JPS6025165A - Battery - Google Patents

Battery

Info

Publication number
JPS6025165A
JPS6025165A JP58132588A JP13258883A JPS6025165A JP S6025165 A JPS6025165 A JP S6025165A JP 58132588 A JP58132588 A JP 58132588A JP 13258883 A JP13258883 A JP 13258883A JP S6025165 A JPS6025165 A JP S6025165A
Authority
JP
Japan
Prior art keywords
battery
electrode
porous
base body
polyacetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58132588A
Other languages
Japanese (ja)
Inventor
Kenji Shinozaki
研二 篠崎
Yukio Tomizuka
富塚 行雄
Akio Nojiri
昭夫 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58132588A priority Critical patent/JPS6025165A/en
Publication of JPS6025165A publication Critical patent/JPS6025165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the current efficiency and the energy efficiency of a battery by coating a conductive macromolecular substance on the entire surface of a porous thin molded body consisting of powder or the like of a compound having a high conductivity and a large effective surface area. CONSTITUTION:Powder or fiber of a member such as amorphous carbon black is molded into a sheet-like porous thin body having a high conductivity and a large effective surface area. The thus obtained porous member is used as a base body and a conductive macromolecular substance such as polyacetylene or polypyrrole is either stuck to the surface of the base body or packed into the base body, thereby making an electrode. After that, a battery is assembled by using a metal such as lithium or sodium as a counter electrode. The thus obtained battery has high coulomb efficiency and energy efficiency, decreased seld discharge and an increased cycle life. Therefore disadvantages which may be caused when a porous filmlike polyacetyle is used as an electrode can be avoided.

Description

【発明の詳細な説明】 本発明は高い爾1流効率及びエネルギー効率を有し且つ
自己放電が小さく、サイクル寿命の長い電池と提供ぜん
とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to provide a battery having high current efficiency and energy efficiency, low self-discharge, and long cycle life.

近時、多孔質フィルム状ポリアセチレンを電極として使
用することにより再充電可能にして高エネルギー密度を
有する電池を製造しうることが特開昭56−13646
9号公報により知られている。
Recently, it has been reported in JP-A-56-13646 that it is possible to manufacture rechargeable batteries with high energy density by using porous film-like polyacetylene as electrodes.
It is known from Publication No. 9.

然しなからこの電池は自己放電が大きく、サイクル寿命
が短いという欠点を有するものであった。即ち、充if
、後の放1a時間が10〜20時間経過すると残存容赦
が初期の40〜50チに低下する。又6%ドープに相当
する充電によるサイクル寿命は約40回程度であり、こ
のま\では電池としての実用に供しえないものであった
。これらの問題点について解明することは出来えないが
、サイクル寿命については充電過程においてドーピング
反応以外の非可逆反応が同時にある割合でおきるため、
これがぼりアセチレンフィルムの劣化を進行せしめると
推定される。又自己放電は開路状態において脱ドーピン
グ反応が進行するものであるが、これはポリアセチレン
の劣化には関係を及ばずものではなく、まだ十分に充放
mサイクルが可能なフィルムにおいてもか\る現象がお
こるからである。
However, this battery had the drawbacks of large self-discharge and short cycle life. That is, if
, after 10 to 20 hours of subsequent release 1a have elapsed, the remaining tolerance decreases to the initial level of 40 to 50 chi. Furthermore, the cycle life when charged with a charge equivalent to 6% doping was about 40 times, and the battery could not be put to practical use as it was. Although it is not possible to solve these problems, regarding cycle life, it is important to note that irreversible reactions other than doping reactions occur simultaneously at a certain rate during the charging process.
It is estimated that this accelerates the deterioration of the acetylene film. In addition, self-discharge is a dedoping reaction that progresses in an open circuit state, but this is not unrelated to the deterioration of polyacetylene, and this phenomenon occurs even in films that can still be sufficiently charged and discharged for m cycles. This is because it occurs.

本発明者はか\る現状に鑑み、上記の如き導電性高分子
物質を用いた電池の特性の向上について鋭意研究を行っ
た結果、電流効率とエネルギー効率を改善し、自己放電
を抑え、サイクル寿命を伸すなど数々の優れた性能を発
揮する電池を開発したもので、高い導電率並に大きな実
効表面積を有する物質の粉末或は繊維からなる多孔質薄
状成型体の全表面に導電性高分子物質を介在せしめた電
極を使用したことを特徴とするものである。
In view of the current situation, the present inventor has conducted intensive research on improving the characteristics of batteries using conductive polymer materials as described above, and as a result, has improved current efficiency and energy efficiency, suppressed self-discharge, and We have developed a battery that exhibits a number of excellent performances such as extending the lifespan.The entire surface of the porous thin molded body is made of powder or fiber of a material that has high conductivity and a large effective surface area. It is characterized by the use of an electrode with a polymer substance interposed therein.

本発明で電極の基体として用いる多孔質薄状成型体とし
ては高い導電率及び大きな実効表面積を有することが必
要であり、導電率としては10G(0cm)’以上のも
のが望ましい。又、実効表面積としては100 m2/
g以上のものが望ましく特に1000〜2000 m2
7gのものが好ましい。例えば不定形カーボンブラック
或はグラフアイFからなる粉体、繊維又は気相反応によ
りえたカーボンブラック或はグラファイトなどを公知の
手段によりシート、織布、不織布、フェルト等の形状に
成型したものである。特に好ましいものとしてポリアク
リロニトリル等の高分子系或はセルロース系、石油ピッ
チからのフェルト状又はペーパーシート状の活性炭素繊
維がよい。
The porous thin molded body used as the substrate of the electrode in the present invention needs to have high electrical conductivity and a large effective surface area, and the electrical conductivity is preferably 10 G (0 cm) or more. Also, the effective surface area is 100 m2/
g or more is desirable, especially 1000 to 2000 m2
7g is preferred. For example, powder made of amorphous carbon black or Grapheye F, fibers, or carbon black or graphite obtained by gas phase reaction is molded into the shape of a sheet, woven fabric, nonwoven fabric, felt, etc. by known means. . Particularly preferred are polymeric fibers such as polyacrylonitrile, cellulose fibers, and activated carbon fibers made from petroleum pitch in the form of felt or paper sheets.

又本発明において上記の多孔質成型体の表面又は内部な
どに介在せしめる導電性高分子物質としては、45リア
セチ1−・ン、ポリぎロール、ポリパラフェニレン、ポ
リノ母うフェニレンスルフイド、ポリアクリロニトリル
等であり、これらはフィルム状にて多孔it成型体面に
貼着するか又は粉末状のものを多孔質成型体内に含有せ
しめるか何れでもよい。
In the present invention, examples of the conductive polymer substance interposed on the surface or inside of the porous molded body include 45-lyacetylene, polygirol, polyparaphenylene, polyporous phenylene sulfide, and polyphenylene sulfide. Acrylonitrile, etc., may be applied in the form of a film to the surface of the porous IT molded body, or may be contained in powder form within the porous molded body.

これらの中で特にポリアセチレンが好ましく、このフィ
ルム状、粉末状1d J、polyScl挫pHを参照
して作られる。1 又、多孔質薄状成型体と上記の導電性高分子物質との比
率についてti特に限定するものではないが通常後者が
全車i[)10%〜50%、望ましくけ30%程度がよ
い。
Among these, polyacetylene is particularly preferred, and is produced in film form, powder form, 1d J, and polyScl strain pH. 1.Although there is no particular limitation on the ratio of the porous thin molded body to the conductive polymer material, the latter is usually 10% to 50%, preferably about 30%.

本発明において対極として使用する電極はリチウム、ナ
トリウム等の金属があげられるが、必ずしもこれらに限
定されるものではない。又両極とも上記の導電性高分子
物質を介在せしめた電極を使用することもli丁能であ
る。
The electrode used as a counter electrode in the present invention includes metals such as lithium and sodium, but is not necessarily limited to these. It is also possible to use electrodes in which the above-mentioned conductive polymer substance is interposed for both electrodes.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例(1) A、電極の製造 200 m、lのガラス製反応容器に、実効表面積16
00 m”/9、かさ密度0.05 g/cm3を有す
るフェルト状活性炭素繊維(横6 an X 縦15 
Cm×厚さ3咽、重量約3g)を入れ、窒素ガスにて十
分に空気と置換した。これにトルエン20m1、テトラ
シトキンチタニウム3 mmol 、)リエチルアルミ
ニウム12mmolを入れ、触媒溶液を調製した。反応
容器を一78℃に冷却し、窒素ガスを排気した後、触媒
溶液を活性炭素繊維に浸みこませ、次いで1気圧の精製
アセチレンガスを導入した。かかる操作により活性炭素
繊維の表面にはフィルム状のポリアセチレンが生成し、
また繊維の内部にも繊維とからみ合った状態でポリアセ
チレンが生成した。5分後ア七チレンガスを排気し反応
全停止させた。次いで精製トルエン40m1により繊維
状及びフィルム状のポリアセチレンを6回洗浄した後、
真空乾燥した。
Example (1) A. Production of electrode A 200 m, l glass reaction vessel with an effective surface area of 16
Felt-like activated carbon fiber (width 6 an x length 15
Cm×thickness: 3 mm, weight: approximately 3 g), and the air was sufficiently replaced with nitrogen gas. 20 ml of toluene, 3 mmol of tetracytoquine titanium, and 12 mmol of ethylaluminum were added to prepare a catalyst solution. After the reaction vessel was cooled to -78° C. and the nitrogen gas was evacuated, the activated carbon fibers were impregnated with the catalyst solution, and then purified acetylene gas at 1 atmosphere was introduced. This operation produces a film of polyacetylene on the surface of the activated carbon fiber,
Polyacetylene was also generated inside the fibers in a state of being entangled with the fibers. After 5 minutes, the ethylene gas was evacuated to completely stop the reaction. Next, after washing the fibrous and film-like polyacetylene six times with 40 ml of purified toluene,
Vacuum dried.

而して得られた活性炭素繊維には0.6gのポ5− リアセチレンがf)1 着した。The activated carbon fiber thus obtained contained 0.6 g of po5- Liacetylene arrived f)1.

B、電池試験 上記にてjli□ノ造した7ぎりアセチレン付着活性炭
素繊維から1 cm”を明り出し、ポリアセチレンの未
付着部分を剥ぎ取り、これをポリアセチレン電極として
用いた(ポリアセチレンJit6.6肩2炭素繊維量8
.4mり)この¥M1極の対極として金属リチウムをニ
ッケル網に機械的に圧着せしめた1側2のものを作製し
た。
B. Battery test 1 cm" was exposed from the 7-giri acetylene-adhered activated carbon fiber prepared above, and the unadhered part of polyacetylene was peeled off, and this was used as a polyacetylene electrode (polyacetylene Jit6.6 Shoulder 2). Carbon fiber amount 8
.. As a counter electrode to this ¥M1 electrode, a 1 side 2 electrode was prepared in which metallic lithium was mechanically bonded to a nickel mesh.

このリチウムm枠のににポリプロピレン不織布、ポリア
セチレン電極、白金板(lctn”)を順次載置し機械
的に密着せしめた。次いでこれを過塩素酸リチウム1.
0モル/aのプルピレンカーフ1−ネート溶液を満たし
た直径1.5 cmのガラス管内に入れ、上記のニッケ
ル網及び白金板から夫々リード線をとり出しガラス容器
を密封した。
A polypropylene nonwoven fabric, a polyacetylene electrode, and a platinum plate (lctn'') were sequentially placed on this lithium frame and mechanically adhered to it.
The sample was placed in a glass tube with a diameter of 1.5 cm filled with a 0 mol/a solution of propylene calf 1-nate, and lead wires were taken out from the nickel mesh and platinum plate, respectively, and the glass container was sealed.

なお、この操作はすべてアルゴンガス雰囲気中にて行っ
た。
Note that all of these operations were performed in an argon gas atmosphere.

斯くして得た電池の開路電圧は約3がシトであった。又
この電池について1mA定!!流で充放−C+ − m1両極間電圧3がシトで放電終止としてクーロン効率
を測定した。その結果は第1表に示す通りである。
The open circuit voltage of the battery thus obtained was approximately 3. Also, this battery is fixed at 1mA! ! The coulombic efficiency was measured by charging and discharging with a current of -C+-m1 and discharging ended when the voltage between the two electrodes reached 3. The results are shown in Table 1.

なお放電時の平均電圧は3.5vである。Note that the average voltage during discharge is 3.5V.

また0、3mA定電流にて60分充電し放電終止を3V
にて規制してサイクル試験を行ったところ100サイク
ル程度までは充電未電位及び充放電曲線の形状について
は侮辱変化がないが110サイクルから充電未電位の上
昇、放電時の平均電圧に低下が認められた。また1 m
Aの定電流にて60分充電した後一定時間放置し残存容
量を測定した。その結果は第2表に示す通りである。
Also, charge at 0.3mA constant current for 60 minutes and discharge at 3V.
When a cycle test was conducted under the following conditions, there was no significant change in the uncharged potential or the shape of the charge/discharge curve until about 100 cycles, but from 110 cycles an increase in the uncharged potential and a decrease in the average voltage during discharge were observed. It was done. Also 1 m
After charging at a constant current of A for 60 minutes, the battery was left for a certain period of time and the remaining capacity was measured. The results are shown in Table 2.

比較例 A、電極の製造 200 mlのガラス製反応容器にトルエン20m1゜
テトラブトキシチタニウム3mmol、)リエチルアル
ミニウム12mmolを入れて触媒溶液を調製した。な
おこの操作はすべて窒素雰囲気にて行った。次いで実施
例と同様にしてアセチレンガスを導入して反応り器のガ
ラス壁面にポリアセチレンフィルムを合成し、5分後排
気した。次いで精製トルエンにて生成したフィルムを数
回洗浄した後、真空乾燥I−た。而して得た厚さ約0.
1mのシス型7桿リア七チレンフイルムとから1crn
”を切り出し比較例幇、池に使用する電極としたO B、電池試験 上記4?リアセチレン?lf、 l1liの対極として
実施例と同様のリチウム電極を用いて実施例と同様にし
て電池を作製した。
Comparative Example A, Electrode Production A catalyst solution was prepared by placing 20 ml of toluene, 3 mmol of tetrabutoxytitanium, and 12 mmol of ethylaluminum into a 200 ml glass reaction vessel. Note that all of these operations were performed in a nitrogen atmosphere. Next, acetylene gas was introduced in the same manner as in Examples to synthesize a polyacetylene film on the glass wall of the reactor, and the reactor was evacuated after 5 minutes. The resulting film was then washed several times with purified toluene and then vacuum dried. The resulting thickness was approximately 0.
1 m of cis-type 7-rod rear 7-ethylene film and 1 crn
A comparative example was prepared using the same lithium electrode as in the example as the counter electrode for the battery test 4. did.

なおポリアセチレンフィルムの重量は約4 m&、開路
電圧は2.5vを示した。
The weight of the polyacetylene film was approximately 4 m&, and the open circuit voltage was 2.5 V.

この電池について実施例と同様にクーロン効率及び自己
放電試験を行った。その結果は第1表及び第2表に夫々
併記した。
Coulombic efficiency and self-discharge tests were conducted on this battery in the same manner as in the examples. The results are listed in Tables 1 and 2, respectively.

また0、3mA定t’lす’、 M+:にて60分間充
眠し、放電終止は2.5Vで規、 Hill してサイ
クル試験を行ったところ、40サイクル附近から充電未
電位の急激な上昇がはじまり、充放電が不可能となった
In addition, when the battery was charged for 60 minutes at 0.3mA constant t'l', M+:, and the end of discharge was set at 2.5V, a cycle test was performed with Hill, and from around the 40th cycle, there was a sudden change in the uncharged potential. The battery began to rise and charging and discharging became impossible.

第 1 表 第 2 表 9− 上記表から明らかな如く本発明電池は高いクーロン効率
を有L、エネルギー効率も高く、シかも自己放?M6が
少く長いザイクル痔命を有する等顕著な効果を有する。
Table 1 Table 2 Table 9 - As is clear from the above table, the battery of the present invention has high coulombic efficiency, high energy efficiency, and self-emission. It has remarkable effects such as having fewer and longer cycle hemorrhoids in M6.

出願人代理人 弁理士 鈴 江 武 彦Ifl−Applicant's agent: Patent attorney Suzue Takehiko Ifl-

Claims (1)

【特許請求の範囲】[Claims] 電極として高い導電率並に大きな実効表面積全有する物
質の粉末成は繊維からなる多孔質薄状成型体の全表面に
導電性高分子物質を介在せしめてなる電極を用いたこと
を特徴とする電池。
A battery characterized in that an electrode is made of a porous thin molded body made of powder of a substance having high conductivity and a large effective surface area, and a conductive polymer substance is interposed on the entire surface of the porous thin molded body. .
JP58132588A 1983-07-20 1983-07-20 Battery Pending JPS6025165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132588A JPS6025165A (en) 1983-07-20 1983-07-20 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132588A JPS6025165A (en) 1983-07-20 1983-07-20 Battery

Publications (1)

Publication Number Publication Date
JPS6025165A true JPS6025165A (en) 1985-02-07

Family

ID=15084847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132588A Pending JPS6025165A (en) 1983-07-20 1983-07-20 Battery

Country Status (1)

Country Link
JP (1) JPS6025165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611405A1 (en) * 1987-02-25 1988-09-02 Bridgestone Corp ELECTRICAL BATTERY WITH COLLECTOR ENROBE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2611405A1 (en) * 1987-02-25 1988-09-02 Bridgestone Corp ELECTRICAL BATTERY WITH COLLECTOR ENROBE

Similar Documents

Publication Publication Date Title
US4865931A (en) Secondary electrical energy storage device and electrode therefor
Taguchi et al. Fibrous polyaniline as positive active material in lithium secondary batteries
US4029854A (en) Halogen electrode
US4472489A (en) Polymeric electrode coated with reaction product or organosulfur compound
Yata et al. Studies of porous polyacenic semiconductors toward application III. Characteristics of practical batteries employing polyacenic semiconductive materials as electrodes
JPS6025165A (en) Battery
JPS61163562A (en) Secondary cell
US5691085A (en) Non-sintered electrode for an alkaline electrolyte secondary cell
JPH0695458B2 (en) Secondary battery
JPS62103976A (en) Cathode plate for enclosed lead storage battery
JPS6355853A (en) Manufacture of electrode for plastic cell
JP2734523B2 (en) Battery separator
JP2993272B2 (en) Reversible electrode
JPS61206170A (en) Secondary battery and its electrode
JPS63152867A (en) Polyaniline
JPS6282649A (en) Secondary battery
JPS62232855A (en) Iodine battery
JPH01134856A (en) Secondary battery
JPS60262355A (en) Secondary battery
JPS6139462A (en) Positive pole and manufacture thereof
JPS61279059A (en) Nonaqueous secondary battery
JPH01134855A (en) Secondary battery
JPS59184460A (en) Secondary battery
JPH01167955A (en) Na-s secondary battery
JPS59228373A (en) Secondary battery