JPS60251247A - Metal reinforced by inorganic fiber and its manufacture - Google Patents

Metal reinforced by inorganic fiber and its manufacture

Info

Publication number
JPS60251247A
JPS60251247A JP10905684A JP10905684A JPS60251247A JP S60251247 A JPS60251247 A JP S60251247A JP 10905684 A JP10905684 A JP 10905684A JP 10905684 A JP10905684 A JP 10905684A JP S60251247 A JPS60251247 A JP S60251247A
Authority
JP
Japan
Prior art keywords
fiber
fibers
boron
composite material
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10905684A
Other languages
Japanese (ja)
Other versions
JPS6354055B2 (en
Inventor
Akio Shindo
進藤 昭夫
Kuniaki Honjo
本城 国明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10905684A priority Critical patent/JPS60251247A/en
Publication of JPS60251247A publication Critical patent/JPS60251247A/en
Publication of JPS6354055B2 publication Critical patent/JPS6354055B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a metallic composite material reinforced by heat resisting nonmetallic inorganic fibers by containing the inorganic fibers to which a coating film of a suitable compsn. composed of B and Si is deposited from gaseous phase into alloy, etc. composed mainly thereof. CONSTITUTION:The coating film composed of >=5mol% B and <=95mol% Si is deposited or the inorganic fiber such as carbon fiber from gaseous phase by chemical vapor depositing method. Next, the fiber is dipped in molten metal of Al, Mg or alloy, etc. composed mainly thereof, or said molten metal is impregnated to said fiber, and the metallic composite material reinforced by nonmetallic inorganic fiber having >=800 deg.C heat resistance is obtained. Said metallic composite material can be made as the material superior in specific strength, specific elasticity and heat resistance by containing the inorganic fiber coated with the film composed of B and Si which are wettable easily with said molten metals.

Description

【発明の詳細な説明】 本発明は、無機繊維を包含するアルミニウム系およびマ
グネシウム系金属の複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite material of aluminum-based and magnesium-based metals containing inorganic fibers.

炭素繊維強化プラスチックスに代表される、比強度、比
弾性率の高い無機繊維強化複合材料は、航空宇宙飛行物
体、医療用機器、陸上海上輸送用機器、スポーツ用具等
に広く使用されており、また使用され得るものであるが
、母材プラスチックスの熱特性に制約されて耐熱性に劣
る短所がある。そのためこの点を改善して比強度、比弾
性率とともに耐熱性の高い複合材料を開発することが強
く要望されており、アルミニウム、マグネシウムあるい
はそれらの合金を母材とする繊維強化複合材料の研究が
進められている。
Inorganic fiber-reinforced composite materials with high specific strength and specific modulus, such as carbon fiber-reinforced plastics, are widely used in aerospace flying objects, medical equipment, land and sea transportation equipment, sports equipment, etc. Although it can also be used, it has the disadvantage of poor heat resistance due to limitations on the thermal properties of the base material plastic. Therefore, there is a strong need to improve this point and develop composite materials with high specific strength, specific modulus, and heat resistance, and research into fiber-reinforced composite materials using aluminum, magnesium, or their alloys as base materials is in progress. It is progressing.

(3) 無機繊維は一般にぜい性が高いため、その力学的特性を
損うことなく金属母材中に配列あるいは分散させるため
には、溶融金属の中に繊維を浸績させ、あるいは繊維に
溶融金属を含浸させる方法が望ましい。しかし、この方
法では、繊維が溶融金属にぬれることが必要であるが、
多くの場合無機繊維は溶融アルミニウムあるいはマグネ
シウム金属にぬれにくく、この点が無機繊維強化金属の
製造のあい路となっている。
(3) Since inorganic fibers generally have high brittleness, in order to arrange or disperse them in the metal matrix without impairing their mechanical properties, it is necessary to soak the fibers in molten metal or to A method of impregnation with molten metal is preferred. However, this method requires that the fibers be wetted with molten metal;
In many cases, inorganic fibers are difficult to wet with molten aluminum or magnesium metal, and this is a drawback in the production of inorganic fiber-reinforced metals.

このあい路を打開して繊維を溶融金属にぬれ易くするた
めには、溶融金属にぬれ易い物質の被膜を繊維上に被覆
させることが望ましい。このような被膜としてチタン−
ホウ素間化合物を用いる公知の方法(特開昭5l−81
703)があるが、本発明はこれと異なり、ホウ素−ケ
イ素間化合物と単体ホウ素のいずれかを無機繊維に被覆
させ、これを溶融金属に混入させるものであり、この発
明は無機繊維を溶融アルミニウム、マグネシウムあるい
はそれらの合金にぬれ易くする点において公知のチタン
−ホウ素被膜(4) よりもすぐれた被膜を被覆させた繊維を金属に包含させ
る方法およびその複合材料を提供するものである。
In order to overcome this gap and make the fibers more easily wetted by the molten metal, it is desirable to coat the fibers with a film of a substance that is easily wetted by the molten metal. As such a coating, titanium
A known method using an interboron compound (Japanese Patent Application Laid-Open No. 51-81
703), but the present invention differs from this in that inorganic fibers are coated with either a boron-silicon compound or elemental boron, and this is mixed into molten metal. The present invention provides a method for incorporating fibers coated with a metal, which is superior to the known titanium-boron coating (4) in terms of making it easier to wet with magnesium, magnesium, or alloys thereof, and a composite material thereof.

本発明で述べるところの単体ホウ素およびホウ素−ケイ
素間化合物は、組成的に5モル%以上のホウ素と95モ
ル%以下のケイ素を含むものである。ここでホウ素−ケ
イ素間化合物は、B’、2Si、B6it、B4Si等
の化合物を含んでいるが、必ずしもこれら化学量論的化
合物のみを意味するものではない。単に両元素を組成的
に含んだものであることを意味している。
Elemental boron and boron-silicon intercompounds described in the present invention are those which compositionally contain 5 mol% or more of boron and 95 mol% or less of silicon. Here, the boron-silicon compound includes compounds such as B', 2Si, B6it, B4Si, etc., but does not necessarily mean only these stoichiometric compounds. It simply means that the composition contains both elements.

上記化学量論的化合物はホウ素75〜97モル%とケイ
素5〜25モル%の範囲に含まれる。
The stoichiometric compounds range from 75 to 97 mole percent boron and from 5 to 25 mole percent silicon.

無機繊維としては、不活性雰囲気中において、800℃
以上の溶融温度、軟化温度、あるいは昇華温度を示す耐
熱非金属繊維が用いられる。
As an inorganic fiber, in an inert atmosphere, 800℃
Heat-resistant nonmetallic fibers having a melting temperature, softening temperature, or sublimation temperature above the above are used.

たとえば炭素、炭化ケイ素、アルミナ、ジルコニア、シ
リカ、チタニア、チタニア−シリカ、アルミナ−シリカ
、窒化ホウ素、窒化ケイ素、アルミナ−ボリア−シリカ
の各繊維である。炭(5) 素繊維は炭化段階、黒鉛化段階のものを含んでおり、原
料繊維によって分類されるポリアクリロニトリル系、レ
ーヨン系、ピッチ系、液晶ピッチ系その他が含まれる。
Examples include carbon, silicon carbide, alumina, zirconia, silica, titania, titania-silica, alumina-silica, boron nitride, silicon nitride, and alumina-boria-silica fibers. Carbon (5) Elementary fibers include those in the carbonization stage and graphitization stage, and include polyacrylonitrile type, rayon type, pitch type, liquid crystal pitch type, and others classified by raw material fiber.

また、炭化ケイ素以外の金属炭化物繊維を用いることも
できる。なお、上記の無機繊維の各名称は主成分を示す
ものであり、また同一名称繊維においても製法を異にす
るものがあり、それに応じて表面特性を異にする場合が
あるが、本発明方法の適用に支障をきたすものではない
。たとえばポリカルボシランから製造される炭化ケイ素
繊維は組成的にシリカならびに単体炭素を多少含有して
いる。
Moreover, metal carbide fibers other than silicon carbide can also be used. The names of the above inorganic fibers indicate the main components, and even fibers with the same name may have different manufacturing methods, and the surface characteristics may vary accordingly. However, the method of the present invention This does not impede the application of the For example, silicon carbide fibers made from polycarbosilane contain silica and some elemental carbon in their composition.

また、無機繊維の上に上記繊維の各種成分あるいはそれ
らの混合物を表面に被覆させている繊維も本発明の出発
材料繊維に含まれる。たとえば炭化ケイ素、あるいは窒
化ホウ素を外表面に被覆させた炭素繊維、ポリカルボシ
ラン系炭化ケイ素繊維である。アルミナ繊維もまた互に
異なる数種の一法があり、シリカを20重量%以下含有
する、一般にアルミナ繊維と呼称される(6) ものも含まれる。アルミナ−シリカ繊維には各種の組成
比のものがある。
Further, fibers whose surfaces are coated with various components of the above-mentioned fibers or mixtures thereof on inorganic fibers are also included in the starting material fibers of the present invention. Examples include carbon fibers whose outer surfaces are coated with silicon carbide or boron nitride, and polycarbosilane-based silicon carbide fibers. There are several different types of alumina fibers, including those that contain 20% by weight or less of silica and are generally called alumina fibers (6). Alumina-silica fibers have various composition ratios.

これらの繊維には、多くの場合単繊維あるいはフィラメ
ントの径が5〜30μmの長繊維のほか、短繊維がある
。短繊維では製法によって3μm前後の径の細い繊維も
ある。長さは平均して501m1前後のものがあり、ま
たより短いもの、より長いものがある。また長繊維を切
断したものもある。さらに、形状としては、長繊維の複
数本のフィラメントからなる糸、トウ、あるいは織物、
フィラメントが互にからみ合ったペーパー状、フェルト
状のものがある。短繊維からはペーパー状、フェルト状
のもののほかに綿状のものがあり、また糸にしたものが
ある。
These fibers include long fibers with a single fiber or filament diameter of 5 to 30 μm in most cases, as well as short fibers. Some short fibers have a diameter of around 3 μm depending on the manufacturing method. The average length is around 501 m1, and there are also shorter and longer ones. There are also products made by cutting long fibers. In addition, the shape may be yarn, tow, or woven fabric made of multiple filaments of long fibers.
There are paper-like and felt-like types in which filaments are entangled with each other. Short fibers include paper-like, felt-like, cotton-like fibers, and threads.

以上のように、本発明では各種の形状の繊維を原料繊維
に使用することができ、繊維の形状が本発明を制約する
ものではない。
As described above, in the present invention, fibers of various shapes can be used as raw material fibers, and the shape of the fibers does not limit the present invention.

繊維上に被覆されるホウ素−ケイ素間化合物あるいは単
体ホウ素の被膜の厚さは10人〜1μmが望ましい。さ
らに50人〜500人の範囲がより望ましい。
The thickness of the coating of the boron-silicon compound or elemental boron coated on the fibers is preferably 10 μm to 1 μm. Furthermore, a range of 50 to 500 people is more desirable.

(7) 上記の被膜を無機繊維上に被膜させるには、気相から沈
着させる方法が適している。これには物理蒸着法、化学
蒸着法、両者の混合法があるが、化学蒸着法が最も適し
ている。この方法では、たとえばホウ素、ケイ素のハロ
ゲン化物あるいは水素化物が被膜沈着用原料として用い
られ、加熱された無機繊維にこれを接触させる方法がと
られる。この方法にはホウ素、ケイ素のハロゲン化物を
還元する方法が含まれる。たとえば三塩化ホウ素と四塩
化ケイ素を亜鉛蒸気を含む気体とともに加熱した繊維に
接触させる方法は好ましい方法である。100%ホウ素
の被膜の被覆にさいしては、もちろんケイ素化合物を気
体中に含ませることはない。上記のような被覆用気体に
はキャリヤーガスあるいは濃度調節用ガスとして不活性
ガスあるいは還元性ガスを混入させることができる。亜
鉛蒸気還元法を用いるさいの被覆温度は500℃以J:
、 900℃以下が望ましい。亜鉛蒸気を用いない還元
法、或いは熱分解法による被覆温度は一般に600(8
) 〜1500℃である。
(7) In order to coat the above-mentioned film on the inorganic fiber, a method of depositing from a gas phase is suitable. There are physical vapor deposition methods, chemical vapor deposition methods, and a mixture of both methods, but the chemical vapor deposition method is most suitable. In this method, a halide or hydride of boron or silicon, for example, is used as a raw material for film deposition and is brought into contact with heated inorganic fibers. This method includes a method of reducing boron and silicon halides. For example, a preferred method is to contact the heated fibers with boron trichloride and silicon tetrachloride together with a gas containing zinc vapor. Of course, when coating with a 100% boron film, no silicon compound is included in the gas. An inert gas or a reducing gas can be mixed into the above-mentioned coating gas as a carrier gas or a concentration adjusting gas. When using the zinc vapor reduction method, the coating temperature is 500℃ or higher:
, 900°C or less is desirable. The coating temperature by the reduction method that does not use zinc vapor or the thermal decomposition method is generally 600 (8
) ~1500°C.

ホウ素あるいはホウ素−ケイ素間化合物を被覆させた無
機繊維を母材金属に混入させるためには、溶融金属に接
触させることが望ましい。
In order to mix the inorganic fiber coated with boron or a boron-silicon compound into the base metal, it is desirable to bring it into contact with molten metal.

これには、被覆繊維を溶融金属に浸績し、あるいは潜入
通過させる方法をとることができる。
This can be done by dipping or passing the coated fiber through the molten metal.

本発明の被覆繊維集合体では、特別の加圧なしにフィラ
メントの間隙を実質上完全に金属によって充填させるこ
とができる。
In the coated fiber aggregate of the present invention, the interstices of the filaments can be substantially completely filled with metal without special pressure.

金属としてはアルミニウム、マグネシウム、それらを主
成分とする合金が用いられる。合金の含有成分としては
たとえば、アルミニウム合金の場合、銅、マンガン、ケ
イ素、マグネシウム、ケイ素−マグネシウムがある。マ
グネシウム合金としてはアルミニウム、亜鉛、マンガン
、ケイ素、銅、ニッケルがある。含有成分の種類が多い
ため、それらの含有率を記述することは困難である。母
材金属としては、亜鉛、鉛、錫或いはそれらを主成分と
する合金をも用いることができる。これらを母材とする
無機繊維強化(9) 金属は摩擦特性を利用する用途に使用することができる
As metals, aluminum, magnesium, and alloys containing these as main components are used. For example, in the case of an aluminum alloy, the components contained in the alloy include copper, manganese, silicon, magnesium, and silicon-magnesium. Magnesium alloys include aluminum, zinc, manganese, silicon, copper, and nickel. Since there are many types of contained components, it is difficult to describe their content rates. As the base metal, zinc, lead, tin, or an alloy containing these as main components can also be used. Inorganic fiber-reinforced (9) metals made of these materials can be used for applications that utilize their frictional properties.

本発明における複合材料を製造するためにとられる最も
典型的な方法は、無機繊維の糸を700℃前後に加熱し
た被覆室に送入し、蒸着用気体に接触させて、被膜を被
覆させ、次いで還元性或いは不活性雰囲気下の溶融母材
金属中を通過させて、その後母材を固化させるものであ
る。この方法によってワイヤを得ることができるので、
これを集積してホットプレスによって形状の異なった複
合材料にすることができる。
The most typical method used to produce the composite material of the present invention is to feed inorganic fiber threads into a coating chamber heated to around 700°C, bring them into contact with a vapor deposition gas, and coat them with a film. The material is then passed through a molten base metal under a reducing or inert atmosphere, after which the base metal is solidified. Since the wire can be obtained by this method,
These can be assembled into composite materials with different shapes by hot pressing.

以下に本発明を具体的に例示するために実施例を記述す
る。
Examples will be described below to specifically illustrate the present invention.

実施例1 直径12μm弾性率48 X 103kg/Wn2、引
張り強さ 260 kg/ nwn2の液晶ピッチ系炭
素繊維のフィラメント 1000本の長繊維を700℃
に加熱した被覆室に水平に保持し、1:60のBCl3
−Ar混合ガスを流し、これに亜鉛蒸気とH2の混合ガ
スを混入させて繊(10) 維に接触させた。ホウ素被膜が炭素繊維上に被覆された
。この繊維を連続して大気に触れさせることなく、水素
雰囲気下の700℃の溶融アルミニウム中を移動させ大
気中に引き出した。
Example 1 A filament of liquid crystal pitch-based carbon fiber with a diameter of 12 μm, an elastic modulus of 48 x 103 kg/Wn2, and a tensile strength of 260 kg/nwn2. 1000 long fibers were heated at 700°C.
held horizontally in a coating chamber heated to 1:60 BCl3.
A mixed gas of -Ar was flowed, and a mixed gas of zinc vapor and H2 was mixed therein and brought into contact with the fiber (10). A boron coating was applied onto the carbon fibers. The fibers were moved through molten aluminum at 700° C. in a hydrogen atmosphere and drawn out into the atmosphere without being exposed to the atmosphere.

フィラメントの間隙に完全にアルミニウムが充填されて
いるワイヤが生成した。繊維の容積含有率 32%、引
張り強さ 78kg/mm”であった。
A wire was produced in which the interstices of the filaments were completely filled with aluminum. The fiber volume content was 32% and the tensile strength was 78 kg/mm.

実施例2 外表面に炭化けい素被膜を有する7μm径のフィラメン
ト3000本からなるPAN系高強度タイプ炭素繊維糸
を容積比1:5:60のB C]3.5iC14、Ar
の混合気体とともに流している700℃の被覆室中を連
続的に移動させて、ホウ素とケイ素を含む被膜を被覆さ
せたのち、Ar雰囲気下700℃の溶融Mg合金中を通
じ、室温の大気中に引き出した。
Example 2 PAN-based high-strength type carbon fiber yarn consisting of 3000 filaments with a diameter of 7 μm and having a silicon carbide coating on the outer surface was mixed with a volume ratio of 1:5:60 B C]3.5iC14, Ar
After passing through a coating chamber containing boron and silicon at 700°C flowing with a mixed gas of I pulled it out.

フィラメントの間隙をMg合金で完全に充填しているワ
イヤを得た。横断面積約0.3+nm2、引張り強さ9
4kg/mm2であった。
A wire was obtained in which the filament gaps were completely filled with Mg alloy. Cross-sectional area approximately 0.3+nm2, tensile strength 9
It was 4 kg/mm2.

(11) 比較例 PAN系高弾性タイプ炭素繊維を用いて、実施例2と同
一条件で繊維溶化アルミニウムワイヤを調製した。また
同一の炭素繊維から、5iC14をTjC] 4に変え
たほかは実施例と同一条件で繊維強化アルミニウムワイ
ヤを調製した。ホウ素−ケイ素被膜の場合は、糸の中心
部まで金属が浸透していたが、チタン−ホウ素被膜の場
合は糸の外側部公約30%に浸透しているに過ぎなかっ
た。
(11) Comparative Example A fiber-solubilized aluminum wire was prepared under the same conditions as in Example 2 using PAN-based high modulus type carbon fiber. Further, a fiber-reinforced aluminum wire was prepared from the same carbon fiber under the same conditions as in the example except that 5iC14 was replaced with TjC]4. In the case of the boron-silicon coating, the metal penetrated into the center of the yarn, but in the case of the titanium-boron coating, it penetrated only about 30% of the outer portion of the yarn.

実施例3 直径137zm、引張り強さ2 ] Okg/ +nm
2のフィラメント500本からなるポリカルボシラン系
炭化ケイ素繊維を、容積比4:1:50のBCl、、5
iC1,、Arの混合気体と亜鉛蒸気と水素の混合気体
を混入させている700℃の被覆室を滞流時間6分間で
通し、次いで水素雰囲気下700℃の溶融アルミニウム
合金(ケイ素13%含有)中を通して、室温の大気中に
連続的に引き出した。フィラメントの間隙(12) を合金が完全に充填したワイヤが得られた。横断面積約
0.2n+n+2.引張り強さ78 kg / nun
”であった。
Example 3 Diameter 137zm, tensile strength 2] Okg/+nm
Polycarbosilane silicon carbide fibers consisting of 500 filaments of No. 2 were mixed with BCl at a volume ratio of 4:1:50.
A mixture of iC1, Ar, zinc vapor, and hydrogen was passed through a coating chamber at 700°C for a residence time of 6 minutes, and then the molten aluminum alloy (containing 13% silicon) was heated at 700°C under a hydrogen atmosphere. It was continuously drawn out into the atmosphere at room temperature. A wire was obtained in which the filament gaps (12) were completely filled with the alloy. Cross-sectional area approximately 0.2n+n+2. Tensile strength 78 kg/nun
"Met.

実施例4 直径17μm、引張り強さ180 kg/ own”の
、シリカ15%含有アルミナ長繊維糸を実施例2と同様
の条件で処理し、溶有アルミニウムを含浸させた。繊維
の含有率34容量%、引張り強さ67kg/mu2のワ
イヤを得た。
Example 4 An alumina long fiber yarn containing 15% silica and having a diameter of 17 μm and a tensile strength of 180 kg/own was treated under the same conditions as in Example 2 to impregnate dissolved aluminum. Fiber content: 34 volumes % and a tensile strength of 67 kg/mu2 was obtained.

特許出願人 工業技術院長 川 1)裕 部指定代理人
 工業技術院大阪工業技術試験所長速水諒三 (13)
Patent applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Hirobe Designated agent: Ryozo Hayami (13), Director of the Osaka Institute of Industrial Science and Technology, Agency of Industrial Science and Technology

Claims (10)

【特許請求の範囲】[Claims] (1)ホウ素5モル%以上とケイ素95モル%以下から
なる被膜をフィラメント表面に有する、耐熱性800℃
以上の非金属無機繊維を包含している、アルミニウム、
マグネシウムおよびそれらの合金から選ばれた金属の複
合材料。
(1) Heat resistant to 800°C, with a coating on the filament surface consisting of 5 mol% or more of boron and 95 mol% or less of silicon.
Aluminum containing the above non-metallic inorganic fibers,
A composite material of metals selected from magnesium and their alloys.
(2)ホウ素75〜97モル%とケイ素5〜25モル%
からなる被膜である特許請求の範囲第1項記載の複合材
料。
(2) 75-97 mol% boron and 5-25 mol% silicon
The composite material according to claim 1, which is a coating consisting of.
(3)無機繊維が炭素繊維である特許請求の範囲第1項
記載の複合材料。
(3) The composite material according to claim 1, wherein the inorganic fibers are carbon fibers.
(4)無機繊維が炭化ケイ素80重量%以上を含んでい
る繊維である特許請求の範囲第1項記載の複合材料。
(4) The composite material according to claim 1, wherein the inorganic fiber is a fiber containing 80% by weight or more of silicon carbide.
(5)無機繊維がアルミナ80重量%以上を含んでいる
繊維である特許請求の範囲第1項記載(1) の複合材料。
(5) The composite material according to claim 1 (1), wherein the inorganic fibers are fibers containing 80% by weight or more of alumina.
(6)無機繊維が外表面に、ケイ素、ホウ素、チタン、
ジルコニウム、タングステン、ニオブ、タンタルからな
る群から選ばれた金属の炭化物あるいはそれらの混合物
の被膜を有する繊維である特許請求の範囲第1項記載の
複合材料。
(6) Inorganic fibers on the outer surface contain silicon, boron, titanium,
The composite material according to claim 1, which is a fiber having a coating of a carbide of a metal selected from the group consisting of zirconium, tungsten, niobium, and tantalum, or a mixture thereof.
(7)無機繊維が外表面に窒化ホウ素を含む被膜を有す
る繊維である特許請求の範囲第1項記載の複合材料。
(7) The composite material according to claim 1, wherein the inorganic fiber is a fiber having a coating containing boron nitride on the outer surface.
(8)ホウ素5モル%以上とケイ素95モル%以下から
なる被膜を気相から無機繊維上に沈着させ、この繊維を
、アルミニウム、マグネシウム、それらを主成分とする
合金からなる群から選ばれた金属の中に包含させる工程
を含むことを特徴とする、耐熱性800%以上の非金属
無機繊維で強化した金属複合材料を製造する方法。
(8) A coating consisting of 5 mol% or more of boron and 95 mol% or less of silicon is deposited from the gas phase onto inorganic fibers, and this fiber is coated with aluminum, magnesium, or an alloy selected from the group consisting of aluminum, magnesium, and alloys containing these as main components. A method for producing a metal composite material reinforced with non-metallic inorganic fibers having a heat resistance of 800% or more, the method comprising the step of incorporating the fiber into the metal.
(9)ホウ素が三塩化ホウ素から、ケイ素が四塩化ケイ
素から沈着される特許請求の範囲第8項記載の方法。
9. The method of claim 8, wherein the boron is deposited from boron trichloride and the silicon is deposited from silicon tetrachloride.
(10)金属融液を用いてホウ素5モル%以上と(2) ケイ素95モル%以下からなる被膜を被覆している繊維
のフィラメントの間隙に金属を含浸させる工程を含むこ
とを特徴とする特許請求の範囲第8項記載の方法。
(10) A patent characterized in that it includes a step of impregnating the gap between the filaments of the fibers covered with a coating consisting of 5 mol% or more of boron and (2) 95 mol% or less of silicon using a metal melt. The method according to claim 8.
JP10905684A 1984-05-28 1984-05-28 Metal reinforced by inorganic fiber and its manufacture Granted JPS60251247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10905684A JPS60251247A (en) 1984-05-28 1984-05-28 Metal reinforced by inorganic fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10905684A JPS60251247A (en) 1984-05-28 1984-05-28 Metal reinforced by inorganic fiber and its manufacture

Publications (2)

Publication Number Publication Date
JPS60251247A true JPS60251247A (en) 1985-12-11
JPS6354055B2 JPS6354055B2 (en) 1988-10-26

Family

ID=14500479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10905684A Granted JPS60251247A (en) 1984-05-28 1984-05-28 Metal reinforced by inorganic fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS60251247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323067A2 (en) * 1987-12-12 1989-07-05 Fujitsu Limited Sintered magnesium-based composite material and process for preparing same
EP0505990A2 (en) * 1991-03-25 1992-09-30 Aluminum Company Of America Fiber reinforced aluminum matrix composite with improved interfacial bonding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616638A (en) * 1979-07-23 1981-02-17 Sumitomo Chem Co Ltd Aluminous fiber-reinforced aluminum type metal-base composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616638A (en) * 1979-07-23 1981-02-17 Sumitomo Chem Co Ltd Aluminous fiber-reinforced aluminum type metal-base composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323067A2 (en) * 1987-12-12 1989-07-05 Fujitsu Limited Sintered magnesium-based composite material and process for preparing same
US4941918A (en) * 1987-12-12 1990-07-17 Fujitsu Limited Sintered magnesium-based composite material and process for preparing same
EP0505990A2 (en) * 1991-03-25 1992-09-30 Aluminum Company Of America Fiber reinforced aluminum matrix composite with improved interfacial bonding
US5435374A (en) * 1991-03-25 1995-07-25 Aluminum Company Of America Fiber reinforced aluminum matrix composite with improved interfacial bonding

Also Published As

Publication number Publication date
JPS6354055B2 (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US4731298A (en) Carbon fiber-reinforced light metal composites
US4072516A (en) Graphite fiber/metal composites
Bracke et al. Inorganic Fibres & Composite Materials: A Survey of Recent Developments
US4944904A (en) Method of obtaining a fiber-containing composite
JPS6041136B2 (en) Method for manufacturing silicon carbide fiber reinforced light metal composite material
JPH11269576A (en) Formation of fiber reinforced metal matrix composite
US4929513A (en) Preform wire for a carbon fiber reinforced aluminum composite material and a method for manufacturing the same
US4481257A (en) Boron coated silicon carbide filaments
US4839238A (en) Fiber-reinforced metallic composite material
JPH0413412B2 (en)
US5705229A (en) Process for producing composite material combining a magnesium alloy containing zirconium with a carbon reinforcement
KR960001715B1 (en) Fiber-reinforced metal
US4614690A (en) Inorganic fiber-reinforced metallic composite material
US4737382A (en) Carbide coatings for fabrication of carbon-fiber-reinforced metal matrix composites
EP0181207B1 (en) Inorganic fiber-reinforced metallic composite material
JPS60251247A (en) Metal reinforced by inorganic fiber and its manufacture
JPH0135061B2 (en)
JPH062269A (en) Method for coating carbon fiber and composite material
JPS5912733B2 (en) Method of forming fiber-metal composites
Shestakov Inorganic Fibers for Composite Materials with Ceramic Matrix
JPS59179875A (en) Surface coated carbon fiber and production thereof
JPS61257440A (en) Metallic composite material reinforced with fiber
JPS5959976A (en) Production of silicon carbide coated carbon fiber
JPS5831167A (en) Surface coated carbon fiber
JP2586083B2 (en) Manufacturing method of fiber molding

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term