JPS60251315A - Catalytic combustion heating furnace and method of controlling same - Google Patents

Catalytic combustion heating furnace and method of controlling same

Info

Publication number
JPS60251315A
JPS60251315A JP59106238A JP10623884A JPS60251315A JP S60251315 A JPS60251315 A JP S60251315A JP 59106238 A JP59106238 A JP 59106238A JP 10623884 A JP10623884 A JP 10623884A JP S60251315 A JPS60251315 A JP S60251315A
Authority
JP
Japan
Prior art keywords
combustion
amount
furnace
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59106238A
Other languages
Japanese (ja)
Other versions
JPH068685B2 (en
Inventor
Toshiki Furue
古江 俊樹
Kenji Arisaki
有崎 虔治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP59106238A priority Critical patent/JPH068685B2/en
Publication of JPS60251315A publication Critical patent/JPS60251315A/en
Publication of JPH068685B2 publication Critical patent/JPH068685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/12Controlling catalytic burners

Abstract

PURPOSE:To keep a uniform heating function and reduce the coefficient of excess air to improve the thermal efficiency by installing a number of catalytic burner on the side surface of combustion furners on the side surface of combustion furnace and providing a radiation heating plate on the front surface of each catalytic burner. CONSTITUTION:A fuel (d) and air (e) are mixed in a diffuser 26 and burn at a combustion catalyst 21 through an igniter 19. A gas emitted from the combustion catalyst layer 21 heats a radiation heating plate 22 to a high temperature to increase a furnction to conduct rediation heat. Further, the combustion high-temperature gas is uniformly flowed into the furnace. In this manner, the provision of the radiation heating plate 22 causes the burner outlet gas to have a high temperature and shortens the flame length. Hence, it becomes possible to largely shorten the interval between the heating pipe 2 and the furnace wall and to make the construction of the furnace compact. This interval can be determined by the number of the catalytic burners 13. The gas flowing into the furnace heats the convection heating pipe 2 and a heat recovery heating pipe 4, and thereafter is exhausted as a combustion exhaust gas (a).

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、触媒燃焼加熱炉及びその制御方法に係り、特
にNOxの発生を抑えて熱効率を高め、かつ低カロリー
燃料が使用可能な加熱炉およびその燃焼制御方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a catalytic combustion heating furnace and a method for controlling the same, and particularly to a heating furnace and a heating furnace that suppress the generation of NOx, increase thermal efficiency, and can use low-calorie fuel. The present invention relates to a combustion control method.

(発明の背景) 加熱炉は、単なる可燃性ガスからなる焼却用流体の加熱
用から、分解炉または改質炉等のように反応炉として使
用されるもの、熱処理炉、均熱炉のような物体加熱用の
炉なと種々のものが知られ、その使用目的に応じてボッ
クス型、直立円筒型、セル型等の形状のものがある。こ
れらの加熱炉では、どの形式のものでも燃料をバーナで
燃焼し、燃焼熱により加熱を行っている。工業技術の進
展に伴い、加熱炉の条件が高温、高圧化するに伴い、加
熱炉に要求される性能としても、加熱を均一にし、加熱
管の温度の上昇をその使用限界を越えないように抑える
こと、炉の熱効率を高くして燃料の低減を図ること、低
質で安価な燃料を使用可能にし、コスト低減を図ること
、また公害防止の面より高温域で発生する窒素酸化物の
発生を抑制することなどが要求されている。
(Background of the Invention) Heating furnaces range from those used simply for heating incineration fluids made of flammable gas to those used as reaction furnaces such as cracking furnaces and reforming furnaces, and those used as reaction furnaces such as heat treatment furnaces and soaking furnaces. Various types of furnaces for heating objects are known, and depending on the purpose of use, there are box-shaped, upright cylindrical, cell-shaped, and other shapes. In any type of heating furnace, fuel is combusted in a burner and heating is performed using the heat of combustion. With the advancement of industrial technology, the conditions for heating furnaces are becoming higher in temperature and pressure, and the performance required of heating furnaces is to ensure uniform heating and to prevent the rise in temperature of the heating tube from exceeding its usage limit. In order to reduce the amount of nitrogen oxides that are generated in high temperature ranges, it is possible to reduce the amount of nitrogen oxides that are generated in high temperature ranges in order to prevent pollution. There are demands to suppress it.

代表的な加熱炉であるエチレン分解炉、水素製運用改質
炉では、被加熱流体(原料流体)の温度は800℃から
850℃、さらにはそれ以上の高温が望まれているため
、第1図に示すようなセル型の炉で、炉側面に多数のバ
ーナ5を配置し、バーナとして火炎が短い短炎輻射型の
ものが使用されている。なお、図中2は輻射加熱管、3
は対流加熱管、4は熱回収加熱管、6は燃焼用空気管、
7は燃料管、8は燃焼排ガス〜9は燃料制御弁、10は
空気制御弁、11は温度制御器、12は比例設定器であ
る。
In typical heating furnaces such as ethylene cracking furnaces and hydrogen operating reforming furnaces, the temperature of the fluid to be heated (raw material fluid) is desired to be 800°C to 850°C, or even higher. This is a cell-type furnace as shown in the figure, with a large number of burners 5 arranged on the side of the furnace, and short-flame radiation type burners with short flames. In addition, 2 in the figure is a radiation heating tube, 3
is a convection heating tube, 4 is a heat recovery heating tube, 6 is a combustion air tube,
7 is a fuel pipe, 8 is a combustion exhaust gas, 9 is a fuel control valve, 10 is an air control valve, 11 is a temperature controller, and 12 is a proportional setting device.

一方、加熱炉における熱効率の損失の最も大きいものは
燃焼排ガスが持出す熱量、いわゆるスタックロスである
が、このロスは、燃焼用空気の過剰空気率により左右さ
れ、過剰空気率の増加と共に増える。このため熱効率の
向上は低過剰空気でいかに燃焼させるかにかかっている
。この低過剰空気率での燃焼はNOxの発生を抑制する
効果があるが、空気過剰率を低下させると必然的に火炎
が長くなり、均一加熱ができなくなる。このため、第1
図の加熱炉の短炎輻射バーナでは最低1.10、一般に
は1.20程度の空気比を必要としている。
On the other hand, the largest loss in thermal efficiency in a heating furnace is the amount of heat taken out by the combustion exhaust gas, so-called stack loss, but this loss is influenced by the excess air content of the combustion air and increases as the excess air content increases. For this reason, improving thermal efficiency depends on how to perform combustion with low excess air. Combustion at this low excess air ratio has the effect of suppressing the generation of NOx, but when the excess air ratio is reduced, the flame inevitably becomes longer and uniform heating becomes impossible. For this reason, the first
The short flame radiant burner of the heating furnace shown in the figure requires an air ratio of at least 1.10, and generally about 1.20.

一方、熱効率の向上策として、燃焼排ガスの再循環を行
なうことが知られているが、やはり空気過剰率が低いた
めに均一加熱ができず、有効な手段とはなっていない。
On the other hand, it is known to recirculate combustion exhaust gas as a measure to improve thermal efficiency, but it is not an effective means because uniform heating cannot be achieved due to the low excess air ratio.

また使用する燃料が、1200Kca1/Nffr以上
の発熱量を持っていないと、失火等が生じて安定な燃焼
ができなことから、過剰空気率が低いと燃焼がさらに不
安定となり、燃料も良質なものが必要となる。
Also, if the fuel used does not have a calorific value of 1200Kca1/Nffr or more, misfires will occur and stable combustion will not be possible.If the excess air ratio is low, combustion will become even more unstable, and the fuel will not be of good quality. Something is needed.

一方、熱処理炉等は、時間と共に炉内の温度を変動させ
る必要があることから、廃熱回収装置により、燃焼ガス
の熱を回収しても、時間毎の変動のために回収熱の利用
が困難で、十分な熱回収が行なわれないという問題があ
る。
On the other hand, in heat treatment furnaces, etc., it is necessary to change the temperature inside the furnace over time. There is a problem that it is difficult and insufficient heat recovery is carried out.

(発明の目的) 本発明の目的は、上記の従来技術の欠点をなくし、均一
な加熱性能を保ち、空気過剰率を低減して熱効率を向上
させ、かつ燃料量を低減し、低質の燃料をも使用可能に
する加熱炉を提供することにある。
(Objective of the Invention) The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, maintain uniform heating performance, reduce excess air ratio to improve thermal efficiency, reduce fuel amount, and use low-quality fuel. The object of the present invention is to provide a heating furnace that can also be used.

(発明の概要) 要するに本発明は、燃焼炉側面に触媒燃焼器を多数設置
し、触媒燃焼器前面に輻射加熱板を設けて均一加熱性能
を保持し、過剰空気比の低減を可能にしたものである。
(Summary of the invention) In short, the present invention has a large number of catalytic combustors installed on the side of the combustion furnace, and a radiant heating plate provided in front of the catalytic combustors to maintain uniform heating performance and make it possible to reduce the excess air ratio. It is.

また本発明は、上記触媒燃焼器の設置により、排ガスの
再循環を可能とし、排ガス中の0□の制御、再循環ガス
量の調整により、低NOx、高効率燃焼を可能とし1、
燃料の低減を図ったものである。すなわち本発明の触媒
燃焼加熱炉の制御方法は、触媒燃焼反応器と燃焼排ガス
の再循環系統を有する加熱炉の制御方法において、燃焼
排ガス中の酸素量および燃焼ガス温度を検知し、該酸素
量および燃焼ガス温度が設定値になるように、燃焼用空
気量を調整するとともに、・ 予めプログラムされた前
記酸素量、燃焼用空気量および燃料量の関係から該燃料
量が最少になるように排ガス循環量を制御することを特
徴とする。
In addition, the present invention enables recirculation of exhaust gas by installing the above-mentioned catalytic combustor, and enables low NOx and high efficiency combustion by controlling 0□ in the exhaust gas and adjusting the amount of recirculated gas.
The aim is to reduce fuel consumption. That is, the method for controlling a catalytic combustion heating furnace of the present invention is a method for controlling a heating furnace having a catalytic combustion reactor and a combustion exhaust gas recirculation system, by detecting the amount of oxygen in the combustion exhaust gas and the temperature of the combustion gas, and detecting the amount of oxygen in the combustion exhaust gas and the temperature of the combustion gas. The combustion air amount is adjusted so that the combustion gas temperature and combustion gas temperature reach the set values, and the exhaust gas is It is characterized by controlling the amount of circulation.

(発明の実施例) 本発明の好適な実施例を第2図および第3図により説明
する。
(Embodiments of the Invention) A preferred embodiment of the present invention will be described with reference to FIGS. 2 and 3.

図において、加熱炉本体1は、被加熱流体が流れる対流
伝熱管3と、輻射加熱管2と、熱効率向上のための加熱
管4とを内蔵し、輻射加熱管2を加熱するために、炉内
両壁に触媒燃焼バーナ13が多段配置されている。触媒
燃焼バーナ13には、燃料管7および燃焼用空気管6か
ら燃料および燃焼用空気が送り込まれる。この触媒燃焼
バーナ13の詳細を第3図に示すが、この燃焼器は、燃
料と空気が導入される、漏斗状のディフューザー26と
、燃焼用ガス流路に順次設けられた逆火防止板20、着
火装置19、燃焼触媒(層)21、および輻射加熱板2
2とからなり、温度検出器25により検出された燃焼触
媒21の出口温度が所定温度以下になったときに点火装
置板24により着火装置19を作動させる点火制御機器
を有している。このような構成において、燃料と空気は
、ディフューザ26で混合され、着火装置19を通り、
燃焼触媒21で燃焼する。着火装置19としては、セラ
ミ・ツクヒータが好ましく用いられるが、点火プラグに
よる点火、パイロ・ノドバーナによる点火等、燃料に応
して一般の点火装置を使用してもよい。燃料触媒21で
は、H2ガスを多く含む燃料では触媒温度が100〜3
00℃、その他のガスでは300〜500℃で安定燃焼
域に入るので、これらの所定温度まで昇温したら着火装
置19は停止してもよい。液体燃料を用いる場合はスタ
ートアップ用ガスを供給し、触媒の昇温を行なうことが
望ましい。
In the figure, a heating furnace main body 1 includes a convection heat exchanger tube 3 through which a fluid to be heated flows, a radiant heating tube 2, and a heating tube 4 for improving thermal efficiency. Catalytic combustion burners 13 are arranged in multiple stages on both inner walls. Fuel and combustion air are fed into the catalytic combustion burner 13 from the fuel pipe 7 and the combustion air pipe 6. The details of this catalytic combustion burner 13 are shown in FIG. 3, and this combustor includes a funnel-shaped diffuser 26 into which fuel and air are introduced, and a flashback prevention plate 20 that is sequentially provided in the combustion gas flow path. , ignition device 19, combustion catalyst (layer) 21, and radiant heating plate 2
2, and has an ignition control device that activates the ignition device 19 with the ignition device plate 24 when the outlet temperature of the combustion catalyst 21 detected by the temperature detector 25 becomes below a predetermined temperature. In such a configuration, fuel and air are mixed in the diffuser 26, passed through the igniter 19,
It is combusted by a combustion catalyst 21. As the ignition device 19, a ceramic heater is preferably used, but a general ignition device may be used depending on the fuel, such as ignition using a spark plug or ignition using a pyro-nodburner. In the fuel catalyst 21, the catalyst temperature is 100 to 3 when using fuel containing a large amount of H2 gas.
Since the stable combustion range is reached at 00° C. and 300 to 500° C. for other gases, the ignition device 19 may be stopped when the temperature rises to these predetermined temperatures. When using liquid fuel, it is desirable to supply startup gas to raise the temperature of the catalyst.

燃焼触媒21としては、例えばAl2O,板に0.5%
パラジウムを担持させた板状の触媒をガス流れに沿って
積層したものが使用されるが、本発明は触媒種、構造な
どに限定されるものではない。このような触媒について
は、既に実用化段階にあるので種々のものを選択するこ
とができる。燃焼触媒層21を出たガスは輻射加熱板2
2を高温に加熱し、加熱管2への輻射伝熱性能を増加さ
せ、かつ燃焼高温ガスの炉内への均等な流入を行わせる
。輻射加熱板21はセラミツク層が好ましいが、耐熱性
を有するものであれば他の材質のものでもよい。このよ
うに輻射加熱板22を設けることにより、バーナ出口ガ
スが高温になり、火炎が短か(なるため、加熱管2と炉
壁との間隔を大幅に短かくすることかでき、炉をコンパ
クト化することができる。この間隔は触媒燃焼バーナ1
3の数によって決定することができ、従来のバーナのよ
うに火炎長さの影響を受けずに、単純にコスト面を考慮
して決定すればよい。炉内へ流入したガスは、対流部で
対流加熱管2および熱回収加熱管4を加熱した後、燃料
排ガス8として排気される。
As the combustion catalyst 21, for example, Al2O, 0.5% on the plate
Although plate-shaped catalysts on which palladium is supported are stacked along the gas flow, the present invention is not limited to the catalyst type or structure. Since such catalysts are already in the practical stage, a variety of catalysts can be selected. The gas leaving the combustion catalyst layer 21 is transferred to the radiant heating plate 2
2 to a high temperature to increase the radiation heat transfer performance to the heating tube 2 and to uniformly flow the combustion hot gas into the furnace. The radiant heating plate 21 is preferably made of a ceramic layer, but may be made of other materials as long as it has heat resistance. By providing the radiant heating plate 22 in this way, the burner outlet gas becomes high temperature and the flame becomes short (as a result, the distance between the heating tube 2 and the furnace wall can be significantly shortened, making the furnace more compact. This interval can be
It can be determined by the number 3, and can be determined simply by considering the cost, without being affected by the flame length as in conventional burners. The gas flowing into the furnace heats the convection heating tube 2 and the heat recovery heating tube 4 in the convection section, and then is exhausted as fuel exhaust gas 8.

一般に加熱炉の熱効率は80%程度であり、排ガス温度
は250℃〜300℃であるが、熱回収用の被加熱対象
がない場合は排ガス温度はさらに高温となり、例えば、
焼鈍炉等では排ガス温度が800℃となり、熱効率が3
0%以下となることがある。このため、本発明の制御方
法においては排ガス8の一部を再循環し、この再循環ガ
スに、燃料に必要な空気を混合し、混合ガスを触媒燃焼
バーナの燃焼用空気として使用している。このような排
ガス再循環が可能になるのは、バーナに触媒燃焼装置を
使用し、低過剰空気比でも燃焼できるようにしたためで
ある。再循環ガスとの混合空気は、空気に比べて酸素濃
度が低いために、一般バーナでの空気燃焼に比べて大容
量となり、バーナの吹消えまたは火炎の延長を生じるが
、触媒燃焼バーナの場合は、触媒の接触面積でこれを補
うために、このようなトラブルはなくなる。本発明者等
の試験結果では、本発明における触媒面積当たりの燃焼
熱量は、例えば600℃で30X10 Kcal / 
n(h以上あり、触媒層の大きさは非密に小さくてすむ
ことがわかった。
Generally, the thermal efficiency of a heating furnace is about 80%, and the exhaust gas temperature is between 250°C and 300°C, but if there is no object to be heated for heat recovery, the exhaust gas temperature will be even higher.
In an annealing furnace, etc., the exhaust gas temperature is 800℃, and the thermal efficiency is 3.
It may be less than 0%. Therefore, in the control method of the present invention, a part of the exhaust gas 8 is recirculated, air necessary for fuel is mixed with this recirculated gas, and the mixed gas is used as combustion air for the catalytic combustion burner. . This exhaust gas recirculation is possible because a catalytic combustion device is used in the burner, which allows combustion even at a low excess air ratio. Because the air mixed with recirculated gas has a lower oxygen concentration than air, it has a larger capacity than air combustion in a general burner, causing burner blowout or flame extension, but in the case of a catalytic combustion burner. Since this is compensated for by the contact area of the catalyst, such troubles disappear. According to the test results of the present inventors, the amount of combustion heat per catalyst area in the present invention is, for example, 30×10 Kcal/at 600°C.
n(h or more), and the size of the catalyst layer can be made extremely small.

本発明を効果的に実施するには、燃焼ガスの酸素(0□
)を02測定器23にて検知し、この0□濃度が一定と
なるように空気制御弁16により燃焼用空気量を制御す
る。この02の設定値は、燃料種、炉内温度、被加熱物
の吸収熱量により設定されるが、エチレン分解炉等のよ
うな高温、高吸収熱量の場合は1〜2%程度、焼鈍炉等
のような比較的低温で、吸収熱量が少ない場合は4〜5
%程度が好ましい。
To effectively carry out the present invention, oxygen (0□
) is detected by the 02 measuring device 23, and the amount of combustion air is controlled by the air control valve 16 so that this 0□ concentration is constant. The set value of 02 is set depending on the fuel type, the temperature inside the furnace, and the amount of heat absorbed by the object to be heated, but in the case of high temperature and high amount of absorbed heat such as in an ethylene decomposition furnace, it is about 1 to 2%, and in the case of an annealing furnace, etc. 4 to 5 when the temperature is relatively low and the amount of absorbed heat is small.
% is preferable.

本発明においては、燃焼ガス中の酸素量の制御下におい
て、加熱管2を通る被加熱流体の出口温度または燃焼ガ
ス温度を検出し、この温度により燃料供給量を制御弁9
により制御するとともに、燃料量制御を同時に、この温
度により、あらかじめプログラムされたコンピュータ再
循環ガス量制御器15により、燃料量を最少とする再循
環ガス量を算出し、その値になるように排ガス再循環量
を制御する。
In the present invention, the outlet temperature of the heated fluid passing through the heating pipe 2 or the combustion gas temperature is detected under the control of the amount of oxygen in the combustion gas, and the fuel supply amount is controlled by the control valve 9 based on this temperature.
At the same time, the computer recirculating gas amount controller 15 programmed in advance calculates the amount of recirculating gas that minimizes the amount of fuel based on this temperature, and at the same time controls the amount of fuel. Control the amount of recirculation.

第4図により、本発明における再循環ガス量制御の考え
方について説明する。第4図は、排ガス再循環量により
、燃料ガス中の02濃度、燃焼空気量、燃料量の変化を
定性的に示したものである。
The concept of recirculation gas amount control in the present invention will be explained with reference to FIG. FIG. 4 qualitatively shows changes in the 02 concentration in the fuel gas, the amount of combustion air, and the amount of fuel depending on the amount of exhaust gas recirculation.

燃料ガス温度一定の条件下に循環量を増加すると、0□
濃度の減少、燃料空気量の減少、燃料量の減少を生じる
。02濃度が設定値レベルまで低下すると制御系を働か
せ、0□濃度を最少値に制御するため、空気量の増加を
生じる。しかし、循環ガスの持込み熱量の増加が空気量
の予熱に必要な熱量の増加より多い範囲では引続き減少
し、最少値に達した後、増加をはじめる。この最少値を
与える循環量は、炉のヒートバランスおよび02バラン
スにより、計算によりあらかじめ予測することができる
。すなわち、0□バラン・スよりここに、燃焼ガス量=
循環ガス量+f(空気量、燃料量)・・・(2)燃料消
費02量=f(燃料量、燃料種)・・・(3)ヒートバ
ランスより 燃焼ガス温度=((空気の持込み熱量+燃焼熱量+循環
ガス持込熱量)−(被加熱物吸収熱量子ヒートガス))
/(燃焼ガス単位量当りの熱容量)・・・(4)空気持
込み熱量=f(空気量、空気温度)・・・(5)燃料熱
量=f(燃料量、燃料種)・・・(6)循環ガス持込み
熱量=f(循環ガス量、循環ガス温度)・・・(7)で
あり、運転制御変数は、空気量、循環ガス量、燃料量の
3つで、他の因子は運転条件により設定もしくは決まる
ものである。上記3変数の内、空気量は02%制御によ
り(1)式を満足するように常時制御される。
When the circulation amount is increased under the condition that the fuel gas temperature is constant, 0□
This results in a decrease in concentration, a decrease in the amount of fuel air, and a decrease in the amount of fuel. When the 02 concentration falls to the set value level, the control system is activated to control the 0□ concentration to the minimum value, causing an increase in the amount of air. However, in a range where the increase in the amount of heat brought in by the circulating gas is greater than the increase in the amount of heat required to preheat the amount of air, the amount continues to decrease, and after reaching a minimum value, begins to increase. The circulation amount that provides this minimum value can be predicted in advance by calculation based on the heat balance and 02 balance of the furnace. In other words, from 0□balance here, the amount of combustion gas =
Circulating gas amount + f (air amount, fuel amount)... (2) Fuel consumption 02 amount = f (fuel amount, fuel type)... (3) Combustion gas temperature from heat balance = ((air carry-in heat amount + Combustion heat amount + circulating gas brought in heat amount) - (heated object absorption heat quantum heat gas))
/(Heat capacity per unit amount of combustion gas)... (4) Air carry-in heat amount = f (air amount, air temperature)... (5) Fuel heat amount = f (fuel amount, fuel type)... (6 ) Calorific value brought in by circulating gas = f (circulating gas amount, circulating gas temperature) (7), and the operation control variables are the air amount, circulating gas amount, and fuel amount, and the other factors are the operating conditions. It is set or determined by Among the above three variables, the air amount is constantly controlled by 02% control so as to satisfy equation (1).

空気量がまず制御されると、変数は、循環量と燃料量で
あり、一方を決めれば他方が決まり、燃料を最少にする
再循環量は(1)から(6)の関係式により算出するこ
とができる。
When the amount of air is controlled first, the variables are the amount of circulation and the amount of fuel, and determining one will determine the other, and the amount of recirculation that minimizes the fuel is calculated using the relational expressions (1) to (6). be able to.

この最少の燃料のための排ガス循環量は、02%設定、
燃焼ガス温度等により変化するので、各設定値での最適
点を計算し、循環量を制御することにより、常に最少の
燃料量とすることができる。
The exhaust gas circulation amount for this minimum fuel is set at 02%,
Since it changes depending on the combustion gas temperature, etc., by calculating the optimum point for each set value and controlling the circulation amount, the amount of fuel can always be kept at the minimum amount.

特に、熱処理炉等での温度設定値の変動がある場合は、
この温度設定値の変更による燃料の低減効果が大きい。
In particular, if there are fluctuations in the temperature setting in a heat treatment furnace, etc.
The effect of reducing fuel consumption by changing this temperature setting value is large.

第4図は、本発明による加熱炉制御システムの排ガス循
環量と制御要素の関係を示す図、第5図は、上記制御に
おける焼鈍炉の温度保持線図を示すものであるが、中温
保持の場合の最適循環量は第4図の(a)点で、高温保
持の場合は(b)点となる。循環量の最適点は燃焼ガス
設定温度の変動により変動するので、常に最適点での循
環量を計算し、その量に設定制御することにより、燃料
量を最少にすることができる。なお、第4図に示す(C
)点は、従来の循環を行なわない時の量であり、この量
に比較して、焼鈍炉においては50%以上の燃料量の低
減がはかれることが明らかである。
FIG. 4 is a diagram showing the relationship between the exhaust gas circulation amount and control elements of the heating furnace control system according to the present invention, and FIG. 5 is a diagram showing the temperature maintenance diagram of the annealing furnace in the above control. The optimum circulation amount in this case is point (a) in FIG. 4, and in the case of high temperature maintenance, it is point (b). Since the optimal point of the circulation amount varies depending on fluctuations in the combustion gas set temperature, the amount of fuel can be minimized by always calculating the circulation amount at the optimal point and controlling the setting to that amount. In addition, as shown in Fig. 4 (C
) is the amount when conventional circulation is not performed, and it is clear that compared to this amount, the amount of fuel can be reduced by 50% or more in the annealing furnace.

次に第6−b図は、本発明の制御方法を焼鈍炉27に適
用した場合のフローを示す図である。この場合、空気予
熱管2日、触媒燃焼炉29を別置した以外は第2図の装
置と同様であり、同一部分については第2図の符号の説
明が同様に参照される。なお、触媒燃焼器29は焼鈍器
27と一体化してもよく、触媒燃焼器の構造、基数は特
に限定されない。本システムを採用することにより、再
循環を行なわない場合に比べて大略50%の燃料を低減
することができる。
Next, FIG. 6-b is a diagram showing a flow when the control method of the present invention is applied to the annealing furnace 27. In this case, the apparatus is the same as the apparatus shown in FIG. 2, except that the air preheating pipe 2 and the catalytic combustion furnace 29 are separately provided, and the explanations of the reference numerals in FIG. 2 are similarly referred to for the same parts. Note that the catalytic combustor 29 may be integrated with the annealing device 27, and the structure and number of catalytic combustors are not particularly limited. By employing this system, fuel consumption can be reduced by approximately 50% compared to the case without recirculation.

第7図は、本発明を均熱炉へ適用した一実施例を示すも
のである。均熱加熱炉本体30内の対向する側壁には、
多数の触媒燃焼器13が設けられ、被加熱物31は両側
の触媒燃焼器13の間を通る間に前面の輻射加熱板22
の効、果により、均一に加熱される。
FIG. 7 shows an embodiment in which the present invention is applied to a soaking furnace. On the opposing side walls in the soaking furnace main body 30,
A large number of catalytic combustors 13 are provided, and while the object to be heated 31 passes between the catalytic combustors 13 on both sides, it passes through the radiant heating plate 22 on the front side.
Due to this effect, it is heated evenly.

この、装置によれば、無炎燃焼6壬より燃焼器を被加熱
物に近接して設置することができるの、で、装置はコン
パクトとなり、高効率の加熱を行なうことができる。ま
た、被加熱物が02をきらう場合、例えばカーボン繊維
製造用の灼熱炉は、エステル、アクリル等の繊維素材を
、高温で蒸し焼きにして製造するものであるが、この際
は0□の混入が許されないため、カーボン繊維製造とし
て使用の場合は、02の設定は0となり、さらにガス分
析計35を用いて、CO/GO□比を設定値となるよう
に空気制御弁16を調整して均熱炉内の温度により、再
循環ガス量、燃料量の制御を行なうことになる。この場
合も、ヒートバランス、02バランスより、最適循環量
をコンピュータで計算させることができる。
According to this device, the combustor can be installed closer to the object to be heated than in the case of flameless combustion, so the device is compact and can perform highly efficient heating. In addition, if the object to be heated does not contain 0□, for example, a scorching furnace for manufacturing carbon fiber is used to produce fiber materials such as ester or acrylic by steaming at high temperatures, but in this case, 0□ should not be mixed in. Therefore, when used for carbon fiber manufacturing, the setting of 02 is 0, and the air control valve 16 is adjusted using the gas analyzer 35 so that the CO/GO□ ratio becomes the set value. The amount of recirculated gas and fuel will be controlled depending on the temperature inside the thermal furnace. In this case as well, the computer can calculate the optimum circulation amount from the heat balance and 02 balance.

(発明の効果) 本発明によれば次の効果が得られる。(Effect of the invention) According to the present invention, the following effects can be obtained.

+11廃ガスを再循環することが可能となり、大幅な燃
料低減が可能になる。例えば焼鈍炉において温度設定変
化があり、廃熱回収を行なっていない場合に比べ、約5
0%以上の低減が可能である。
It becomes possible to recirculate +11 waste gas, making it possible to significantly reduce fuel consumption. For example, there is a change in temperature setting in an annealing furnace, and compared to when waste heat recovery is not performed, approximately 5
A reduction of 0% or more is possible.

(2)燃料として、発熱量が低く一般の燃焼器では使用
できない低カロリ燃料を使用することができる。
(2) As the fuel, it is possible to use a low-calorie fuel that has a low calorific value and cannot be used in a general combustor.

(3)常に燃料最少の条件で運転するので、無駄な燃料
消費をなくすことができる。
(3) Since the vehicle is always operated with the minimum amount of fuel, unnecessary fuel consumption can be eliminated.

(4)火炎が短かく、被加熱物との距離を短かくできる
ため、炉幅を最小にすることができ、かつ均等加熱性能
が向上する。
(4) Since the flame is short and the distance to the object to be heated can be shortened, the furnace width can be minimized and uniform heating performance is improved.

(5)低02燃焼であり、NOxの発生を制御すること
ができる。
(5) Low 02 combustion and NOx generation can be controlled.

(6) 02をゼロ以下とすることができ、かつ均熱性
に優れているので、カーボン繊維製造装置用として使用
することができる。
(6) Since it is possible to make 02 less than zero and has excellent heat uniformity, it can be used for carbon fiber manufacturing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の加熱炉の一例を示すセル型加熱炉の模
式図、第2図は、本発明になる加熱炉システムの実施例
を示す模式図、第3図は、本発明になる加熱炉用の触媒
燃焼バーナの模式図、第4図は、本発明による加熱炉制
御システムでの循環量と燃焼ガス02%、燃焼用空気量
、燃料量の関係を示す図、第5図は焼鈍炉での温度保持
線図、第5−a図は、従来の焼鈍炉のフローシート、第
6−b図は、本発明による加熱炉システムを焼鈍炉へ適
用した場合の実施例を示すフローシート、第7図は、本
発明による加熱炉システムを均熱炉へ適用した場合の実
施例を示すフローシートである。 ■・・・加熱炉本体、 2・・・輻射加熱管、 3・・
・対流加熱管、 4・・・熱回収加熱管、 5・・・バ
ーナー、6・・・燃焼用空気管、 7・・・燃料管、 
8・・・燃焼排ガス、 9・・・燃料制御弁、 lO・
・・空気制御弁、11・・・温度制御器、 12・・・
比例設定器、 13・・・触媒燃焼バーナ、 14・・
・再循環ガス制御弁、 15・・・再循環ガス制御器、
 16・・・空気制御弁、 17・・・再循環フロア、
 18・・・空気供給フロア、 19・・・着火装置、
 20・・・逆火防止板、 21・・・燃焼触媒、22
・・・輻射加熱板、 23・・・0□測定器、 24・
・・点火装置盤、 25・・・温度検出器、 26・・
・ディフューザ。 代理人 弁理士 川 北 武 長 第1図 I51U A絆評軸 第4図 鍔間 第6a図 第6b図
Fig. 1 is a schematic diagram of a cell-type heating furnace showing an example of a conventional heating furnace, Fig. 2 is a schematic diagram showing an embodiment of a heating furnace system according to the present invention, and Fig. 3 is a schematic diagram showing an embodiment of a heating furnace system according to the present invention. FIG. 4 is a schematic diagram of a catalytic combustion burner for a heating furnace, and FIG. Temperature holding diagram in an annealing furnace, Figure 5-a is a flow sheet of a conventional annealing furnace, and Figure 6-b is a flowchart showing an example of applying the heating furnace system according to the present invention to an annealing furnace. FIG. 7 is a flow sheet showing an embodiment in which the heating furnace system according to the present invention is applied to a soaking furnace. ■...Heating furnace body, 2...Radiation heating tube, 3...
・Convection heating tube, 4...Heat recovery heating tube, 5...Burner, 6...Combustion air pipe, 7...Fuel pipe,
8... Combustion exhaust gas, 9... Fuel control valve, lO・
...Air control valve, 11...Temperature controller, 12...
Proportional setting device, 13...Catalytic combustion burner, 14...
・Recirculation gas control valve, 15... Recirculation gas controller,
16... Air control valve, 17... Recirculation floor,
18... Air supply floor, 19... Ignition device,
20... Flashback prevention plate, 21... Combustion catalyst, 22
...Radiation heating plate, 23...0□ measuring device, 24.
...Ignition device panel, 25...Temperature detector, 26...
・Diffuser. Agent Patent Attorney Takenaga Kawakita Figure 1 I51U A Bond Review Axis Figure 4 Tsuba Figure 6a Figure 6b

Claims (2)

【特許請求の範囲】[Claims] (1)輻射加熱板を前面に有する触媒燃焼器を炉側壁に
多段配置したことを特徴とする耐触媒燃焼加熱炉。
(1) A catalytic combustion-resistant heating furnace characterized in that catalytic combustors having radiant heating plates on the front are arranged in multiple stages on the furnace side wall.
(2)触媒燃焼反応器と燃焼排ガスの再循環系統を有す
る加熱炉の制御方法において、燃焼排ガス中の酸素量お
よび燃焼ガス温度を検知し、該酸素量および燃焼ガス温
度が設定値になるように、燃焼用空気量を調整するとと
もに、予めプログラムされた前記酸素量、燃焼用空気量
および燃料量の関係から該燃料量が最少になるように排
ガス循環量を制御することを特徴とする触媒燃焼加熱炉
の制御方法。
(2) In a method for controlling a heating furnace having a catalytic combustion reactor and a combustion exhaust gas recirculation system, the amount of oxygen in the flue gas and the temperature of the combustion gas are detected, and the amount of oxygen and the temperature of the combustion gas are adjusted to a set value. The catalyst is characterized in that the amount of combustion air is adjusted and the amount of exhaust gas circulation is controlled so that the amount of fuel is minimized based on the preprogrammed relationship between the amount of oxygen, the amount of combustion air, and the amount of fuel. Control method for combustion heating furnace.
JP59106238A 1984-05-25 1984-05-25 Control method of catalytic combustion heating furnace Expired - Lifetime JPH068685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59106238A JPH068685B2 (en) 1984-05-25 1984-05-25 Control method of catalytic combustion heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59106238A JPH068685B2 (en) 1984-05-25 1984-05-25 Control method of catalytic combustion heating furnace

Publications (2)

Publication Number Publication Date
JPS60251315A true JPS60251315A (en) 1985-12-12
JPH068685B2 JPH068685B2 (en) 1994-02-02

Family

ID=14428536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59106238A Expired - Lifetime JPH068685B2 (en) 1984-05-25 1984-05-25 Control method of catalytic combustion heating furnace

Country Status (1)

Country Link
JP (1) JPH068685B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850392A1 (en) * 2003-01-27 2004-07-30 Inst Francais Du Petrole Use of radiant burners in a heat treatment oven, useful in vapor cracking applications
KR100478089B1 (en) * 2000-12-21 2005-03-24 주식회사 포스코 Method and Device for heat treatment Galvanized sheets
US20100035194A1 (en) * 2007-04-03 2010-02-11 Martin Assmann Burner arrangement
CN104279576A (en) * 2014-10-28 2015-01-14 湖南宇腾有色金属股份有限公司 Pure-oxygen combustion system
WO2017094150A1 (en) * 2015-12-02 2017-06-08 日立造船株式会社 Steam flow rate control method for boiler, and incinerator system
CN113137604A (en) * 2021-05-01 2021-07-20 大庆华凯石油化工设计工程有限公司 Cracking furnace attaches high-efficient low NOx burner of wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646045A (en) * 1979-09-22 1981-04-27 Oshita Kazuyoshi Building

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646045A (en) * 1979-09-22 1981-04-27 Oshita Kazuyoshi Building

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478089B1 (en) * 2000-12-21 2005-03-24 주식회사 포스코 Method and Device for heat treatment Galvanized sheets
FR2850392A1 (en) * 2003-01-27 2004-07-30 Inst Francais Du Petrole Use of radiant burners in a heat treatment oven, useful in vapor cracking applications
US7288691B2 (en) 2003-01-27 2007-10-30 Institut Francais Du Petrole Process for heat treatment of hydrocarbon feedstocks by furnace that is equipped with radiant burners
US20100035194A1 (en) * 2007-04-03 2010-02-11 Martin Assmann Burner arrangement
JP2010523335A (en) * 2007-04-03 2010-07-15 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Burner equipment
CN104279576A (en) * 2014-10-28 2015-01-14 湖南宇腾有色金属股份有限公司 Pure-oxygen combustion system
WO2017094150A1 (en) * 2015-12-02 2017-06-08 日立造船株式会社 Steam flow rate control method for boiler, and incinerator system
CN113137604A (en) * 2021-05-01 2021-07-20 大庆华凯石油化工设计工程有限公司 Cracking furnace attaches high-efficient low NOx burner of wall

Also Published As

Publication number Publication date
JPH068685B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US9611519B2 (en) Process and installation for heating a metallic strip, notably for an annealing
US5375997A (en) Combustion apparatus having heat-recirculating function
JP4551971B2 (en) Reactor using high temperature air combustion technology
JPS6078247A (en) Heat exchange under high intensity combustion while suppressing generation of carbon monoxide and device thereof
JPS60251315A (en) Catalytic combustion heating furnace and method of controlling same
JP5351397B2 (en) Flameproof device
US6606969B2 (en) Tubular oven
CN111780154B (en) Control device and method for gas-fired machine and gas water heater
JP3149666B2 (en) Radiant heating device and combustion method thereof
Wildy et al. Fired heater optimization
JP2618960B2 (en) Catalytic combustion apparatus and combustion control method therefor
US4272239A (en) Direct heating of heat treat furnace chamber
JP3728341B2 (en) Heating method of tube furnace
CN219368366U (en) Tubular heating furnace
EP2592362B1 (en) Flameless boiler for producing hot water
JP6976128B2 (en) Hybrid heating furnace
JP2001272028A (en) Method for operating continuous heating furnace
KR20040084258A (en) Regenerative combustion system for low calorific gases
JP2964666B2 (en) Catalytic combustion device
JPS61168724A (en) Catalytic burner
JPH05196213A (en) Combustion control of hot water supplier
Donatini et al. CFD simulation and experimental tests on a natural gas/hydrogen mixture-fired flameless combustor
JP5458818B2 (en) Thermal equipment
CN116242143A (en) Tubular heating furnace
JP2022147445A (en) Gas combustor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term