JPS60252108A - Turbine load control method for reheating steam turbine plant - Google Patents

Turbine load control method for reheating steam turbine plant

Info

Publication number
JPS60252108A
JPS60252108A JP10658284A JP10658284A JPS60252108A JP S60252108 A JPS60252108 A JP S60252108A JP 10658284 A JP10658284 A JP 10658284A JP 10658284 A JP10658284 A JP 10658284A JP S60252108 A JPS60252108 A JP S60252108A
Authority
JP
Japan
Prior art keywords
load
turbine
switching
pressure
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10658284A
Other languages
Japanese (ja)
Inventor
Akira Okabe
明 岡部
Haruo Urushiya
漆谷 春雄
Katsukuni Kuno
久野 勝邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10658284A priority Critical patent/JPS60252108A/en
Publication of JPS60252108A publication Critical patent/JPS60252108A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To control the exhaust temperature of a high pressure turbine at the time of starting by controlling the change rate of switched load between the switching start load and the end load according to the follow-up capacity of the evaporation on boiler side when an adjustable valve of a high pressure turbine is opened to increase load. CONSTITUTION:A reheating steam turbine plant includes a high pressure by-pass system, a low pressure by-pass system and a ventilator system extending from high pressure turbine exhaust side to a condenser, wherein a switch load band extending from the switching start load to the switching end load is provided in a process of opening an adjustable valve of a high pressure turbine to increase load. When a target load is input to a control device, load is automatically set out of the switch load band L1-L3, and simultaneously, in consideration of the follow-up capacity of evaporation on boiler side, the change rate P of switched load in the switch load band is set. Thus, turbine load can be controlled in cooperation with a boiler.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、再熱器を有するボイラと、高圧バイパス系と
、低圧バイパス系と、高圧タービンの排気側から復水器
に至るベンチレータ系とを備えた再熱蒸気タービンプラ
ントのタービン負荷制御方法に係り、特に起動時の高圧
タービン排気温度を制御し、かつボイラとの協調のとれ
たタービンの安全運転を確保するために好適なタービン
負荷制御方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides a boiler having a reheater, a high-pressure bypass system, a low-pressure bypass system, and a ventilator system extending from the exhaust side of a high-pressure turbine to a condenser. The present invention relates to a turbine load control method for a reheat steam turbine plant equipped with a reheat steam turbine plant, and is particularly suitable for controlling the high-pressure turbine exhaust temperature at startup and ensuring safe operation of the turbine in coordination with the boiler. Regarding.

〔発明の背景〕[Background of the invention]

従来の再熱蒸気タービンプラントのタービン負荷制御方
法においては、中圧起動法が採用されており、特開昭5
3−102401号公報によって開示されているように
、プラント起動時および所内単独負荷運転時に、再熱タ
ービンにのみ通気し、高圧タービン内を真空に保ち、通
気、併入は再熱(中圧)タービンから行う。そして、負
荷上昇とともに高圧タービンにも通気する。この中圧起
動において再熱タービンのみで負荷を取っている状態か
ら負荷上昇を行い、加減弁を開いて行く過程で、高圧タ
ービン排気温度が上昇することを避けるため、加減弁開
後の必要蒸気量を確保するようにあらかじめ定められた
開度(通常は低圧バイパス弁によ力制御されている再熱
蒸気圧力相当負荷に見合った蒸気量が確保可能な定格主
蒸気圧力ベースで約20〜30%開度)まで急開するよ
うになっている。しかし、この従来の制御方法では、ボ
イラの蒸気発生量が蒸気タービン側必要蒸気量に対して
不足していた場合は、ボイラの主蒸気圧力低下を招き、
ボイラ燃料投入による蒸気発生が必要となるが、瞬時に
蒸発量を増加させることは不可能であシ、プラント運転
継続ができなくなることが実際のプラント運転試験によ
シ判明している。
In the conventional turbine load control method for reheat steam turbine plants, an intermediate pressure startup method has been adopted, and
As disclosed in Publication No. 3-102401, at the time of plant start-up and during single-load operation within the plant, only the reheat turbine is vented, the high-pressure turbine is kept in a vacuum, and the venting and co-induction are performed using reheat (medium pressure) Do it from the turbine. As the load increases, the high-pressure turbine is also vented. In this intermediate-pressure start-up, the load is increased from the state where only the reheat turbine is taking load, and in the process of opening the control valve, the required steam is A predetermined opening degree to ensure a sufficient amount of steam (approximately 20 to 30 degrees based on the rated main steam pressure, which can secure a steam volume commensurate with the load equivalent to the reheat steam pressure, which is normally controlled by a low-pressure bypass valve) % opening). However, with this conventional control method, if the amount of steam generated by the boiler is insufficient compared to the amount of steam required by the steam turbine, the main steam pressure of the boiler will decrease.
Although it is necessary to generate steam by inputting fuel into the boiler, actual plant operation tests have shown that it is impossible to increase the amount of evaporation instantaneously, making it impossible to continue plant operation.

特に、長時間停止後のコールドスタートの場合、コール
ド状態のタービンとのミスマツチ低減を図るため、ボイ
ラ側は蒸気温度の上昇を低く抑える必要があり、このた
め燃料投入量を抑え勝ちに運用するので、必然的にボイ
ラ発生蒸気量も少なくなる。これは、タービン側要求の
加減弁急開によるボイラ発生蒸気量要求と相反すること
になシ、ボイラとの協調性を持った運転が困難となる。
In particular, in the case of a cold start after a long shutdown, it is necessary to keep the rise in steam temperature low on the boiler side in order to reduce mismatch with the cold turbine. , the amount of steam generated by the boiler will inevitably decrease. This conflicts with the turbine side request for the amount of steam generated by the boiler due to the sudden opening of the control valve, and it becomes difficult to operate in coordination with the boiler.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、再熱蒸気タービンプラントにおいて、
起動時の高圧タービン排気温度上昇を制御し、かつター
ビン側の安全運転を確保しつつ、ボイラ側との協調を可
能にしたタービン負荷制御方法を提供するにあシ、他の
目的はタービン寿命消費量をも考慮して、さらにきめ細
かく制御し得るタービン負荷制御方法を提供するにあム
他の目的はボイラ許容負荷をも考慮して、よシ一層きめ
゛細かく制御し得るタービン負荷制御方法を提供するに
ある。
The object of the present invention is to provide a reheat steam turbine plant with:
The purpose is to provide a turbine load control method that controls the rise in high-pressure turbine exhaust temperature at startup, ensures safe operation of the turbine, and enables coordination with the boiler.Other purposes are to reduce turbine life consumption. Another object of the present invention is to provide a turbine load control method that allows even more fine control by taking into account the boiler allowable load. There is something to do.

〔発明の概要〕[Summary of the invention]

本発明の1番目の発明は、高圧タービンの加減弁を開き
、負荷上昇させる過程に、切替開始負荷から切替終了負
荷間にわたる切替負荷帯を設け、この間をボイラ側蒸発
量の追従能力を取り入れた切替負荷変化率によ力制御す
るところに特徴を有するもので、この構成により、起動
時の高圧タービン排気温度を制御し、かつタービン側の
安定運転を確保しつつ、ボイラ側との協調性を持つこと
ができる。
The first aspect of the present invention is to provide a switching load band from the switching start load to the switching end load in the process of opening the high-pressure turbine control valve and increasing the load, and incorporating the ability to follow the boiler side evaporation amount during this period. It is characterized by power control based on the switching load change rate. With this configuration, it is possible to control the high-pressure turbine exhaust temperature at startup, ensure stable operation of the turbine side, and improve coordination with the boiler side. You can have it.

また、本発明の2番目の発明は、高圧タービンの加減弁
を開き、負荷上昇させる過程に、切替開始負荷から切替
終了負荷にわたる切替負荷帯を設け、この間をボイラ側
蒸発量の追従能力と、タービン寿命消費量とを取り入れ
た切替負荷変化率により制御するところに特徴を有する
もので、この構成によシ、タービン負荷をさらにきめ細
かく制御することができる。
In addition, the second invention of the present invention is to provide a switching load band from a switching start load to a switching end load in the process of opening the regulating valve of the high pressure turbine and increasing the load, and during this period, the ability to follow the boiler side evaporation amount, It is characterized in that it is controlled by a switching load change rate that takes into account the turbine lifetime consumption, and with this configuration, the turbine load can be controlled more precisely.

さらに、本発明の3番目の発明は、高圧タービンの加減
弁を開き、負荷上昇させる過程に、切替開始負荷から切
替終了負荷にわたる切替負荷帯を設け、この間をボイラ
側蒸発量の追従能力と、タービン寿命消費量と、ボイラ
負荷変化許容値とを取り入れた切替負荷変化率によ多制
御するところに特徴を有するもので、この構成により、
タービン負荷をよシ一層きめ細かく制御することができ
る。
Furthermore, the third aspect of the present invention is to provide a switching load band ranging from a switching start load to a switching end load in the process of opening the regulating valve of the high pressure turbine and increasing the load, and during this period, the ability to follow the boiler side evaporation amount, The feature is that the switching load change rate incorporates the turbine life consumption and the boiler load change allowable value, and is controlled by the switching load change rate, and with this configuration,
Turbine load can be more precisely controlled.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は再熱蒸気タービンプラントの蒸気系統の一例を
概念的に示す。
FIG. 1 conceptually shows an example of a steam system of a reheat steam turbine plant.

この再熱蒸気タービンプラントでは、定常運転時にはボ
イラ10で発生した蒸気は加減弁11を経て高圧タービ
ン12を流通し、逆止弁13、低温再熱管14を経て再
熱器15に導かれ、再び加熱される。再熱器15を通っ
た蒸気は、高温再熱蒸気管16を通シ、インタセプト弁
17を経て中圧タービン18、低圧タービン19を経゛
た後、復水器20へ流入する。低圧タービンの軸端には
、発電機21が連結されている。
In this reheat steam turbine plant, during steady operation, steam generated in a boiler 10 passes through a control valve 11, flows through a high-pressure turbine 12, passes through a check valve 13, a low-temperature reheat pipe 14, and is guided to a reheater 15, where it is reheated again. heated. The steam that has passed through the reheater 15 passes through a high temperature reheat steam pipe 16, an intercept valve 17, an intermediate pressure turbine 18, a low pressure turbine 19, and then flows into a condenser 20. A generator 21 is connected to the shaft end of the low pressure turbine.

起動の際、ボイラの再熱系がクーリングのためにタービ
ンバイパス運転が行われる。以下、タービンバイパス操
作の一例を説明する。
At startup, the boiler reheat system performs turbine bypass operation for cooling. An example of the turbine bypass operation will be described below.

ボイラ10で発生した蒸気は、主蒸気管22から高圧バ
イパス弁23を経て再熱器15に流入し、再熱器15を
出た蒸気は高温再熱器16および低圧バイパス弁24を
介して直接的に復水器20に流入する。この場合、加減
弁11とインタセプト弁17は閉状態、ベンチレータ弁
25は開状態である。再熱系は一定の圧力になるように
、低圧バイパス弁24にて制御されている。
Steam generated in the boiler 10 flows from the main steam pipe 22 to the reheater 15 via the high pressure bypass valve 23, and the steam leaving the reheater 15 is directly passed through the high temperature reheater 16 and the low pressure bypass valve 24. flows into the condenser 20. In this case, the control valve 11 and the intercept valve 17 are in a closed state, and the ventilator valve 25 is in an open state. The reheat system is controlled by a low pressure bypass valve 24 to maintain a constant pressure.

第2図は低圧バイパス弁によって制御されている再熱系
の圧力と負荷の関係を示す。
FIG. 2 shows the relationship between pressure and load in the reheat system controlled by the low pressure bypass valve.

この第2図の例ではず25%負荷以下においては定格で
の25%相当の再熱圧力に制御されている。この段階で
ボイラ蒸気条件、特に再熱蒸気温度がタービンへ通気可
能な温度(一般的には再熱蒸気室内壁メタル温度とのミ
スマツチが一110C以上)になるとインタセプト弁1
7を徐々に開き、低圧バイパス弁24へ流入していた高
温再熱蒸気の一部を、中、低タービン18.19に供給
する。これによシ、タービンの昇速および数チの負荷を
背負うことができる。さらに、負荷上昇を図るためには
、高圧タービン12にも蒸気を流す必要がある。そのた
め、加減弁11を開きつつ、高圧バイパス弁23を閉操
作することにより負荷上昇を行う。
In the example shown in FIG. 2, when the load is below 25%, the reheating pressure is controlled to be equivalent to 25% of the rated value. At this stage, if the boiler steam conditions, especially the reheat steam temperature, reaches a temperature that allows ventilation to the turbine (generally, the mismatch with the reheat steam indoor wall metal temperature is 1110C or more), the intercept valve 1
7 is gradually opened, and a portion of the high temperature reheated steam flowing into the low pressure bypass valve 24 is supplied to the medium and low turbines 18 and 19. This allows the turbine to speed up and carry several loads. Furthermore, in order to increase the load, it is necessary to flow steam to the high-pressure turbine 12 as well. Therefore, the load is increased by opening the control valve 11 and closing the high-pressure bypass valve 23.

第3図(4)、@、0はタービン、負荷上昇過程におけ
る負荷と弁開度および高圧タービン排気温度の関係を模
式的に示す。
FIG. 3 (4) @, 0 schematically shows the relationship among the load, valve opening degree, and high-pressure turbine exhaust temperature during the turbine load increase process.

以下、負荷上昇過程での負荷と弁開度と高圧タービン排
気温度との関係につき、第1図および第3図(4)、@
、0によシ説明する。
Below, Figure 1 and Figure 3 (4), @
, 0 will be explained.

すなわち、時刻toで中圧タービン18のみで初負荷L
oを取る。この時点では、インタセプト弁17のみで負
荷を取シ、負荷L!までインタセプト弁17のみで負荷
を取り続ける。負荷L1から°さらに負荷上昇を行うに
当たり、負荷L3まで一定の負荷変化率Pで直線的に負
荷上昇される。
That is, at time to, the initial load L is applied only to the intermediate pressure turbine 18.
Take o. At this point, only the intercept valve 17 takes off the load, and the load is L! The load continues to be taken only by the intercept valve 17 until the end. When further increasing the load from load L1, the load is increased linearly up to load L3 at a constant load change rate P.

この時、加減弁11は時刻t2の負荷L2の時点で開き
始める。これに伴い高圧タービン排気温度が上昇し、負
荷がL3まで上昇するとともに高圧タービン排気温度は
また降下する。この高圧タービン排気温度の上昇と下降
によシ、高圧タービンロータ排気部にロータ熱応力が発
生する。ベンチレータ弁25は、時刻t2で閉となろう
第4図は高圧タービン排気部の断面図を示す。
At this time, the control valve 11 starts to open at the time point of the load L2 at time t2. Along with this, the high-pressure turbine exhaust temperature increases, and as the load increases to L3, the high-pressure turbine exhaust temperature also decreases. This rise and fall of the high-pressure turbine exhaust temperature causes rotor thermal stress to occur in the high-pressure turbine rotor exhaust section. Ventilator valve 25 will close at time t2. Figure 4 shows a cross-sectional view of the high pressure turbine exhaust.

この第4図に示すように、高圧タービン外部車室30と
ロータ31から構成されておシ、高圧タービン排気温度
が上昇することによシ、特にロータ31のディスク付根
8部32に最大熱応力が発生する。この熱応力によりロ
ータ31は低サイクル疲労を受け、1回の起動毎に熱応
力の値に相応した寿命を消費することになる。
As shown in FIG. 4, the high-pressure turbine is composed of an external casing 30 and a rotor 31, and as the high-pressure turbine exhaust temperature increases, maximum thermal stress is applied especially to the disk root 8 portion 32 of the rotor 31. occurs. This thermal stress causes the rotor 31 to undergo low-cycle fatigue, and the life of the rotor 31 is consumed in proportion to the value of the thermal stress each time the rotor 31 is started.

この時に発生する熱応力は、第3図(至)に示す負荷上
昇時の温度変化量と温度変化率ΔT/Δtに比例するが
、Δtの切替時間は普通数分以下の極めて短い時間であ
るため、はぼ温度変化量ΔTに比例する。さらに、再熱
応力は前に説明したように低圧バイパス弁24によって
前圧制御されて、加減弁11が開く時点では一定の圧力
に保持されている。したがって、主蒸気条件一定とすれ
ば、温度変化量ΔTは、第3図(4)に示す負荷LI+
L3および負荷変化率Pによって決まる。今、この負荷
L1からL3までを切替負荷帯と呼び負荷L+ を切替
開始負荷、負荷L3を切替終了負荷と呼ぶことにする。
The thermal stress generated at this time is proportional to the amount of temperature change and temperature change rate ΔT/Δt when the load increases, as shown in Figure 3 (end), but the switching time of Δt is usually an extremely short time of several minutes or less. Therefore, it is proportional to the temperature change amount ΔT. Further, the reheat stress is pre-pressure controlled by the low-pressure bypass valve 24 as described above, and is maintained at a constant pressure when the control valve 11 is opened. Therefore, assuming that the main steam conditions are constant, the temperature change amount ΔT is the load LI+ shown in Fig. 3 (4).
It is determined by L3 and load change rate P. Now, the loads L1 to L3 will be called a switching load band, the load L+ will be called a switching start load, and the load L3 will be called a switching end load.

まだ、負荷変化率Pを切替負荷変化率Pと呼ぶことにす
る。
The load change rate P will still be referred to as the switching load change rate P.

第5図は本発明の一実施例を示すもので、切替負荷帯を
制御する制御関数の一例を示す。
FIG. 5 shows an embodiment of the present invention, and shows an example of a control function for controlling the switching load band.

目標負荷を入力すると制御装置は切替負荷帯をセントす
る。また、同時に切替負荷帯の切替負荷変化率Pを同時
にセットする。この値は、ボイラ側蒸発量の追従性をも
考慮して決められることになるが、この実施例では起動
停止回−Pi、が多くかつボイラ側蒸発量も確保しやす
いホットモード(メタル温度400t:以上)では5%
/iNこれ以外では一律3%/mとした例を示している
When the target load is input, the control device selects the switching load band. At the same time, the switching load change rate P of the switching load band is also set. This value is determined by taking into account followability of the amount of evaporation on the boiler side, but in this example, the hot mode (metal temperature of 40t : or more): 5%
/iN In other cases, an example is shown in which the value is uniformly 3%/m.

第6図は本発明の別の実施例を示したもので、切替負荷
帯をより細かく制御する方法を示すっ切替開始負荷Li
は、中圧タービンおよび低圧タービンで背負うことの可
能な最大負荷よりも若干小さめの負荷とし、タービン出
力が切替負荷帯に入る前に加減弁11が開くことを避け
る必要がある。中、低圧タービンで背負うことの可能な
負荷は再熱蒸気圧力に比例し、再熱蒸気温度が高い程、
また復水器真空度が高い程、大きくなる。
FIG. 6 shows another embodiment of the present invention, showing a method for more finely controlling the switching load band.
It is necessary to set the load to be slightly smaller than the maximum load that can be carried by the intermediate-pressure turbine and the low-pressure turbine, and to prevent the regulating valve 11 from opening before the turbine output enters the switching load zone. The load that can be carried by medium and low pressure turbines is proportional to the reheat steam pressure, and the higher the reheat steam temperature,
Also, the higher the degree of vacuum in the condenser, the larger it becomes.

そこで、切替開始負荷L!は次式で計算することにする
う L+=c+xPrpxf(Trp)xg(V) −(1
)C1:定数 P!p :再熱蒸気圧力 f :蒸気温度をパラメータとした関数g :復水器真
空度をパラメータとした関数 切替終了負荷L3は、高圧タービン排気温度が上昇しな
いように十分な流量を流すことのできる負荷を選ぶ必要
がある。また、切替終了負荷L3は高圧タービン出力と
中圧タービンと低圧タービンの出力の合計である。そこ
で、次式によって切替終了負荷L3を表現することにな
る。
Therefore, the switching start load L! will be calculated using the following formula: L+=c+xPrpxf(Trp)xg(V) −(1
) C1: Constant P! p: Reheat steam pressure f: Function with steam temperature as a parameter g: Function with condenser vacuum degree as a parameter The end load L3 allows a sufficient flow rate to flow so that the high-pressure turbine exhaust temperature does not rise. You need to choose a load. Further, the switching end load L3 is the sum of the high pressure turbine output, the intermediate pressure turbine output, and the low pressure turbine output. Therefore, the switching end load L3 is expressed by the following equation.

L3=C3XPip Xll (THp) +C4XP
 rpX f’ (TIp)x g ’ (V) ・・
・・・・・・・ (2)C*、C4:定数 PHp:主蒸気圧力 h:主蒸気温度をパラメータとした関数f/ 、再熱蒸
気温度をパラメータとした関数g′:復水器真空度をパ
ラメータとした関数前記(1)、 (2)式に使用した
関数f9g、h、f′ 。
L3=C3XPip Xll (THp) +C4XP
rpX f' (TIp)x g' (V)...
(2) C*, C4: Constant PHp: Main steam pressure h: Function f/ with main steam temperature as a parameter, function g' with reheat steam temperature as a parameter: Condenser vacuum Functions f9g, h, f' used in equations (1) and (2) above, with degree as a parameter.

g′は、例えば・(ラメータに対する一次式で表現すれ
ば制御装置の構成は容易となるが、より精度を上げるた
めに・(ラメータに対する2次式、あるいはデータブロ
ック等で表現することも可能である。捷た、再熱蒸気圧
力の制御性が非常に良い場合は再熱蒸気圧力Pxpによ
る補正は省略することも゛可能である。
For example, if g′ is expressed as a linear equation for the parameter, the configuration of the control device will be easier; however, to improve accuracy, If the controllability of the reheat steam pressure is very good, the correction using the reheat steam pressure Pxp can be omitted.

切替負荷変化率Pは犬であればある程、高圧タービン排
気温度の抑制効果が犬であるが、ボイラ側の追従能力も
考慮し、起動停止回数が多く、またボイラ側蒸発量の出
やすいホット側で切替負荷変化率Pを高くシ、ボイラ側
蒸発量の発生しにくく、起動停止回数の少ないコールド
側で切替負荷変化率Pを小さめに設定する。ホットある
いはコールドの判定条件としては、タービン初段後メタ
ル温度を利用するのが通常であるが、起動モードを判定
できる信号であれば、その信号を入力とすることも可能
である。
The higher the switching load change rate P is, the better the effect of suppressing the high-pressure turbine exhaust temperature will be. The switching load change rate P is set high on the boiler side, and the switching load change rate P is set small on the cold side, where boiler side evaporation is less likely to occur and the number of startups and stops is small. The temperature of the metal after the first stage of the turbine is usually used as a hot or cold determination condition, but any signal that can determine the startup mode can also be used as an input.

第7図は本発明の別の実施例を示すもので、切替負荷変
化率Pを決めるパラメータとして、タービン寿命消費設
定値Xも考慮した関数としたものである。すなわち、各
起動ごとに運転員、あるいはあらかじめプログラムされ
た値(コンピュータの指令等)によシ許容寿命消費量が
大きい程、低めの切替負荷変化率Pを選び許容寿命消費
量が小さい程、高めの切替負荷変化率Pを選ぶ。
FIG. 7 shows another embodiment of the present invention, in which the switching load change rate P is determined as a function in which the turbine life consumption setting value X is also considered. In other words, at each start-up, the operator or a pre-programmed value (computer command, etc.) selects a switching load change rate P that is lower as the allowable lifetime consumption is larger, and is set higher as the allowable lifetime consumption is smaller. Select the switching load change rate P.

第8図は本発明のさらに別の実施例として切替負荷変化
率Pをタービン側設定値PTとボイラ許容負荷変化率P
Bを常に比較し、ボイラ側蒸発量不足によるトリップ発
生を最小限に抑える機能を追加したものである。
FIG. 8 shows yet another embodiment of the present invention, in which the switching load change rate P is compared to the turbine side set value PT and the boiler allowable load change rate P.
A function has been added to constantly compare B and minimize the occurrence of trips due to insufficient evaporation on the boiler side.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の1番目の発明によれば、高圧ター
ビンの加減弁を開き、負荷上昇させる過程に、切替開始
負荷から切替終了負荷間にわたる切替負荷帯を設け、こ
の間をボイラ側蒸発量の追従17目力を取p入れた切替
負荷変化率により制御するようにしているので、起動時
の高圧タービン排気温度を制御し、かつタービン側の安
定運転を確保しつつ、ボイラ側と協調性を持ってタービ
ン負荷制御を行い得る効果がある。
According to the first aspect of the present invention explained above, in the process of opening the control valve of the high-pressure turbine and increasing the load, a switching load band is provided from the switching start load to the switching end load, and this period is used to reduce the boiler side evaporation amount. Since the control is based on the switching load change rate that incorporates tracking power, the high-pressure turbine exhaust temperature at startup can be controlled, stable operation of the turbine side can be ensured, and coordination with the boiler side can be maintained. This has the effect of enabling turbine load control.

また、本発明の2番目の発明によれば、高圧タービンの
加減弁を開き、負荷上昇させる過程に、切替開始負荷か
ら切替終了負荷にわたる切替負荷帯を設け、この間をボ
イラ側蒸発量の追従能力と、ロータ寿命消費量とを取り
入れた切替負荷変化率に゛よシ制御するようにしている
ので、タービン寿命消費量をも考慮し、さらにきめ細か
くタービン負荷制御を行い得る効果がある。
Further, according to the second aspect of the present invention, in the process of opening the regulating valve of the high-pressure turbine and increasing the load, a switching load band is provided from the switching start load to the switching end load, and the boiler side evaporation follow-up ability is established during this period. Since the control is based on the switching load change rate that takes into account the rotor life consumption and the rotor life consumption, there is an effect that the turbine load can be controlled more finely by taking into consideration the turbine life consumption consumption.

さらに、本発明の3番目の発明によれば、高圧タービン
の加減弁を開き、負荷上昇させる過程に、切替開始負荷
から切替終了負荷にわたる切替負荷帯を設け、この間を
ボイラ側蒸発量の追従能力と、タービン寿命消費量と、
ボイラ負荷変化許容値とを取シ入れた切替負荷変化率に
ょシ制御するようにしているので、ボイラ負荷変化許容
値をも考慮し、より一層きめ細かくタービン負荷を制御
し得る効果がある。
Furthermore, according to the third aspect of the present invention, in the process of opening the regulating valve of the high-pressure turbine and increasing the load, a switching load band is provided from the switching start load to the switching end load, and the boiler side evaporation follow-up ability is provided during this period. , turbine lifetime consumption, and
Since the switching load change rate is controlled by taking into account the allowable boiler load change value, the turbine load can be controlled more finely by taking into account the allowable boiler load change value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は再熱蒸気タービンプラントの蒸気系統の概念図
、第2図は低圧バイパス弁にょシ制御されている再熱系
の圧力と負荷の関係を示す図、第3図(転)、[F])
、c′)はタービン負荷上昇過程における負荷と弁開度
と高圧タービン排気温度の関係を示す図、第4図は高圧
タービン排気部の断面図、第5図は本発明の一実施例を
示すもので、目標負荷制御設定値と切替負荷変化率の制
御を示す図、第6図は本発明の他の実施例における切替
負荷帯と切替負荷変化率の制御を示す図、第7図は本発
明における他の発明の切替負荷帯と切替負荷変化率の制
御を示す図、第8図は本発明におけるさらに他の発明の
切替負荷帯と切替負荷変化率の制御を示す図である。 10・・・ボイラ、11・・・加減弁、12・・・高圧
タービン、13・・・逆止弁、14・・・低温再熱管、
15・・・再熱器、16・・・高圧再熱蒸気管、17・
・・インタセプト弁、18・・・中圧タービン、19・
・・低圧タービン、20・・・復水器、21・・・発電
機、22・・・主蒸気′び、23・・・高圧バイパス弁
、24・・・低圧バイパス弁、25・・・ベンチレータ
弁、30・・・高圧タービン外部inE室、31・・・
ロータ、32・・・ロータのディスク付根8部、Ll・
・・切替開始負荷、L3・・・切替終了負荷、P・・・
切替負荷変化率、X・・・タービン寿命消費設定値、P
g・・・ボイラ許容負荷変化率。 代理人 弁理士 秋本正実 率2図 千3図 (B) 準6日 壓′1図
Figure 1 is a conceptual diagram of the steam system of a reheat steam turbine plant, Figure 2 is a diagram showing the relationship between pressure and load in the reheat system controlled by the low-pressure bypass valve, Figure 3 (conversion), [ F])
, c') are diagrams showing the relationship between load, valve opening, and high-pressure turbine exhaust temperature during the turbine load increasing process, Figure 4 is a sectional view of the high-pressure turbine exhaust section, and Figure 5 shows an embodiment of the present invention. 6 is a diagram showing the control of the target load control setting value and the switching load change rate, FIG. 6 is a diagram showing the control of the switching load band and the switching load change rate in another embodiment of the present invention, and FIG. 7 is a diagram showing the control of the switching load change rate in another embodiment of the present invention. FIG. 8 is a diagram showing control of the switching load band and switching load change rate according to another aspect of the present invention. FIG. 8 is a diagram showing control of the switching load band and switching load change rate according to still another aspect of the present invention. 10...Boiler, 11...Adjustment valve, 12...High pressure turbine, 13...Check valve, 14...Low temperature reheat pipe,
15... Reheater, 16... High pressure reheat steam pipe, 17.
...Intercept valve, 18...Intermediate pressure turbine, 19.
...Low pressure turbine, 20... Condenser, 21... Generator, 22... Main steam generator, 23... High pressure bypass valve, 24... Low pressure bypass valve, 25... Ventilator Valve, 30... High pressure turbine external inE chamber, 31...
Rotor, 32...rotor disk root 8, Ll.
...Switching start load, L3...Switching end load, P...
Switching load change rate, X...Turbine life consumption setting value, P
g...Boiler allowable load change rate. Agent Patent Attorney Akimoto Masami Ratio 2 1,000 3 (B) Quasi 6 Days' 1

Claims (1)

【特許請求の範囲】 1、再熱器を有するボイラと、高圧バイパス系と、低圧
バイパス系と、高圧タービンの排気側から復水器に至る
ベンチレータ系とを備えた再熱蒸気タービンプラントに
おいて、高圧タービンの加熱弁を開き、負荷上昇させる
過程に、切替開始負荷から切替終了負荷間にわたる切替
負荷帯を設け、この間をボイラ側蒸発量の追従能力を取
シ入れた切替負荷変化率により制御することを特徴とす
る再熱蒸気タービンプラントのタービン負荷制御方法。 2、特許請求の範囲第1項において、前記切替開始負荷
および切替終了負荷を、主蒸気圧力と温度、再熱蒸気圧
力と温度、および復水器真空度を関数として設定するこ
とを特徴とする再熱蒸気タービンプラントのタービン負
荷制御方法。 3、%許請求の範囲第1項において、前記切替負荷変化
率を、タービンのメタル温度を関数とじて設定したこと
を特徴とする再熱蒸気タービンプラントのタービン負荷
制御方法。 4、再熱器を有するボイラと、高圧バイパス系と、低圧
バイパス系と、高圧タービンの排気側から復水器に至る
ベンチレータ系とを備えた再熱蒸気タービンプラントに
おいて、高圧タービンの加減弁を開き、負荷上昇させる
過程に、切替開始負荷から切替終了負荷にわたる切替負
荷帯を設け、この間をボイラ側蒸発量の追従能力と、タ
ービン寿命消費量とを取9人れた切替負荷変化率によシ
制御することを特徴とする再熱蒸気タービンプラントの
負荷制御方法。 5、再熱器を有するボイラと、高圧バイパス系と、低圧
バイパス系と、高圧タービンの排気側から復水器に至る
ベンチレータ系とを備えた再熱蒸気タービンプラントに
おいて、高圧タービンの加減弁を開き、負荷上昇させる
過程に、切替開始負荷から切替終了負荷にわたる切替負
荷帯を設け、この間をボイラ側蒸発量の追従能力と、タ
ービン寿命消費量と、ボイラ負荷変化許容値とを取り入
れた切替負荷変化率により制御することを特徴とする再
熱蒸気タービンフリントのタービン負荷制御方法。
[Claims] 1. A reheat steam turbine plant comprising a boiler with a reheater, a high-pressure bypass system, a low-pressure bypass system, and a ventilator system extending from the exhaust side of the high-pressure turbine to the condenser, In the process of opening the heating valve of the high-pressure turbine and increasing the load, a switching load band is created that spans from the switching start load to the switching end load, and this period is controlled by the switching load change rate that incorporates the ability to follow the boiler side evaporation amount. A turbine load control method for a reheat steam turbine plant, characterized in that: 2. In claim 1, the switching start load and switching end load are set as functions of main steam pressure and temperature, reheat steam pressure and temperature, and condenser vacuum degree. Turbine load control method for reheat steam turbine plant. 3.% Permissible A method for controlling a turbine load in a reheat steam turbine plant according to claim 1, wherein the switching load change rate is set as a function of a turbine metal temperature. 4. In a reheat steam turbine plant equipped with a boiler with a reheater, a high-pressure bypass system, a low-pressure bypass system, and a ventilator system extending from the exhaust side of the high-pressure turbine to the condenser, the control valve of the high-pressure turbine is In the process of opening and increasing the load, a switching load band is established from the switching start load to the switching end load, and during this period, the switching load change rate is determined by taking into account the ability to follow the boiler side evaporation amount and the turbine life consumption. A load control method for a reheat steam turbine plant, characterized in that the load is controlled by a reheat steam turbine plant. 5. In a reheat steam turbine plant equipped with a boiler with a reheater, a high-pressure bypass system, a low-pressure bypass system, and a ventilator system extending from the exhaust side of the high-pressure turbine to the condenser, the control valve of the high-pressure turbine is In the process of opening and increasing the load, a switching load band is established from the switching start load to the switching end load, and during this period, a switching load is established that takes into account boiler side evaporation follow-up ability, turbine life consumption, and boiler load change tolerance. A turbine load control method for a reheat steam turbine flint characterized by controlling by a rate of change.
JP10658284A 1984-05-28 1984-05-28 Turbine load control method for reheating steam turbine plant Pending JPS60252108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10658284A JPS60252108A (en) 1984-05-28 1984-05-28 Turbine load control method for reheating steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10658284A JPS60252108A (en) 1984-05-28 1984-05-28 Turbine load control method for reheating steam turbine plant

Publications (1)

Publication Number Publication Date
JPS60252108A true JPS60252108A (en) 1985-12-12

Family

ID=14437201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10658284A Pending JPS60252108A (en) 1984-05-28 1984-05-28 Turbine load control method for reheating steam turbine plant

Country Status (1)

Country Link
JP (1) JPS60252108A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793611A (en) * 1980-12-02 1982-06-10 Hitachi Ltd Turbine starting controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5793611A (en) * 1980-12-02 1982-06-10 Hitachi Ltd Turbine starting controller

Similar Documents

Publication Publication Date Title
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
WO1983001651A1 (en) Hrsg damper control
JP2000161014A (en) Combined power generator facility
JPH01285608A (en) Method and device of operating combined plant
US4007595A (en) Dual turbine power plant and a reheat steam bypass flow control system for use therein
JPS6123366B2 (en)
JPS61101608A (en) Load control of steam turbine in complex cycle generation plant
JPS60252108A (en) Turbine load control method for reheating steam turbine plant
US3965674A (en) Combined cycle electric power plant and a gas turbine having a backup control system with an improved feedforward analog speed/load control
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
GB2176248A (en) Turbine control
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPH02130202A (en) Combined plant
JPH08260911A (en) Restarting method and controller for uniaxial type combined cycle power plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
JPS6115244B2 (en)
JPS622129B2 (en)
JPS6239658B2 (en)
JPS6242123B2 (en)
JP2554704B2 (en) Turbine controller
JPH039004A (en) Control method and device for power generating plant