
す線図、第5図はターゲット回転の動作重圧とイオン綜
のiti;源’を圧との関係を示す時間チャートである
。 1・・・スパッタリング−用イオン源、2・・・ドーピ
ング用イオン眺 3−・・ターゲツト材、4・・・ター
ゲットホルダー、5・・・ヒータ、6川コイル、7・・
・iAI&、8・・・ビーム収束用コイル、9・・・ニ
ュートライν′−110・・・フイラメン)、11・・
・A免僧内、12・・・具空ゲージ。 代理人 升理士 鵜沼辰之 排気 (あ2− 人ペソフリンク哨の′へソへ−)モ勾(’Tocr)伯
へ=しn 第51図 第1頁の続き 0発 明 者 華園雅信 日立市幸町3丁目1番1号株式 %式%
Figure 1 is a complete configuration diagram of an example of a sputtering apparatus used in the manufacturing method of the present invention, and Figure 2 is the relationship between the coercive force in the difficult axis direction and the chamber pressure during sputtering for a permalloy film with a thickness of 2 μIn. Line diagram showing, Figure 3 Kick (13)
I1. is the cross section of the film formed by changing the chamber pressure during sputtering. Fig. 4 is a diagram showing the relationship between the coercive force in the difficult axis direction of FeTtJ and the hydrogen concentration doped in the film, and Fig. 5 is a diagram showing the relationship between the operating pressure of target rotation and the ion source. ' is a time chart showing the relationship between pressure and pressure. DESCRIPTION OF SYMBOLS 1... Ion source for sputtering, 2... Ion source for doping, 3... Target material, 4... Target holder, 5... Heater, Six River coil, 7...
・iAI&, 8...Beam focusing coil, 9...Nutri ν'-110...Filamen), 11...
・Inside A Menso, 12...Guku gauge. Agent: Masashi Tatsuyuki Unuma Exhaust (A2-person peso link post's 'Hesohe-) Moto ('Tocr) Hakuhe = Shinn Figure 51, page 1 continued 0 Inventor Masanobu Kazono Saiwai-cho, Hitachi City 3-chome-1-1 stock% formula%

Claims (1)

【特許請求の範囲】 1、 10−’Torr以上の高真空中でスパッタリン
グにより基体上に磁性合金膜を形成することを特徴とす
る磁性合金膜の製造方法。 2、 10−’〜10−’Torr の高真空中でスパ
ッタリングによシ基体上に磁性合金膜を形成する特許請
求の範囲第1項記載の磁性合金膜の製造方法。 3、磁性合金が、ニッケルー鉄合金又は鉄−チタン合金
である特許請求の範囲第1項記;威の磁性合金膜の製造
方法。 4、磁性合金膜の間に絶縁層が介在している特許請求の
範囲第1項記載の磁性合金膜の製造方法。 5、 10”” Torr以上の高真空中でスパッタリ
ングによシ基体上に磁性合金膜を形成すると同時に磁性
合金膜中に水素をドーピングすることを特徴とする磁性
合金膜の製造方法。 6.10−4〜10″”’l’□rr の高真空中でス
パッタリングによシ基体上に磁性合金膜を形成する特許
請求の範囲第5項記載の磁性合金膜の製造方法。 7、磁性合金が、ニッケルー鉄合金又は鉄−チタン合金
である特許請求の範囲第5項記載の磁性合金膜の製造方
法。 8゜磁性合金膜の間に絶縁層が介在している特許請求の
範囲第5項記載の磁性合金ノ吃の製造方法。
[Claims] 1. A method for producing a magnetic alloy film, which comprises forming a magnetic alloy film on a substrate by sputtering in a high vacuum of 10-'Torr or more. 2. The method of manufacturing a magnetic alloy film according to claim 1, wherein the magnetic alloy film is formed on a substrate by sputtering in a high vacuum of 10-' to 10-' Torr. 3. A method for producing a magnetic alloy film according to claim 1, wherein the magnetic alloy is a nickel-iron alloy or an iron-titanium alloy. 4. The method for manufacturing a magnetic alloy film according to claim 1, wherein an insulating layer is interposed between the magnetic alloy films. 5. A method for manufacturing a magnetic alloy film, which comprises forming a magnetic alloy film on a substrate by sputtering in a high vacuum of 10"" Torr or more and doping hydrogen into the magnetic alloy film at the same time. 6. The method for producing a magnetic alloy film according to claim 5, wherein the magnetic alloy film is formed on a substrate by sputtering in a high vacuum of 10-4 to 10'''l'□rr. 7. The method for producing a magnetic alloy film according to claim 5, wherein the magnetic alloy is a nickel-iron alloy or an iron-titanium alloy. 6. The method of manufacturing a magnetic alloy powder according to claim 5, wherein an insulating layer is interposed between the 8° magnetic alloy films.
JP13325083A 1983-07-21 1983-07-21 Manufacture of magnetic alloy film Pending JPS6025212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13325083A JPS6025212A (en) 1983-07-21 1983-07-21 Manufacture of magnetic alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13325083A JPS6025212A (en) 1983-07-21 1983-07-21 Manufacture of magnetic alloy film

Publications (1)

Publication Number Publication Date
JPS6025212A true JPS6025212A (en) 1985-02-08

Family

ID=15100213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13325083A Pending JPS6025212A (en) 1983-07-21 1983-07-21 Manufacture of magnetic alloy film

Country Status (1)

Country Link
JP (1) JPS6025212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182414A (en) * 1984-09-28 1986-04-26 Sharp Corp Manufacture of permalloy soft magnetic film
JPS63247367A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Ion beam sputtering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182414A (en) * 1984-09-28 1986-04-26 Sharp Corp Manufacture of permalloy soft magnetic film
JPH0330970B2 (en) * 1984-09-28 1991-05-01 Sharp Kk
JPS63247367A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Ion beam sputtering device
JPH0586476B2 (en) * 1987-04-03 1993-12-13 Hitachi Ltd

Similar Documents

Publication Publication Date Title
US4407894A (en) Method for producing a perpendicular magnetic recording medium
JPH04504023A (en) Thick vapor-deposited cobalt-platinum magnetic film and its manufacturing method
KR960004065B1 (en) Magnetic head using magnetic film
JPH02161617A (en) Production of magnetic recording medium
Park et al. Magnetic properties and microstructural analysis of sputter‐deposited and annealed Co‐Pt alloys
JPS6025212A (en) Manufacture of magnetic alloy film
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPS6082638A (en) Thin film of ternary ni-co-fe alloy and its manufacture
JPS6285413A (en) Ferromagnetic multilayer film and manufacture of same
JPS63317922A (en) Perpendicular magnetic recording medium
JPH07335575A (en) Manufacture of thin film
JPH1153967A (en) Oxide polycrystalline basic material and oxide superconducting conductor and manufacture thereof
US6346175B1 (en) Modification of in-plate refractory metal texture by use of refractory metal/nitride layer
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JPS5917222A (en) Manufacture of multilayer magnetic thin-film
JPH05234754A (en) Lamination film
JP2871990B2 (en) Magnetoresistive element thin film
JP2674435B2 (en) Metal magnetic film and manufacturing method thereof
JPS6379951A (en) Multilayered film of magnetic metal and its production
JPH08199353A (en) Production of soft magnetic thin film
JP2752199B2 (en) Magnetic head
KR100716104B1 (en) Manufacturing Method of Multilayer Thin Films
JP3233538B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JPH07272334A (en) Magneto-optical recording medium and its production
JPH04356728A (en) Production of magnetic recording medium