JPS60250090A - Process for treating heavy oil - Google Patents

Process for treating heavy oil

Info

Publication number
JPS60250090A
JPS60250090A JP59104664A JP10466484A JPS60250090A JP S60250090 A JPS60250090 A JP S60250090A JP 59104664 A JP59104664 A JP 59104664A JP 10466484 A JP10466484 A JP 10466484A JP S60250090 A JPS60250090 A JP S60250090A
Authority
JP
Japan
Prior art keywords
catalyst
weight
allophane
heavy oil
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59104664A
Other languages
Japanese (ja)
Other versions
JPH0257114B2 (en
Inventor
Toshio Ito
俊夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP59104664A priority Critical patent/JPS60250090A/en
Publication of JPS60250090A publication Critical patent/JPS60250090A/en
Publication of JPH0257114B2 publication Critical patent/JPH0257114B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To carry out hydrotreatment of heavy oil producing little coke in the product oil and giving a prolonged catalyst life, by hydrotreating the heavy oil using a catalyst comprising V and Ni supported on allophane and an inorg. heat- resistant binder. CONSTITUTION:Heavy oil is hydrotreated under conditions including a reaction temp. of 400-600 deg.C and a pressure of 1atm-200kg/cm<2> using a catalyst comprising V and Ni supported on a carrier consisting of 50-80wt% allophane and 20- 50wt% inorg. heat-resistant binder, in which 1-20pts.wt. V and 0.5-10pts.wt. Ni are supported on 100pts.wt. carrier. Said allophane is colloidal soil usually called Kuri-soil, Miso-soil, Mizu-soil, or Uki-ishi-soil, which has unigue adsorptivity. The inorg. binder includes alumina gel, silica gel, or the like. The component binds allophane particles to enhance mechanical strength of the whole body and itself is porous and has a catalytic activity.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は重質油を懸濁床反応器内で水素化分解する方法
に関し、更に詳しくは、耐摩耗性が優れ、少ない水素消
費量で高い灯油・軽油留分の収率をもたらし、かつ低価
格な懸濁床用の触媒を用いる重質油の処理方法に関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for hydrocracking heavy oil in a suspended bed reactor. The present invention relates to a method for treating heavy oil using a suspended bed catalyst that provides a high yield of kerosene and gas oil fractions and is inexpensive.

[発明の技術的背景とその問題点上 常圧蒸留残油、減圧蒸留残油、オイルサンド油、シェー
ル油などの重質油を各種の触媒を用いることにより水素
化分解して灯油、軽油等のいわゆる中間留分の収量を高
める操作が行なわれている。このような触媒としては、
例えば、合成シリカアルミナ無定形ゲル触媒又はゼオラ
イトを含有する触媒が知られている。
[Technical background of the invention and its problems] Heavy oils such as atmospheric distillation residual oil, vacuum distillation residual oil, oil sand oil, shale oil, etc. are hydrocracked using various catalysts to produce kerosene, gas oil, etc. Operations are being carried out to increase the yield of so-called middle distillates. Such a catalyst is
For example, synthetic silica alumina amorphous gel catalysts or catalysts containing zeolites are known.

また、最近では、アロフェン(a I Iophane
)を用いた重質油の水素化処理方法も提案されている。
In addition, recently, allophane (a Iophane
) has also been proposed.

例えば、特公昭58−50874号公報では、第1段が
バナジウム、モリブデン、ニッケルの1種若しくは2種
以上とコバルト及び/又はニッケルをアルミす又はアル
ミナシリカの担体に担持せしめた触媒の触媒床であり、
第2段がアロフェンで構成された触媒床である系におい
て重質油を水素化処理する方法が開示され、また、特開
昭59−81344号公報では、平均粒径5gm以下の
アロフェンをシリカアルミナヒドロゲル処理した触媒が
開示されている。
For example, in Japanese Patent Publication No. 58-50874, the first stage is a catalyst bed of a catalyst in which one or more of vanadium, molybdenum, and nickel and cobalt and/or nickel are supported on an aluminum or alumina-silica carrier. can be,
A method for hydrotreating heavy oil in a system in which the second stage is a catalyst bed composed of allophane is disclosed, and in JP-A-59-81344, allophane with an average particle size of 5 gm or less is mixed with silica alumina. Hydrogel treated catalysts are disclosed.

しかしながら、後者の触媒の場合にはコークスの生成量
が多くなる。また前者の触媒はその機械的強度が小さく
、そのためそれを触媒、水素1重質油等を激しく接触さ
せる懸濁床方式に用いた場合には摩耗、損壊等を起すの
で不適当である。
However, in the case of the latter catalyst, a large amount of coke is produced. Further, the former catalyst has low mechanical strength, and therefore, when it is used in a suspended bed system in which the catalyst, hydrogen, heavy oil, etc. are brought into intense contact, it is unsuitable because it causes wear, damage, etc.

[発明の目的] 本発明は、アロフェンが担体の一部を構成しており、懸
濁床方式で重質油を水素化分解したとき、生成油中にお
けるコークス生成量が少なく、また、耐摩耗性が優れて
いるのでその使用寿命が長い触媒を用いて重質油を水素
化処理する方法の提供を目的とする。
[Object of the invention] The present invention is characterized in that allophane constitutes a part of the carrier, and when heavy oil is hydrocracked using a suspended bed method, the amount of coke produced in the produced oil is small, and the wear resistance is improved. The purpose of the present invention is to provide a method for hydrotreating heavy oil using a catalyst that has excellent properties and has a long service life.

〔発明の概要] 本発明の重質油の処理方法は1重質油を水素化処理する
方法において、アロフェン50〜70重量%及び無機耐
熱結合材30〜50重量%から成る担体と、該担体に担
持されたバナジウム及びニッケルとから成る触媒であっ
て、バナジウム及びニッケルの担持量が、該担体100
重量部にたいし、それぞれ1〜20重量部、0.5〜1
0重量部である触媒を用い、反応温度400〜600℃
、常圧〜200kg/cm2の条件ドで水素化反応を行
なうことを特徴とする。
[Summary of the Invention] The heavy oil processing method of the present invention is a method for hydrotreating heavy oil, comprising: a carrier comprising 50 to 70% by weight of allophane and 30 to 50% by weight of an inorganic heat-resistant binder; A catalyst comprising vanadium and nickel supported on the support, the amount of vanadium and nickel supported is 100
1 to 20 parts by weight, 0.5 to 1 part by weight, respectively
Using a catalyst that is 0 parts by weight, the reaction temperature is 400 to 600°C.
, the hydrogenation reaction is carried out under conditions of normal pressure to 200 kg/cm2.

まず、本発明方法で用いる触媒の担体はアロフェンと無
機耐熱結合材とから構成される。ここで、アロフェンと
は、通常、栗土、味噌土、水土ゾは浮石上と指称される
膠質性土壌であり、特異な吸着能を備えている物質であ
る。そしてこのアロフェンは粒径0.!延m以下の微細
粒子が集合した多孔質体であって、その組成は一般に、
A文、03・(1〜2)Si201(2〜3)H2O+
 (0〜2)A見、03(H2O)で表わされ、非晶質
含水ケイ酸アルミニウムと同型アルミナゲルとの混合物
若しくは複合物である。
First, the catalyst carrier used in the method of the present invention is composed of allophane and an inorganic heat-resistant binder. Here, allophane refers to colloidal soils commonly referred to as chestnut soil, miso soil, and suitozo, and is a substance that has a unique adsorption ability. And this allophane has a particle size of 0. ! It is a porous body in which fine particles with a diameter of less than 100 m are aggregated, and its composition is generally as follows:
A sentence, 03・(1~2)Si201(2~3)H2O+
(0-2) A is represented by 03 (H2O) and is a mixture or composite of amorphous hydrated aluminum silicate and the same type of alumina gel.

無機耐熱結合材を形成するものとしては、例えば、アル
ミナゲル、シリカアルミナゲル、アルミナゾル、シリカ
ゾルをあげることができる。この成分はアロフェンの粒
子を結着して全体の機械的強度の向上に寄与する成分で
あると同時に、それ自体が多孔質であって触媒能を有す
るものである。
Examples of materials forming the inorganic heat-resistant bonding material include alumina gel, silica-alumina gel, alumina sol, and silica sol. This component is a component that binds the allophane particles and contributes to improving the overall mechanical strength, and is itself porous and has catalytic ability.

担4において、アロフェンと無機耐熱結合材との存在割
合は、アロフェン50〜70重量%、S機耐熱結合材3
0〜50重量%に設定される。無機耐熱結合材の割合が
30重量%より小さくなる(アロフェンが70重量%を
超える)と、担体の機械的強度。
In layer 4, the proportion of allophane and inorganic heat-resistant binder is 50 to 70% by weight, S-type heat-resistant binder 3
It is set at 0 to 50% by weight. When the proportion of inorganic heat-resistant binder becomes less than 30% by weight (allophane exceeds 70% by weight), the mechanical strength of the carrier decreases.

とりわけ耐摩耗性が低下して懸濁床方式に適用困難とな
り、逆に、50重量%を超える(アロフェンが50重量
%より少なくなる)と、コークスの生成量、アスファル
テンの生成量が増加して触媒の性能が発揮されなくなる
などの不都合な問題を生ずる。好ましくは、アロフェン
80〜80重量%、無機耐熱結合材40〜20重量%で
ある。
In particular, the abrasion resistance decreases, making it difficult to apply to the suspended bed system. Conversely, if the content exceeds 50% by weight (less than 50% by weight), the amount of coke and asphaltene produced increases. This may cause inconvenient problems such as the catalyst's performance not being exhibited. Preferably, the allophane content is 80-80% by weight and the inorganic heat-resistant binder content is 40-20% by weight.

本発明の触媒は、上記した担体にバナジウムとニッケル
とを同時に担持せしめて構成される。
The catalyst of the present invention is constructed by simultaneously supporting vanadium and nickel on the above-mentioned carrier.

バナジウム及びニッケルの担持量は、担体100重量部
にだいし、それぞれ1〜20重量部、0.5〜IO重量
部、好ましくは、2〜lO重量部、1〜5重量部に設定
され、かつ、バナジウムとニッケルとの担持量の比(重
量比)が0.5〜3.0、好ましくは 1〜2に設定さ
れる。
The amount of vanadium and nickel supported is set to 1 to 20 parts by weight, 0.5 to IO parts by weight, preferably 2 to 10 parts by weight, and 1 to 5 parts by weight, respectively, based on 100 parts by weight of the carrier, and The ratio (weight ratio) of the supported amounts of vanadium and nickel is set to 0.5 to 3.0, preferably 1 to 2.

バナジウム、ニッケル成分の担持量がいずれも上記した
範囲よりも少ない場合には、触媒の水素化能が低下して
コークス収率、アスファルテン収率が高くなり、灯油・
軽油留分の収率が低下し、逆に上記範囲を超える場合に
は、これら金属成分が触媒の細孔を閉塞して触媒の比表
面積を減少せしめ、かえって活性点が減少して触媒性能
が低下するというような問題を生じて不都合である。ま
た、バナジウムとニッケルの担持量の比が0.3より小
さい場合には、水素の消費量が増加するので好ましくな
く、また、5.0を超える場合には、触媒の再生時にバ
ナジウムの融解による触媒の劣化が大きくなるので好ま
しくない。
If the supported amounts of vanadium and nickel components are both lower than the above ranges, the hydrogenation ability of the catalyst will decrease, coke yield and asphaltene yield will increase, and kerosene and asphaltene yields will increase.
If the yield of the gas oil fraction decreases and conversely exceeds the above range, these metal components will clog the pores of the catalyst and reduce the specific surface area of the catalyst, which will actually reduce the number of active sites and impair the catalyst performance. This is inconvenient because it causes problems such as a decrease in the temperature. Furthermore, if the ratio of the supported amount of vanadium and nickel is less than 0.3, hydrogen consumption will increase, which is undesirable, and if it exceeds 5.0, the amount of supported vanadium will increase due to melting of vanadium during catalyst regeneration. This is not preferable because the catalyst will deteriorate significantly.

本発明の触媒は多孔質体であり、各種孔径の細孔が分布
している。その態様は、全細孔容積が0.03〜0.3
cc/gであって、その細孔分布は、40〜+000 
=の細孔容積が0.02cc/g以上、1000〜10
000Aの細孔容積がO,lcc/g以下、そして、 
10000Å以上の細孔容積が0.05cc/g以下で
あるような多孔構造であることが望ましい。
The catalyst of the present invention is a porous body, and pores of various pore sizes are distributed therein. In this embodiment, the total pore volume is 0.03 to 0.3
cc/g, and its pore distribution is 40 to +000
The pore volume of = is 0.02 cc/g or more, 1000 to 10
The pore volume of 000A is less than O,lcc/g, and
It is desirable that the porous structure has a pore volume of 10,000 Å or more and 0.05 cc/g or less.

本発明の触媒は次のようにして製造することができる。The catalyst of the present invention can be manufactured as follows.

まず、原料アロフェンに水篩処理を施して、不純物とし
て混在している磁鉄鉱、輝石、長石9石英等を除去し、
粒度調整を行なったのち焼成して所定固形分濃度のアロ
フェンスラリーを調製する。
First, the raw allophane is subjected to water sieving treatment to remove impurities such as magnetite, pyroxene, feldspar 9 quartz, etc.
After adjusting the particle size, it is fired to prepare an allophane slurry with a predetermined solid content concentration.

ついでこのアロフェンスラリーと、別に調製した例えば
シリカアルミナゲルとを混合して両者の混合スラリーを
調製する。このときの両者の混合量は、後述の焼成処理
によって水分が除去されたとき、両者の存在量が上記し
た割合になるように遣択される。
Next, this allophane slurry is mixed with, for example, silica alumina gel prepared separately to prepare a mixed slurry of both. The mixing amount of both at this time is selected so that when moisture is removed by the firing process described later, the amounts of both will be in the above-mentioned ratio.

この混合スラリーに常用の粉体化処理法、例えば噴霧乾
燥法を施して、所定粒径の粉体とし、これを乾燥又は焼
成して担体、にする。噴霧条件等を適宜に調整して通常
は30〜20opLm程度の粒径にする。
This mixed slurry is subjected to a commonly used powder processing method, such as a spray drying method, to obtain a powder having a predetermined particle size, which is then dried or fired to form a carrier. The particle size is usually about 30 to 20 opLm by appropriately adjusting spray conditions and the like.

つぎに、得られた担体にバナジウムとニッケルを相持さ
せる。相持方法としては、この技術分野では慣用となっ
ている真空含浸法、浸漬法などが適用される。担持量及
びバナジウムとニッケルの411持吊、の比は、例えば
、真空含浸法の場合、イオン交換水に溶解させるバナジ
ン酸アンモニウムド硝酸ニッケルの量を変化させること
によって容易に調節することができる。最後に、乾燥、
焼成して本発明に用いる触媒が得られる。
Next, vanadium and nickel are supported on the obtained carrier. As a mutual impregnation method, a vacuum impregnation method, a dipping method, etc., which are commonly used in this technical field, are applied. For example, in the case of a vacuum impregnation method, the supported amount and the ratio of vanadium to nickel 411 can be easily adjusted by changing the amount of ammonium vanadate and nickel nitrate dissolved in ion-exchanged water. Finally, dry
The catalyst used in the present invention is obtained by calcination.

本発明方法においては、上記の゛ようにして調製された
触媒を用いて重質油を水素化処理する。
In the method of the present invention, heavy oil is hydrotreated using the catalyst prepared as described above.

このときの反応温度は400〜800”C、L HS 
Vは0.2〜10.圧力は常圧□−200kg/cm2
テある。
The reaction temperature at this time is 400-800"C, L HS
V is 0.2 to 10. Pressure is normal pressure □-200kg/cm2
There is.

使用される触媒の粒径は適宜用いるが、10−・300
gmであることが好ましい、とくに40〜150鉢mが
好ましい。
The particle size of the catalyst used is determined as appropriate, but is 10-300.
gm, particularly preferably 40 to 150 pots m.

スラリーの懸濁濃度は、重質油と触媒とを混合したとき
その混合物中における一触媒量が1〜30重量%、好ま
しくは2〜lo重量%である。
The suspension concentration of the slurry is such that when heavy oil and catalyst are mixed, the amount of catalyst in the mixture is 1 to 30% by weight, preferably 2 to 10% by weight.

[発明の実施例] 実施例1.2 (1)触媒の調製 原料アロフェンに水篩処理を施して不純物を除去し、湿
式分散機で粒径を501Lm以下に粒度調整した。つい
で、これを200”Cて・2時間焼成して粒径30#L
m以下に再度粒度調整し、固形分濃度10重量%のアロ
フェンスラリーとした。
[Examples of the Invention] Example 1.2 (1) Preparation of catalyst Raw material allophane was subjected to water sieving treatment to remove impurities, and the particle size was adjusted to 501 Lm or less using a wet disperser. Next, this was baked at 200"C for 2 hours to obtain a particle size of 30#L.
The particle size was again adjusted to less than m to obtain an allophane slurry with a solid content concentration of 10% by weight.

これとは別に、イオン交換水378gにJIS3号水ガ
ラス148g及び硫酸10gを溶解せしめた溶液に、濃
度8重量%の硫酸アルミニウム水溶液538gを加えて
、全体を 100℃、pH8で30分間保持してシリカ
アルミナゲルを沈澱させ、これをか取・洗浄してシリカ
アルミナゲルを得た。このシリカアルミナゲルを800
℃で焼成したものの全細孔容積は9.8cc/g以r、
80Å以下の細孔容積は全細孔容積の35%以上であっ
た。
Separately, 538 g of an aqueous aluminum sulfate solution with a concentration of 8% by weight was added to a solution of 148 g of JIS No. 3 water glass and 10 g of sulfuric acid dissolved in 378 g of ion-exchanged water, and the whole was kept at 100°C and pH 8 for 30 minutes. A silica alumina gel was precipitated, which was collected and washed to obtain a silica alumina gel. 800% of this silica alumina gel
The total pore volume of the product fired at ℃ is 9.8 cc/g or more,
The pore volume of 80 Å or less was 35% or more of the total pore volume.

アロフェンスラリーとシリカアルミナゲルとを焼成後の
重量基準で70重量%、30重量%になるように混合し
、得られた混合スラリーをノズル圧力30 kg/c+
s2.乾燥温度200”O、滞留時間1秒の条件ドで噴
霧弊燥したのち、 500”Oで焼成して粒径30〜2
00JLmの担体とした。
Allophane slurry and silica alumina gel were mixed at a concentration of 70% by weight and 30% by weight based on the weight after firing, and the resulting mixed slurry was heated at a nozzle pressure of 30 kg/c+.
s2. After spraying and drying under the conditions of a drying temperature of 200"O and a residence time of 1 second, it is fired at 500"O to obtain a particle size of 30~2.
A carrier of 00 JLm was used.

ついで、この担体に真空含浸法を適用したのち600℃
で焼成してバナジウムとニッケルを担持せしめた。バナ
ジウム、ニッケルの相持量は、それぞれ担体100重量
部にだいし2重量部、1重量部に相当する量であった。
Next, after applying a vacuum impregnation method to this carrier, it was heated to 600°C.
It was fired to support vanadium and nickel. The amounts of vanadium and nickel supported were approximately 2 parts by weight and 1 part by weight, respectively, per 100 parts by weight of the carrier.

したがって、バナジウムとニッケルとの相持量の比は2
である。この触媒を実施例1とする。
Therefore, the ratio of the mutual amount of vanadium and nickel is 2
It is. This catalyst is referred to as Example 1.

アロフェンスラリーとシリカアルミナゲルとを焼成後の
重量基準で60重量%、30重量%となるように混合し
たことを除いては、実施例1の触媒の場合と同様な方法
で触媒を調製しこれを実施例2とした。
A catalyst was prepared in the same manner as the catalyst in Example 1, except that allophane slurry and silica alumina gel were mixed at 60% by weight and 30% by weight based on the weight after calcination. was designated as Example 2.

(2)触媒の特性 以上2種類の実施例につき、以下の方法で耐摩耗性を測
定し、あわせて比表面積、細孔分布も調べた。
(2) Characteristics of catalyst The abrasion resistance of the above two examples was measured by the following method, and the specific surface area and pore distribution were also investigated.

#i4摩耗性試験:流動接触分解法(FCC法)で用い
られているゼオライト触媒 (USZ−205)45gを耐摩耗性測定装置の中で、
室温、空気の線速度 287m1secという条件下で42時間流動させ、そ
のときの試験値を 1.0とした場合の相対値として 示した。この値が大きいほど酎 摩耗性に優れていることを表わ す。
#i4 Abrasion test: 45g of zeolite catalyst (USZ-205) used in fluid catalytic cracking (FCC method) was tested in an abrasion resistance measuring device.
It is shown as a relative value when the test value at that time is 1.0 after flowing for 42 hours at room temperature and at an air linear velocity of 287 ml/sec. The larger this value is, the better the abrasion resistance is.

比較 例 1:担体が、水篩処理のみを施したアロフェ
ンと実施例1で用いた シリカアルミナゲルから成り、 へナジウム、ニッケルも実施 例1のように担持しているも の。
Comparative Example 1: The carrier was composed of allophane treated only with water sieve and the silica alumina gel used in Example 1, and also supported henadium and nickel as in Example 1.

比 較 例 2:担体がアロフェン凍土とシリカアルミ
ナゲルから成り、また/へ ナジウム、ニッケルも実施例1 と同様に担持しているもの 比 較 例 3:水篩処理したのみのアロフェン比 較
 例 4 : FCCゼオライト触媒以上の結果を一括
して第1表に示した。
Comparison Example 2: Comparison in which the carrier is made of allophane frozen soil and silica alumina gel, and also supports henadium and nickel in the same manner as in Example 1. Example 3: Comparison of allophane treated only with water sieving Example 4 : FCC zeolite catalyst The above results are summarized in Table 1.

第1表 (3)減圧残油の水素化分解 第2表にその性状を示したアラビアンヘビー減圧残油を
、各種の触媒とともにオートクレーブにいれ、水素化分
解処理を施した。水素化分解反応時の条件は下記のとお
りであつ、た。
Table 1 (3) Hydrocracking of vacuum residue The Arabian heavy vacuum residue whose properties are shown in Table 2 was placed in an autoclave together with various catalysts and subjected to hydrocracking treatment. The conditions during the hydrogenolysis reaction were as follows.

減圧残油量80g、触媒量10g 、反応温度450°
C1反応圧力85kg/cm2G 、反応時間1時間。
Vacuum residual oil amount 80g, catalyst amount 10g, reaction temperature 450°
C1 reaction pressure 85 kg/cm2G, reaction time 1 hour.

攪拌速度500rpm。Stirring speed: 500 rpm.

第2表 得られた結果を一括して第3表に示した。なお、第3表
中、触媒3.触媒4を用いた場合は、コークス生成が激
しく進み反応は30分しかできなかった。したがって、
これら触媒3.触媒4の第3表の結果は反応時間30分
のデータである。
Table 2 The results obtained are summarized in Table 3. In addition, in Table 3, catalyst 3. When Catalyst 4 was used, coke production progressed rapidly and the reaction could only be completed for 30 minutes. therefore,
These catalysts3. The results in Table 3 for Catalyst 4 are data for a reaction time of 30 minutes.

第3表 $3・水篩処理したアロフェン(第2表の比較例3に相
当)t4・FCCゼオライト触媒(第2表の比較例4に
相当)t5:沸点343℃以下の生成物の合計量。ただ
し、コークス収率も含む。
Table 3 $3 - Water sieved allophane (corresponds to Comparative Example 3 in Table 2) t4 - FCC zeolite catalyst (corresponds to Comparative Example 4 in Table 2) t5: Total amount of products with a boiling point of 343°C or less . However, it also includes coke yield.

[発明の効果] 以上の説明で明らかなように、本発明の触媒は、■耐摩
耗性が優れている(第1表の結果)。
[Effects of the Invention] As is clear from the above explanation, the catalyst of the present invention has (1) excellent wear resistance (results shown in Table 1).

■重質油の水素化分解反応において、灯油・軽油留分の
収率を高める(第2表)、■コークス収率を低める(第
2表)、■水素消費量が少なくてすむ(第2表)、■比
較的高温で反応を進めることができる、■アロフェンを
原料とするので触媒コストの低下が可能になる、などの
効果を奏し、石油精製分野における有用性が高い。
■Increasing the yield of kerosene and gas oil fractions in the hydrocracking reaction of heavy oil (Table 2), ■Lowering the coke yield (Table 2), ■Reducing hydrogen consumption (Table 2). (Table), (1) Reactions can proceed at relatively high temperatures, and (2) Since allophane is used as a raw material, catalyst costs can be reduced, making it highly useful in the petroleum refining field.

手続補正書 昭和58年 6月 6日 特許庁長官 若 杉 和 夫 殿 2、発明の名称 重質油の処理方法 3、補正をする者 事件との関係 特許出願人 名称 新燃料油開発技術研究組合 4、代理 人 住所 〒10?東京都港区赤坂2−1O−85、補正命
令の日刊 自発 6、補正により増加する発明の数 なし7、補正の対象
 明細書の特許請求の範囲及び発明の詳細な説明の各欄 に:\ 8、補正の内容 ■、特許請求の範囲の欄を別紙のとおりに補正する。
Procedural amendment June 6, 1981 Kazuo Wakasugi, Commissioner of the Patent Office 2 Name of the invention Method for processing heavy oil 3 Relationship with the person making the amendment Case Patent applicant name New Fuel Oil Development Technology Research Association 4. Agent address 〒10? 2-1O-85 Akasaka, Minato-ku, Tokyo, Daily publication of amendment orders Voluntary publication 6, Number of inventions increased by amendment None 7, Subject of amendment In each column of claims and detailed description of invention in the specification: \ 8. Contents of the amendment ■ The claims column is amended as shown in the attached sheet.

■1発明の詳細な説明の欄を以下のとおりに補正する。■1 The Detailed Description of the Invention column is amended as follows.

(1)明細書第1頁下行目、同第5頁10行目に記載の
「50〜70」を「50〜80」に補正する。
(1) "50-70" written in the bottom line of page 1 and line 10 of page 5 of the specification is corrected to "50-80".

(2)明細書筒4頁3行目、同第5頁11行目に記載の
「30〜50」を「20〜50」にへ補正する。
(2) "30-50" written on page 4, line 3 of the specification cylinder and page 5, line 11 of the specification cylinder is corrected to "20-50".

(3)明細書筒5頁12行目に記載の「30」を「20
」に補正する。
(3) Change “30” written on page 5, line 12 of the specification cylinder to “20”
”.

(4)明細書第5頁13行目に記載の「70」を[80
」に補正する。
(4) "70" written on page 5, line 13 of the specification is replaced by [80]
”.

(5)明細書第5頁19行目に記載の「60〜80」を
「60〜75」に補止する。
(5) "60-80" written on page 5, line 19 of the specification is supplemented to "60-75".

(6)明細書筒5頁20行目に記載の「40〜20」を
「40〜25」に補正する。
(6) "40-20" written on page 5, line 20 of the specification cylinder is corrected to "40-25".

(7)明細書節10頁17行目に記載の「30重量%」
を「40重量%」に補正する。
(7) “30% by weight” stated on page 10, line 17 of the specification section
is corrected to "40% by weight".

(8)明細書第14頁下から5行目に記載の「0.1重
に%」を「1.0重量%Jに補正する。
(8) "0.1% by weight" written in the fifth line from the bottom on page 14 of the specification is corrected to "1.0% by weight J."

特許請求の範囲 1、 重質油を水素化処理する方法において、アロフェ
ン50〜り重量%及び無機耐熱結合材弛〜50重量%か
ら成る担体と、該担体に担持されたバナジウム及びニッ
ケルとから成る触媒であって、バナジウム及びニッケル
の担持量が、該担体100重φ部にだいし、それぞれ1
〜20重量部、0.5〜lO重量部である触媒を用い、
反応温度400〜800°C9常圧〜200kg/cm
2の条件下で水素化反応を行なうことを特徴とする重質
油の処理方法。
Claim 1: A method for hydrotreating heavy oil, comprising a carrier comprising 50 to 50% by weight of allophane and 50 to 50% by weight of an inorganic heat-resistant binder, and vanadium and nickel supported on the carrier. A catalyst, in which the amount of vanadium and nickel supported is about 1 part by weight and 1 part by φ of the carrier, respectively.
~20 parts by weight, using a catalyst that is 0.5 to 10 parts by weight,
Reaction temperature 400-800°C9 Normal pressure-200kg/cm
A method for processing heavy oil, characterized by carrying out a hydrogenation reaction under the conditions of 2.

2、該触媒の全細孔容積が0.03〜0.3cc/gで
あって、 40〜1000人の細孔の全容積はQ、Q2cc/g以
−L、1000〜100OOAの細孔の全容積は0.1
cc/g以下、及び+000OA以−Lの細孔の全容積
は0.05cc/g以下である特許請求の範囲第1項記
載の重質油の処理方法。
2. The total pore volume of the catalyst is 0.03~0.3cc/g, and the total volume of 40~1000 pores is Q, Q2cc/g or more, and the pore size is 1000~100OOA. Total volume is 0.1
The method for treating heavy oil according to claim 1, wherein the total volume of pores of cc/g or less and +000OA or more -L is 0.05 cc/g or less.

手続補正書 昭和60年5月7日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第104664号 2、発明の名称 重質油の処理方法 3、補正をする者 事件との関係 特許出願人 名称 新燃料油開発技術研究組合 4、代理人 5、補正命令の日付 自発 6、補正の対象 明細書の発明の詳細な説明の欄(1)
明細書第1頁下行目に記載の「実施例1゜2」を「実施
例1 、2 、3Jに補正する。
Procedural amendment May 7, 1985 Manabu Shiga, Commissioner of the Patent Office1, Indication of the case, Patent Application No. 104664 filed in 19822, Name of the invention, Heavy oil processing method 3, Person making the amendment Related Name of patent applicant New Fuel Oil Development Technology Research Association 4, Agent 5, Date of amendment order Voluntary 6, Subject of amendment Detailed explanation of the invention in the specification (1)
“Example 1゜2” written in the bottom row of page 1 of the specification is amended to “Examples 1, 2, and 3J.”

(2)明細書第1頁下行目に記載の「原料アロフェンに
」を「第1表にその粒径分布を示した原料アロフェンに
」に補正する。
(2) "To the raw material allophane" stated in the bottom line of page 1 of the specification is corrected to "to the raw material allophane whose particle size distribution is shown in Table 1."

(3)明細書第1頁下θ行目に記載の「湿式分散機」を
「湿式粉砕機」に補正する。
(3) "Wet type dispersion machine" stated in the bottom line θ of page 1 of the specification is corrected to "wet type crusher".

(4)明細書第9頁13行目に記載の「・・・・・・ア
ロフェンスラリーとした。」に続けて下表を挿入する。
(4) Insert the following table following "... allophane slurry" stated on page 9, line 13 of the specification.

第1表 (5)明細書第10頁下から2〜1行目に記載の「・・
・・・・これを実施例2とした。」に続けて丁亥を挿入
する。
Table 1 (5) “...” stated in the second to first lines from the bottom of page 10 of the specification
...This was designated as Example 2. ” followed by Dinghai.

「また、混合スラリーの調整段階で、第1表と同様の粒
径分布を有する原料アロフェンに水筒処理を施して不純
物を除去し、これとシリカゾルとを焼成後の重量基準で
70重量%、30重量%になるように混合し、得られた
混合物にイーオン交検水を加え固形分濃度15重量%で
ある均一な混合スラリーとし、これを湿式粉砕機にて粉
砕し、粒径1O1ua以下とした。これから、実施例1
の触媒の場合と同様な方法で触媒を調製し、これを実施
例3とした。」 (6)明細書第10頁2行目に記載のr以上2種類の」
を1以上3種類の」に補正する。
"Also, in the preparation stage of the mixed slurry, the raw material allophane having the same particle size distribution as shown in Table 1 was subjected to water bottle treatment to remove impurities, and this and silica sol were mixed to 70% by weight based on the weight after firing, and 30% % by weight, Aeon exchange water was added to the resulting mixture to form a uniform mixed slurry with a solid content concentration of 15% by weight, and this was pulverized using a wet pulverizer to obtain a particle size of 1O1ua or less. .From now on, Example 1
A catalyst was prepared in the same manner as in the case of the catalyst, and this was designated as Example 3. ” (6) Two types of r or more described in the second line of page 10 of the specification.”
be corrected to one or more of three types.

(7)明細書第11頁lO〜12行目に記載の[・・・
・・・そのときの試験値を1.0とした場合の相対値と
して示した。」を「そのときの残留重層を1.0とした
場合の相対値を、各実施例の試験値として示した。」に
補正する。
(7) [...
...It is shown as a relative value when the test value at that time is 1.0. " is corrected to "The relative value when the residual overlayer at that time is assumed to be 1.0 is shown as the test value for each example."

(8)明細書第10頁7行目、同第15頁3行目に記載
の「第1表」を「第2表」に補正する。
(8) "Table 1" stated in page 10, line 7 of the specification and page 15, line 3 of the specification is amended to "Table 2."

(9)明細書第12頁に記載の第1表の表番「第1表」
を「第2表」に補正し、表を以下の通りに補正する。
(9) Table number “Table 1” of Table 1 stated on page 12 of the specification
amend it to "Table 2" and amend the table as follows.

(10)明細書第12頁下から3行目、同13頁5行目
に記載の「第2表」を「第3表」に補正する。
(10) "Table 2" written in the third line from the bottom of page 12 of the specification and in the fifth line of page 13 of the specification is amended to "Table 3."

(11)明細書第14頁1行目、2行目及び4〜5行目
に記載の「第3表」を「第4表」に補正する。
(11) "Table 3" stated in the 1st, 2nd, and 4th to 5th lines of page 14 of the specification is amended to "Table 4."

(12)明細書第14頁に記載の第3表の表番「第3表
」を「第4表」に補正し、表を以下の通りに補正する。
(12) The table number "Table 3" in Table 3 described on page 14 of the specification is amended to "Table 4" and the table is amended as follows.

(13)明細書第15頁5行目、6行目及び7行目に記
載の「第2表」を゛「第4表」に補正する。
(13) "Table 2" stated in lines 5, 6, and 7 of page 15 of the specification is amended to "Table 4."

Claims (1)

【特許請求の範囲】 1、重質油を水素化処理する方法において、アロフェン
50〜70重量%及び無機耐熱結合材30〜50重量%
から成る担体と、該担体に担持されたバナジウム及びニ
ッケルとから成る触媒であって、バナジウム及びニッケ
ルの担持量が、該担体100重量部にたいし、それぞれ
1〜20重量部、0.5〜lO重量部である触媒を用い
、反応温度400〜600°C1常圧〜200kg/c
m2の条件下で水素化反応を行なうことを特徴とする重
質油の処理力法。 2、 該触媒の全細孔容積が0.03〜0.3cc/g
であって、 40〜1000人の細孔の全容積は0.02cc/g以
」二、1000〜100OOAの細孔の全容積は0.1
cc/g以下、及び10000Å以上の細孔の全容積は
0.05cc/g以下である特許請求の範囲第1項記載
の重質油の処理方法。
[Claims] 1. In a method for hydrotreating heavy oil, 50 to 70% by weight of allophane and 30 to 50% by weight of an inorganic heat-resistant binder.
and vanadium and nickel supported on the carrier, wherein the supported amounts of vanadium and nickel are 1 to 20 parts by weight and 0.5 to 0.5 parts by weight, respectively, based on 100 parts by weight of the carrier. Using a catalyst that is 10 parts by weight, the reaction temperature is 400 to 600°C, normal pressure to 200 kg/c.
A heavy oil processing power method characterized by carrying out a hydrogenation reaction under conditions of m2. 2. The total pore volume of the catalyst is 0.03 to 0.3 cc/g
The total volume of pores between 40 and 1000 OOA is 0.02 cc/g or less.2, The total volume of pores between 1000 and 100 OOA is 0.1
2. The method for treating heavy oil according to claim 1, wherein the total volume of pores of cc/g or less and 10,000 Å or more is 0.05 cc/g or less.
JP59104664A 1984-05-25 1984-05-25 Process for treating heavy oil Granted JPS60250090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104664A JPS60250090A (en) 1984-05-25 1984-05-25 Process for treating heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104664A JPS60250090A (en) 1984-05-25 1984-05-25 Process for treating heavy oil

Publications (2)

Publication Number Publication Date
JPS60250090A true JPS60250090A (en) 1985-12-10
JPH0257114B2 JPH0257114B2 (en) 1990-12-04

Family

ID=14386731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104664A Granted JPS60250090A (en) 1984-05-25 1984-05-25 Process for treating heavy oil

Country Status (1)

Country Link
JP (1) JPS60250090A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268093A (en) * 1975-12-04 1977-06-06 Chiyoda Chem Eng & Constr Co Ltd Catalyst for removing metals in hydrocarbons
JPS5330996A (en) * 1976-09-03 1978-03-23 Chiyoda Chem Eng & Constr Co Ltd Preparation of metal supported sepiolite catalyst
JPS596944A (en) * 1982-07-05 1984-01-14 Nippon Kaihatsu Consultant:Kk Catalyst for treating heavy oil and preparation thereof
JPS5934691A (en) * 1982-08-20 1984-02-25 大槻 眞之 Method of producing printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268093A (en) * 1975-12-04 1977-06-06 Chiyoda Chem Eng & Constr Co Ltd Catalyst for removing metals in hydrocarbons
JPS5330996A (en) * 1976-09-03 1978-03-23 Chiyoda Chem Eng & Constr Co Ltd Preparation of metal supported sepiolite catalyst
JPS596944A (en) * 1982-07-05 1984-01-14 Nippon Kaihatsu Consultant:Kk Catalyst for treating heavy oil and preparation thereof
JPS5934691A (en) * 1982-08-20 1984-02-25 大槻 眞之 Method of producing printed circuit board

Also Published As

Publication number Publication date
JPH0257114B2 (en) 1990-12-04

Similar Documents

Publication Publication Date Title
US4255253A (en) Hydrogen processing of hydrocarbon feeds using coated catalysts
US4115248A (en) Hydrocarbon hydroconversion with a catalyst having interconnected macropores
EP0620841B1 (en) A process for upgrading hydrocarbonaceous feedstocks with a combined hydrotreating and hydrocracking catalyst system
JP5547880B2 (en) Hydrodesulfurization process
US5620590A (en) Hydrocracking process using small crystal size zeolite Y
CA2358901A1 (en) Hydroprocessing using bulk multimetallic catalysts
JP3984649B2 (en) Supported nickel-copper hydrogenation conversion catalyst
WO1998026866A1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
CN103769122A (en) Method for preparing hydro-treatment catalyst
WO2018192517A1 (en) Improved diesel hydrocracking catalyst and method for preparing same
JP3341011B2 (en) Catalyst support and hydrogenation catalyst
WO1996007477A1 (en) Catalyst comprising at least a hydrogenation metal component and a synthetic clay
US4105587A (en) Process for producing a particle pack composition comprising alumina and the resulting attrition resistant composition
JPS60227833A (en) Hydrogenation treatment catalyst of heavy hydrocarbon oil
JPS58252A (en) Improved catalyst and carrier and production and use thereof
JPH0226642A (en) Manufacture of catalyst particle and catalyst particle produced thereby
EP0875287B1 (en) Hydrotreating catalyst, its preparation, and hydrotreating process of hydrocarbon oil by using same
JPS60250090A (en) Process for treating heavy oil
US3652449A (en) Hydrocarbon conversion processes using alumina-bonded catalysts
JPS61126196A (en) Hydrocracking of hydrocarbon
CN102895947A (en) Hydrocarbon oil desulphurization adsorbent, and preparation method and application thereof
JPS61108692A (en) Hydrotreating and dewaxing method of petroleum charged material
JP4230257B2 (en) Hydrocarbon oil hydrotreating process using silica-alumina hydrotreating catalyst
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method
JP3782887B2 (en) Hydrotreating catalyst and hydrotreating method of hydrocarbon oil using the hydrotreating catalyst