JPS596944A - Catalyst for treating heavy oil and preparation thereof - Google Patents

Catalyst for treating heavy oil and preparation thereof

Info

Publication number
JPS596944A
JPS596944A JP57115466A JP11546682A JPS596944A JP S596944 A JPS596944 A JP S596944A JP 57115466 A JP57115466 A JP 57115466A JP 11546682 A JP11546682 A JP 11546682A JP S596944 A JPS596944 A JP S596944A
Authority
JP
Japan
Prior art keywords
slurry
catalyst
alophene
allophane
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57115466A
Other languages
Japanese (ja)
Inventor
Akikiyo Motogami
章清 元上
Kaoru Sato
馨 佐藤
Kenichi Moriya
守屋 賢一
Jiro Sekiya
関谷 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAIHATSU CONSULTANT KK
Original Assignee
NIPPON KAIHATSU CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAIHATSU CONSULTANT KK filed Critical NIPPON KAIHATSU CONSULTANT KK
Priority to JP57115466A priority Critical patent/JPS596944A/en
Publication of JPS596944A publication Critical patent/JPS596944A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst used in a fluidized catalyst layer available in the catalytic cracking of heavy oil, by baking a slurry in which alophene with a specific particle size and silica alumina hydrogel are mixed in a specific ratio. CONSTITUTION:Alophene is dispersed in a wet system to make an alophene slurry containing a alophene with an average particle size of about 5mum or less and a silicate solution and an acidic Al liquid are added to said slurry to form silica alumina therein. In the next step, after the volume of the slurry is reduced to about 1/2-1/10 by dehydration and concentration to remove impurities, water is added to the concn. slurry to adjust the slurry concn. to about 15-25% and the diluted slurry is spray dried. In this case, the ratio of an alophene and the aforementioned gel may be adjusted in such a manner that alophene content occupies 5-80% of a final catalyst. Thus obtained catalyst is treated so as to bring the specific surface area thereof to about 35-250m<2>/g and the specific gravity thereof to about 0.45-0.95 and, when it is used in the catalytic cracking of heavy oil, dehydrogeneration reaction and dehydrocyclization reaction are remarkably promoted.

Description

【発明の詳細な説明】 用蒸留残油,減王蒸°昭浅油、オイルザンド油、ンエー
ル油又はこれらに準する重質炭化水素等の重質油の接触
分解に有効な流動触媒層1月の触11l^及びその製造
法に係り、水蒸気や熱に対して極めて安7、ビで、かつ
優れた耐魔耗性を有し、タラソキング特性として灯油、
怪油、へ爪油等のいわゆる中間留分の収量の高いものと
なり、盗らには脱水未反応、脱水素1唯化反応を顕著に
促1佑するものとなる重質油処理用触媒及びその製造法
を提i4cmすることを目的シする。
[Detailed description of the invention] A fluidized catalyst bed effective for the catalytic cracking of heavy oils such as commercial distillation residual oil, reduced kingship distillation oil, oil sand oil, oil oil, or similar heavy hydrocarbons. Regarding the touch 11l^ and its manufacturing method, it is extremely safe against water vapor and heat, and has excellent resistance to wear and tear.
Heavy oil processing catalysts and catalysts that produce high yields of so-called middle distillates such as stale oil and nail oil, and which significantly promote dehydration, unreacted dehydration, and dehydrogenation reactions. The purpose is to propose a manufacturing method for i4cm.

従来より、炭化水素国、特1(石油系炭化水素9の品質
を適当な操作条件の接+9!処理によって向上させるこ
とが行なノっれており、多くの,i牲渫が堤案されてい
る。そして、流動接触外1’l’i!法( Ii’ C
(3法)による炭化水素転化方法では、合成ソリ力アル
ミナ無定形ゲル触媒あるい.けゼオライトを含有する触
媒といったように”比較的活性の高い触媒が1−1]い
られ、沸点範囲の比較的狭い灯油等の炭fヒ水素類を原
料として反応幅・115ooC@後、1丈1芯時間20
抄り、下の短時間で一度の接触処理により、ガノリン留
f) ’l”y <得ろことを目的としている。このよ
うなFCC!触媒はガンリン留1分の収率か50係以に
といったような特長を有しているが、反応不飽和分が熱
縮合を起こし、タール状の重質油を副生じ、へ重油以下
の中間留分の収率が小さく、又、触媒の熱安定性に劣り
、将来の潜在的需要増が見込まれているジェット油、灯
油、軽油、AFJf油の中間留分不足を補なうに至って
いない。
It has been known for some time that the quality of hydrocarbons (petroleum-based hydrocarbons) can be improved by processing them under appropriate operating conditions, and many sacrificial projects have been proposed. Then, the flow contact outside 1'l'i! method (Ii' C
(Method 3) uses a synthetic alumina amorphous gel catalyst or a synthetic alumina gel catalyst. A catalyst with relatively high activity, such as a catalyst containing zeolite, is required, and a reaction width of 115°C is achieved using carbons such as kerosene and arsenic, which have a relatively narrow boiling point range, as raw materials. 1 core time 20
The purpose is to obtain a ganolin distillate f) 'l''y< by a single contact treatment in a short period of time.Such FCC! However, the reaction unsaturated components undergo thermal condensation, producing tar-like heavy oil as a by-product, and the yield of middle distillates below heavy oil is low, and the thermal stability of the catalyst is poor. This has not made up for the shortage of middle distillates for jet oil, kerosene, diesel oil, and AFJF oil, which are expected to have a potential increase in future demand.

重質油の吸触分解で中間留分11v、得型のものとして
、本出願人は先に天然のアロフェン及びrM ”R十を
触媒として接触分解方法行ない、分解油収率80%以ヒ
のものとなる手段?提案したが、この提案11こ1−1
−.1いられた触媒では安′宝した流動#Fへ分解が碍
ら−)1. +C< < 、さらに1は触媒の寿命が比
較的短かいといった欠点のあるものであり、充分満足で
きるものではtcい。
In order to obtain a middle distillate of 11V from the catalytic cracking of heavy oil, the present applicant first carried out a catalytic cracking process using natural allophane and rM''R as a catalyst, and achieved a cracked oil yield of more than 80%. A means to become a thing?I proposed, but this proposal 11 1-1
−. 1) The decomposition of the catalyst into the precious fluid #F was successful.) 1. +C<<, and 1 has the disadvantage that the catalyst life is relatively short, so it is not completely satisfactory.

本発明は上記の先行技術(特開昭56−127687号
公報に開示)の提案による重質油の接触分解方法におい
て効果的な触媒を提案するものであり、本提案による触
媒は特開昭56−127687号(でおいて用りられた
触媒の屯なる改団といった特長に−tきf’rいのでは
なく、特に、石油系炭化水素類を、防触分解才るに際し
て、脱水素反応及び脱水素頻化反応を顕@に促進17、
]11常こhらの反応に1+1い1′)れるP(−Al
203 、Or203− Al2203、Mo03−Δ
R,(、)、、円11c −A Q、201等の高価な
触媒を用贋で高R:装置で生成される分解数ノd生成物
と類似した生成物、4z−、)Jffiの接触分解で得
ることができるふいった特長をもイイするものである。
The present invention proposes an effective catalyst in the method of catalytic cracking of heavy oil proposed in the above-mentioned prior art (disclosed in Japanese Patent Application Laid-Open No. 56-127687). The catalyst used in No. 127687 (No. and significantly promote dehydrogenation reactions 17,
]11 P(-Al
203, Or203-Al2203, Mo03-Δ
R, (, ),, circle 11c - A Q, high R by using an expensive catalyst such as 201: product similar to the decomposition number d product produced in the device, 4z-, ) Jffi contact It also has great features that can be obtained through decomposition.

木発明において用いられるアロフェンは、曲称栗土、1
未増土、水土又は浮石上、しい1つね、る・!茎α性土
壌であり、中心本体id鉱物学的VcAfV、L+ph
a+u+テあり、その物理化学的特性1は他の粘土類と
異なり、極めて興味ある吸着能を有し、吸着剤として第
1」川されようとしており、我国1(おいて1/1.多
htに産出されていて、例えば1柑東ロ一ム層な中心に
推ポ1゜億トンの埋霞歇があり、栃木県鹿沼地方に産出
されているのが有名である。このアロフェンは、011
1m以下の微細粒子より組み立てられて−っの多孔質巨
大粒子となり、その組織の一般式はJ203 ・(1−
2)Si02 ・(2〜3 ) 1120−1− (0
−2)Ag203(1120)で表わされ、非晶質含水
ケイ酸アルミニウムと同Irlす′アルミナゲル2の混
合物あるいi−i:複合物であり、例えl・ず105℃
乾燥物の成分(d、Sin、、が34.91■、AQ2
(、)3カ’ 22.7 K@ %、O;IOf)r 
O,9重量%、MgOカ0.9重量係、Na20が06
10、K2Oが05重i%、Fc203が561■、1
.g −Ross 32.6重着係であり、みかけ比重
25、かさ比重0.43、気化率75係 の物理的特性
を有している。
Allophane used in wood invention has the nickname Kurito, 1
Unexpanded soil, water, soil, or floating stones, it's one thing! Stem alpha soil, central body id mineralogical VcAfV, L+ph
Its physicochemical properties 1 are different from other clays, and it has an extremely interesting adsorption capacity, and is about to become the first adsorbent in Japan. For example, there is a deposit of 100 million tons in the center of the 1 Kanto Lom layer, and it is famous that it is produced in the Kanuma region of Tochigi Prefecture.This allophane is 011
It is assembled from fine particles of 1 m or less to form porous giant particles, and the general formula of its structure is J203 ・(1-
2) Si02 ・(2~3) 1120-1- (0
-2) It is represented by Ag203 (1120) and is a mixture or ii: composite of amorphous hydrated aluminum silicate and the same Irl' alumina gel 2.
The components of the dry product (d, Sin, , are 34.91■, AQ2
(,)3ka'22.7K@%,O;IOf)r
O, 9% by weight, MgO 0.9% by weight, Na20 06
10, K2O is 05 weight i%, Fc203 is 561■, 1
.. g-Ross has a weight of 32.6, an apparent specific gravity of 25, a bulk specific gravity of 0.43, and an evaporation rate of 75.

木発明は、このアロフェン’i ’F−均粒径5 /4
TI以下といろ可及的微粉砕を湿式分散機によって行な
うことに一つの・特長を有し7ており、すなわちアロフ
ェンid 0.114n以下の基本粒子が屯ニ凝集して
いるのみでちることより粒子間強度が弱く、耐摩耗性に
劣り、流l111接触分解用1触媒としては問題がちっ
たのであるが、アロフェンを平均粒径51bn以下とな
るよう基本粒子近くまで分散させ、そしてその粒子間隙
に”アロフェンと組成が同質のシリカアルミナヒドロゲ
ルを反応生成させ、充分に混合した後このゲルをバイン
ダーとして成形することにより、アロフェンが約5〜8
0%含有させらシを比表面積が35〜250 m”7g
かつかさ比重が045〜095のものけ、アロフェンの
特性を何等損なうことな(、しかも耐苧耗性(F、富ん
だものとなることを児い出したのである。
The wood invention is based on this allophane 'i'F-average particle size 5/4
One of the features is that the wet dispersion machine is used to perform as fine a grinding process as possible to less than the TI, that is, the basic particles with an allophane ID of less than 0.114n are only agglomerated. The interparticle strength was weak, the abrasion resistance was poor, and there were many problems as a single catalyst for flow l111 catalytic cracking, but allophane was dispersed close to the basic particles so that the average particle size was 51bn or less, and the interparticle gaps were By reacting and producing a silica alumina hydrogel with the same composition as allophane, thoroughly mixing it, and then molding this gel as a binder, allophane is
Contains 0% shirashi with a specific surface area of 35-250 m”7g
We have created a product with a cap specific gravity of 045 to 095 that does not impair the properties of allophane in any way (and is rich in abrasion resistance (F)).

一般にクラッキング触媒1は、触媒の比表面積、細孔容
積の大きなもの程活性が高いと言われているが、本発明
の対象目的とするようなrff質油を液相接触反応によ
り中間留分な多く取得−ぐるといったように、分解生成
物の分子量が比較的太@tn、lμ合i/rcは、触媒
の細孔径−h5大きい側、−むなわちI Fl Fl 
O′A以上の細孔が大部分を占める触媒を必甥とし、・
シリカアルミナヒドロゲルによってイ乍られる甲均40
久程度の細孔は一度の接触反応によって生成する炭素質
によって塞力;れて[7まい、+00 X以トーの細孔
容噴も著しく減少17、アロフェンの有する100A以
−Lの細FLと本発明によるアロフエンヲ平均5 /l
■以下に分散−することによって得られた1000〜5
000 X の細孔とが重質油処理には有効なものと思
1っれる。
It is generally said that the cracking catalyst 1 has a higher activity as the specific surface area and pore volume of the catalyst are larger. As shown in the figure, the molecular weight of the decomposition product is relatively thick @tn, lμ combined i/rc is the pore diameter of the catalyst - h5 on the larger side, - that is, I Fl Fl
A catalyst with a majority of pores larger than O'A is required,
Koyun 40 equipped with silica alumina hydrogel
The pores with a diameter of about 100 mm are blocked by the carbonaceous material produced by a single contact reaction; Alofuenwo average 5/l according to the present invention
■ 1000 to 5 obtained by dispersing below
A pore size of 000 x is considered to be effective for heavy oil processing.

シリカアルミナ触媒あるいはゼオライトを含准するシリ
カアルミナM!II媒等で使i)れるアルミノシリケー
トの調整法は、種々提案Δノ1.ており、例えばノリ力
及びアルミナヒドロケルを混練するゲル混練法、7II
カヒド1コゲルを作り、このスラリー中でアルミナを生
成させるとシリカケル粒子にアルミナが沈着するゲル沈
着法、シリカのキセロゲル粉末又はシリカヒドロゲルに
アルミナの塩水溶液を含浸させ、蒸発乾固17てシリカ
アルミナキセロゲルを得る含浸法、シリカ及びアルミナ
のキセロゲル粉末を摩砕して乾式に化学混合を行なうこ
とにより得るケル摩砕混練法、ソリ力とアルミナを同時
にゲル化することによりシリカアルミナヒドロゲルを得
る共ゲル化法等があるが、本発明に2ける触媒Cのシリ
カアルミナヒドロゲル1はバインダーとしての役割を考
えるのみであるので、その製法は最も簡便な共ケル化法
が適している。但し、シリカアルミナヒドロゲルを作っ
ておいてアロフェンを機械的に混合する方法よりも、ア
ロフェンとケイ酸ナトリウム液とを第1段階で混合し、
次いでアルミナ源である硫酸アルミニウム・あるいは硝
酸アルミニウム液を加えて、アロフェンスラリー中1て
シリカアルミナヒドロゲルを反応生成せしめた方が、咳
ケルとアロフェンとの密着性シこ1憂ね、たものができ
る。尚、共ゲル化法は、シリカアルミナゲルの安定性等
に劣ると言われているが、本発明のようにケル化儂1隻
の低いところで熟成すね、げ、バインダーとしてのケル
のノ・う等の不安定性tL−i昭められなかった。
Silica alumina M containing silica alumina catalyst or zeolite! There are various methods for preparing the aluminosilicate used in medium II etc. ΔNo.1. For example, glue kneading method and gel kneading method of kneading alumina hydrokel, 7II
A gel deposition method in which silica gel is produced and alumina is produced in this slurry, and alumina is deposited on silica gel particles. Silica xerogel powder or silica hydrogel is impregnated with a salt aqueous solution of alumina, and silica alumina xerogel is evaporated to dryness. an impregnation method to obtain a silica-alumina hydrogel, a kell milling kneading method to obtain a silica-alumina hydrogel by grinding silica and alumina xerogel powder and dry chemical mixing, and a co-gelation method to obtain a silica-alumina hydrogel by simultaneously gelling alumina and warping force. Although there are various methods, since the silica alumina hydrogel 1 of the catalyst C in the present invention is only considered to have a role as a binder, the simplest cokelization method is suitable for its production method. However, rather than making a silica alumina hydrogel and then mechanically mixing allophane, a method in which allophane and sodium silicate liquid are mixed in the first step,
Next, adding aluminum sulfate or aluminum nitrate solution, which is an alumina source, to react and generate silica alumina hydrogel in the allophane slurry can solve the problem of adhesion between the cough kelp and allophane. . It should be noted that the co-gelation method is said to be inferior to the stability of silica alumina gel, but as in the present invention, it is possible to ripen the gel at a low temperature in one container, to form a gel, and to use the gel as a binder. The instability of tL-i could not be ameliorated.

又、流動床触媒は、特に耐摩耗性か所望さfしており、
特にアロフェン単体で1r1酎1耐粍性1て問題があり
、すなわち巖近にかいては公ガ硯制の厳しいところから
、再生時にふ・ける再生塔のザイクロンから煙突を1市
して排出さh−る摩耗した触媒微粉が問題となっても・
す、このような点より 一段と耐摩耗性に優れた触媒が
妾宅されている。一般に枯I−系物質を含有する触媒は
耐摩耗性に弱いとされていたのであるが、本発明の触媒
では、従来のシリカアルミナ触媒に劣らない優れた耐摩
耗性をイ1するものとなっている。
Additionally, fluidized bed catalysts are particularly desirable for wear resistance.
In particular, allophane alone has a problem of 1r1, 100% corrosion resistance, and in other words, due to the strict public regulations, it is difficult to discharge it from the chimney from the Zyclone of the regeneration tower used during regeneration. Even if worn catalyst fine powder becomes a problem,
For these reasons, catalysts with even better wear resistance are available. Catalysts containing dry I-based materials were generally considered to have poor wear resistance, but the catalyst of the present invention has excellent wear resistance comparable to that of conventional silica-alumina catalysts. ing.

このような触媒の製造法は、 (1)あらかじめ+00メツシユ以下に粉砕されたアロ
フェンと水とを混合し、2〜50幅のアロフエンヲ含有
するスラリー液を作り、そしてアロフェン粒子が平均5
 /#n l:J下、醗大粒径1010n程度以下とな
るまで湿式分敵機にて均一分散を行ない、最終触媒中に
アロフェンが約5〜80%、特に好まI、<(Ii30
〜60%含まれるようになるよう配合されたスラリー液
を作り、 (2)該スラリーに0.5 M以下のケイ酸ナトリウム
水溶液を混合攪拌し、 (3)これに0.5M以下の酸性アルミニウム塩溶液を
加え、pH3〜10の範囲でシリカアルミナ共ケルをス
ラリー中で反応生成させ、攪拌しながら熟成し、(4)
そして遠心分離機等で副生する不純物を除去する為にス
ラリーを濃、縮脱水し、 (5)スラリーが過変な粘性を有するように水分を調整
した後噴霧乾燥し、 (6) it酸アンモニア液又はアンモニア水にてソリ
カアルミナヒドロゲル生成時に副生ずる不純物をイオン
交換、洗浄し、 (7)再乾燥した後、焼成 といった工程を径ることによって作られる。
The method for producing such a catalyst is as follows: (1) Allophane, which has been ground in advance to a size of +00 mesh or less, is mixed with water to create a slurry containing 2 to 50 allophane particles, and the average number of allophane particles is 5.
/#nl: Under J, homogeneous dispersion is carried out using a wet separator until the large particle size is about 1010n or less, and the final catalyst contains about 5 to 80% allophane, especially preferably I, <(Ii30
(2) Mix and stir a 0.5 M or less sodium silicate aqueous solution to the slurry, (3) Add 0.5 M or less of acidic aluminum to this slurry. Add a salt solution, react and generate silica-alumina cokel in the slurry at a pH range of 3 to 10, and age with stirring, (4)
Then, the slurry is concentrated and dehydrated to remove impurities produced by a centrifugal separator, etc. (5) After adjusting the water content so that the slurry has an unusual viscosity, it is spray-dried, (6) IT acid It is produced by ion-exchanging and washing impurities that are produced as a by-product during the production of solica alumina hydrogel with ammonia solution or ammonia water, (7) re-drying, and then firing.

上記工程においてソリ力源としてはケイ酸ナトリウム、
アルミナ源としては硫酸アルミニウム又1は硝酸アルミ
ニウム、又洗浄用ILl+I酸アンモニウムあるいはア
ンモニア水が用いられるが、これらはJIS規格による
工業薬品を用いることができる。
In the above process, sodium silicate,
As the alumina source, aluminum sulfate or aluminum nitrate, and ammonium IL1+I acid or aqueous ammonia for cleaning are used, and industrial chemicals according to JIS standards can be used as these.

例えば、ケイ酸ナトリウムは1.IIS 1号の5in
2/Na2Oのモル比が約2のもの、又は1月83号の
Sin、、 /Na2Oのモル比が約3のものといった
ものを用いることができ、水で希釈し、0.5 M以下
で1月いた。尚、IIS3号のケイ酸ナトリウムを用い
た場合には、高濃度ゲル作成の場合にフロックが大きく
なりやずいといった問題が生じたが、低濃度にてゲル化
する場合には支障は認められなかった。又、共ゲル作成
時においては、ケイ酸ナトリウム量と酸性アルミニウム
量とは、ゲル生成時のpHが3〜10の範囲で行なわれ
るように調整して分くことにより、触媒として良好な強
度を有する共ゲルが作成された。さらに、アロフェン量
と共ゲルとの割合は、アロフェン含有喰が最終触媒中に
5〜80係となるように調整さ)−Fl、たものであれ
ばよく、すt(わち触媒中においてアロフェンが80%
以」二では粒子強度が低ドし、工業的使1月に耐える強
度のものが得られず、又、5%す、下でIdアロフェン
の、触媒特性が充分に発揮でへないものとなる。又、共
ゲルを反1.7s生成させる際、ゲル化スラリーの固形
分濃度は10係以ドであることが望ましく、さらに望ま
しくは5係以下であることが好ましい。これは、シリカ
アルミナヒドロゲルの共ゲルフロックが成長しすき゛て
混合が充分てなくなり、アロフェンとの混合に悪影響を
及ぼし、緻密な堅い触媒が得られなかったからである。
For example, sodium silicate is 1. IIS No. 1 5in
2/Na2O molar ratio of about 2 or January 83 Sin, /Na2O molar ratio of about 3 can be used, and diluted with water to a concentration of 0.5 M or less. It was in January. When using IIS No. 3 sodium silicate, there was a problem that the flocs became large and soggy when creating a high concentration gel, but no problems were observed when gelling at a low concentration. Ta. In addition, when creating a co-gel, the amount of sodium silicate and acidic aluminum are adjusted and determined so that the pH at the time of gel formation is in the range of 3 to 10, so that good strength as a catalyst can be obtained. A co-gel was created with Further, the ratio of the amount of allophane to the cogel may be adjusted so that the amount of allophane contained in the final catalyst is 5 to 80% -Fl, is 80%
In the second case, the particle strength becomes low and it is not possible to obtain a particle strength that can withstand industrial use for a month.In addition, below 5%, the catalytic properties of Id allophane cannot be fully exhibited. . Further, when the co-gel is produced for 1.7 seconds, the solid content concentration of the gelling slurry is preferably 10 parts or more, more preferably 5 parts or less. This is because co-gel flocs of silica-alumina hydrogel grew too quickly, resulting in insufficient mixing, which adversely affected mixing with allophane, making it impossible to obtain a dense and hard catalyst.

さらに、遠心分離機で脱水する操作は、ゲル化時に副生
ずる1流酸ナトリウム、硝酸ナトリウムをより少なくす
ることが、噴霧乾燥工程を終えた成形粒子の強度を増す
ことになり、又、噴霧乾燥する際、ノズル噴霧できる最
もスラリー濃度の高い状態にするべく濃縮ケーキにでき
るだけ少ない水を加えることが、乾燥時の粒子収縮をよ
り/ヒc<L、緻密な球形粒子が得らヵ、るものとtc
る。乾燥粒子中のす) IIウムイオ7.0除去は、通
常の手段、例えば硫酸アンモニア液又はアンモニア水に
よりイオン交換さぜ、洗浄によって除去できる。そして
、例えば110℃で数時間乾J、’61..750℃で
’l1lIj15することによって、重質2I11処「
111月1の触媒が得られるのであるが、乾燥は次−f
肩ギにおける焼成を容易にI−るものにすぎず、父、焼
成に関してはシリカアルミナヒドロゲルの脱水縮合が6
50℃位まで行なわれることより、少7’:Cくとも6
5F1℃以1−テ、カつシリカアルミナヒドロゲル及び
アロフェン中(7) d、、03 (Si02 )nが
熱的相転移を、幀コしノ・ライト化する970’Ciで
の範囲の#1度で行なう必要があり、ar−+シ<は約
700〜8oo℃の範1ノドc焼成することによって良
好な重質油処理用の触媒がjIIら7′しる。
Furthermore, dehydration using a centrifugal separator can reduce the amount of sodium sulfate and sodium nitrate that are produced as by-products during gelation, which increases the strength of the shaped particles after the spray drying process. When drying, adding as little water as possible to the concentrated cake to achieve the highest slurry concentration that can be sprayed by the nozzle will reduce particle shrinkage during drying and yield dense spherical particles. and tc
Ru. The sulfur (II) 7.0 in the dry particles can be removed by conventional means, such as ion exchange with an ammonia sulfate solution or aqueous ammonia, and washing. Then, for example, dry at 110°C for several hours J, '61. .. By carrying out 'l1lIj15' at 750°C, heavy 2I11
1 November 1 catalyst is obtained, but drying is next -f
This is just a way to easily carry out firing in the shoulder joints, and regarding firing, the dehydration condensation of silica alumina hydrogel is 6
Since it is carried out up to about 50℃, it is less than 7': C at least 6.
#1 in the range of 970'Ci where (7) d,,03(Si02)n in silica alumina hydrogel and allophane undergoes a thermal phase transition and becomes sintered. It is necessary to carry out the process at a temperature of about 700 to 80° C. A good catalyst for treating heavy oil can be obtained by firing at a temperature of about 700 to 80°C.

このようにして得られた触媒は、1((1常の石油系炭
化水素の分解eこIllいられる反応条El、例えば流
動方式で接触させればよく、この接触によってアロフェ
ンが重質油を選択的に脱水素反応、脱水素環化反応を促
進し、軽質化すると同時に中間留分に富む分解油を生成
する。尚、この流動接触分解に際しての温度は約350
〜500℃で数秒〜数分間行なえばよく、そして触媒比
(触媒/重質油)を01〜I5の範囲で行なえばよく、
触媒比が大きくなると分解油収率が若干減少傾向を示し
、分解ガス険は増加し、分解ガス中の水素が増加して、
触媒による脱水素反応が認められる。そして、脱水素置
は接触改質法として知られるブラットフォーミング法に
匹敵する量であり、温度による反応も類似しており、温
度上昇と共に芳香化反応もさかんになる。父、分解油は
全ての留分に、かいて重′6原料油より比重が軽く、従
来の+=”cc触媒4にみられるような分解油中の反応
不吻和分が熱縮合を起こしてタールやピッチを副生ずる
といったことがなく、分解残渣は触媒表面に均等にカー
ボンがセ」着し、粘性のない状態で回収され、そしてこ
の廃触媒は流動再生が容易で、再生による分解性能の低
下はほとんどないものであった。
The catalyst obtained in this way can be brought into contact with the reaction conditions that are normally used for the decomposition of petroleum hydrocarbons, for example, in a fluidized manner. It selectively promotes dehydrogenation reactions and dehydrocyclization reactions, lightens the oil, and at the same time produces cracked oil rich in middle distillates.The temperature during this fluid catalytic cracking is approximately 350℃.
The process may be carried out at ~500°C for several seconds to several minutes, and the catalyst ratio (catalyst/heavy oil) may be in the range of 01 to I5.
As the catalyst ratio increases, the cracked oil yield tends to decrease slightly, the cracked gas density increases, and the hydrogen in the cracked gas increases.
A catalytic dehydrogenation reaction is observed. The amount of dehydrogenation is comparable to that of the brat forming method known as a catalytic reforming method, and the reaction depending on temperature is also similar, and the aromatization reaction increases as the temperature rises. However, the cracked oil has a lower specific gravity than the heavy feedstock oil in all fractions, and the non-reactive fraction in the cracked oil causes thermal condensation, as seen in conventional CC catalysts. There is no generation of tar or pitch by-products, and the decomposition residue is recovered in a non-viscous state with carbon deposited evenly on the catalyst surface.This waste catalyst can be easily regenerated in a fluidized manner, improving decomposition performance through regeneration. The decrease was almost negligible.

以−4−で述べたように、本発明は、天然に豊富に産出
するi価で大畦入手可能なアロフェンを主成分とした土
壌を特定な大きさ以ドに微粒子化し、シリカアルミナヒ
ドロゲルを!i、lr定の範囲で配合し、粒状化した組
成物を特定の習1度で処[[107てイlたものであっ
て、扮化率の低い、耐摩耗性に富み、表面凹凸の少ない
球状に近いイ、のCあり、そしてこのような触媒な重質
油の接触分解に際(7て用いると、中間留分の収率の高
(八、そして脱水素反応、脱水素す化反応が著しく促、
仏さ)′しるものとなる。
As described in -4- below, the present invention involves micronizing soil mainly composed of allophane, which is abundantly produced in nature and available in large quantities, into particles of a specific size, and forming silica alumina hydrogel. ! A granulated composition containing i and lr in a certain range is treated in a specific manner. There is less spherical A, C, and when such a catalyst is used in the catalytic cracking of heavy oil (7), a high yield of middle distillates (8) and dehydrogenation reaction, dehydrogenation The reaction is significantly accelerated,
(Buddha)' Become a sign.

以下にお−て、本発明についての具体的実施例を述べる
Specific examples of the present invention will be described below.

実ノイ!IV/]lI あらかじめ100メツンユ以下に粉砕した鹿I(産戟色
11参質十であるアロフェンに水を加え50%スラリー
液とした4 0014を、水冷ジャケット口答器内に数
枚(7) fイスクを有するアジテータシャフトヲ回転
させ容器内に60〜80%充填した鋼球ビーズを撹拌さ
せながら容器底r’flI !リスラリーなポンプにて
押込む密閉式超高性能連続湿式分散機によって、アロフ
ェン粒子がモ均粒径211m以下、最大粒径IQ/1m
以下(7)ものとなるよう湿式分数して、アロフエン分
散スラリーを得、そして水600/(7をさらに加えて
20循スラリーとする。
Real Noi! IV/]lI Place several sheets of Shika I (Ganseiro 11 Ginseng Ju) allophane (Ganseiro 11 Ginseng Ju), which has been crushed in advance to less than 100 Metsuyu (40014), into a 50% slurry liquid by adding water (7) f The agitator shaft with a disc is rotated to stir the steel ball beads filled in the container to 60-80%, and the allophane particles are dispersed at the bottom of the container. The average particle size is 211m or less, the maximum particle size IQ/1m
Wet fractionation is performed to obtain the following (7) to obtain an allofene dispersion slurry, and 600/(7) of water is further added to obtain a 20-circulation slurry.

このスラリー液に、JlSl:4格の1けケイj*すト
す1゛ツム(SiO,、37%、5i02/Na□0モ
ル比209)を水で希釈した+1.5 Mケイ酸すトリ
ウム水溶液25m3を加え、攪11′、機で充分に混合
し、次にJIS固形特号の硫酸−アルミニウムを水で希
釈した05M硫酸アルミニウム水溶液028m3を加え
、そして1時間強撹拌し、その後嗣攪拌して1昼夜混合
熟成する。尚、この時のptrは45である。
Add 1.5 M sodium silicate to this slurry liquid, which is obtained by diluting JlSl: 4-grade 1-digit sodium silicate (SiO, 37%, 5i02/Na□0 molar ratio 209) with water. Add 25 m3 of an aqueous solution, mix well with a mixer at 11', then add 028 m3 of a 05M aluminum sulfate aqueous solution prepared by diluting JIS solid special issue aluminum sulfate with water, stir vigorously for 1 hour, and then continue stirring. Mix and mature for one day and night. Note that ptr at this time is 45.

そして、このスラリー液を横型連続式車心分離機にて固
形分濃度30%の濃縮スラリーと−L皺液とに分離し、
この濃縮スラリーを取り出して水を加えることにより固
形分濃度20係のものとする。
Then, this slurry liquid is separated into a concentrated slurry with a solid content concentration of 30% and a -L wrinkle liquid using a horizontal continuous car core separator.
This concentrated slurry is taken out and water is added to give a solid content concentration of 20.

その後、この20%スラリーを、入1」ガス温1相30
0℃、出1」ガス温度110℃の雰囲気で噴霧乾燥し、
得られた乾燥物を05%1fiftアンモニア水溶液、
05係アンモニア水とで洗浄した後、110℃で16時
間オーブン内で乾燥し、そして750℃で焼成する。
Then, add this 20% slurry to 1" gas temperature 1 phase 30
Spray-dry in an atmosphere with a gas temperature of 110°C,
The obtained dried product was mixed with 05% 1fift ammonia aqueous solution,
After washing with 05 ammonia water, it is dried in an oven at 110°C for 16 hours, and then baked at 750°C.

このようにして得られた本発明に係る触媒の組成は、S
 10263.6%、AQ20324.0 % 、C;
+02.5 %、Mgol、7 %。
The composition of the catalyst according to the present invention obtained in this way is S
10263.6%, AQ20324.0%, C;
+02.5%, Mgol, 7%.

Nh201.4%、K2(’) 0.7 %、5O10
,4%、l’c :32%であり、がさ比重0779、
比表面積++smF/g、細孔容積0.21 an”/
、q、耐摩耗率0.93であり、又流動性評価及び噴流
性評価は表1及び表2に示す通りである。
Nh201.4%, K2(') 0.7%, 5O10
, 4%, l'c: 32%, and the specific gravity is 0779,
Specific surface area ++smF/g, pore volume 0.21 an”/
, q, wear resistance rate was 0.93, and the fluidity evaluation and jetting property evaluation are as shown in Tables 1 and 2.

実施例2 Si()227.1 %、A氾203227係、Oao
 03%、Mg00.2%、Na2006係、+(20
0,2%、I’c2031.8 %、1.g −1ns
s46’、4%の105℃乾燥物であるアロフェンを、
実)にし例Iと同様eこして平均粒径2μm11以下に
分散し1.JIS規格:う号ケイ酸すトリウム(、’1
i0229%、5i027N;+20 E/l/比+1
 )+7) +1.5%ケイ酸ナトリウム水茗液23m
3を加えて混合し、さらに0.5M1l潅酸アルミニウ
ム水、性液0281i3を加えて混合し、1体皮弱攪拌
して熟成し、その後実施例1の工程と同様に脱水、水分
調整、噴霧乾燥、洗浄、再乾燥、焼成する。
Example 2 Si() 227.1%, A flood 203227, Oao
03%, Mg00.2%, Na2006, +(20
0.2%, I'c2031.8%, 1. g −1 ns
s46', 4% allophane dried at 105°C,
Fruit) Strain and disperse in the same manner as in Example I to an average particle size of 2 μm or less.1. JIS standard: No. storium silicate (,'1
i0229%, 5i027N; +20 E/l/ratio +1
)+7) +1.5% Sodium silicate solution 23m
3 and mix, further add and mix 0.5M 1l aluminum peroxide water and sex liquid 0281i3, and ripen by stirring gently for one skin, then dehydrate, adjust water content, and spray in the same manner as in Example 1. Dry, wash, re-dry, and fire.

このようにして得られたべ究明に係る触媒の組成1/l
j、 Sin、、 664%、八ρ20321.2%、
(EaO2,4%、Mg01.2 %、Na201.2
%、K200.6%、8030.4%、Fc 2.5%
 であり、がさ比重0.775、比表面端+osm”/
g、細化容積0.23 (1n3/g、耐摩耗率090
であり、又流動性評価及び噴流性評価は表1及び表2に
示す通りである。
The composition of the catalyst according to the investigation obtained in this way is 1/l
j, Sin,, 664%, 8ρ20321.2%,
(EaO2, 4%, Mg01.2%, Na201.2
%, K200.6%, 8030.4%, Fc 2.5%
, specific gravity 0.775, specific surface edge +osm”/
g, thinning volume 0.23 (1n3/g, wear resistance rate 090
The fluidity evaluation and the jet property evaluation are as shown in Tables 1 and 2.

表     1 表     2 これらの結果よりわかるように、本発明に係る触媒lは
、FCCゼオライト触媒に比べれば叱表面積、細化容積
の点で1は少し劣る(アロフェン凍土に叱べればトヒ表
面積は格段に良い)が、これ1は細孔径がゼオライト触
媒でハ40〜70λ中に集中しているものであるのに対
I7、本発明帥媒では数百〜数千久の範囲のものが多い
からであり、そして耐摩耗率についてはアロフェン凍土
にトヒベて格段に1憂れ、ゼオライト触媒と同様であっ
て、強度に禽′んだものであり、さら1(1は流動性及
び噴流性の評価より、本発明の触媒は流他触媒として非
常に流動性が良く、均一流動層を形成するものであるこ
とがわかる。そして、本発明の触媒は、崩潰角が小さく
、粒子形状が極めて球1/lC近いものであり、味IF
F :lの高いものCある。
Table 1 Table 2 As can be seen from these results, Catalyst 1 according to the present invention is slightly inferior to the FCC zeolite catalyst in terms of surface area and atomization volume (if compared to allophane frozen soil, the surface area of Tohi is However, in 1, the pore diameter is concentrated in the 40 to 70 λ range in the zeolite catalyst, whereas in I7, the pore diameter in the present invention is often in the range of several hundred to several thousand years. The wear resistance rate is much lower than that of allophane frozen soil, and it is similar to the zeolite catalyst, and has a high strength. The evaluation shows that the catalyst of the present invention has very good fluidity as a flowing catalyst and forms a uniform fluidized bed.The catalyst of the present invention has a small collapse angle and a very spherical particle shape. It is close to 1/lC, and the taste IF
F: There is a C with high l.

次に、上記本発明に係る触媒、ゼオライト触媒、アロフ
ェン凍土の触媒をそれぞhli目ね、連続式流動接触分
解試験炉にて、比重o957、流動点10℃、引火点1
78℃、動粘ri (50℃) 2315C8I 、残
留炭素89%、S分32%、A、sl+分0015%で
ある中東系常圧残油を、反応条件が重冴油処理歇IR/
h、触媒比10.再生温度650℃、分解温度450℃
で分解試験な行lrうと表3に示す通りであった。
Next, the catalyst according to the present invention, the zeolite catalyst, and the allophane frozen soil catalyst were tested in a continuous fluidized catalytic cracking test furnace with a specific gravity of 957, a pour point of 10°C, and a flash point of 1.
78°C, kinematic viscosity ri (50°C) 2315C8I, residual carbon 89%, S content 32%, A, sl + min 0015% Middle Eastern atmospheric residual oil was treated under heavy-duty oil treatment IR/reaction conditions.
h, catalyst ratio 10. Regeneration temperature 650℃, decomposition temperature 450℃
When the decomposition test was carried out, the results were as shown in Table 3.

υ      う この結果かられ一/I・るように、本発明の触媒1.ハ
、ゼオライト系触媒と(l−1趣がにfrす、マイルド
な分解特性を示し、分解油のとの留分においても原料油
よりも軽質化されており、しかも重油留分はA重油の範
噴にはいるものであり、又中間留分の収率が極めて高く
、分解ガス中の112分が多く、脱水素反応が顕著であ
る。さらに、ナフサ留分については25〜26%の芳香
1疾を含み、顕著な脱水素環化反応を示しており、又軽
油留分においてもオレフィン分が多く、その人1部分が
α−オレフィンであり、高級アルコールの原料等にも使
えるものとなる等のf特長を有する。
υ From the results, the catalyst of the present invention 1. C. The zeolite catalyst (l-1) exhibits mild cracking characteristics, and the fraction of cracked oil is also lighter than the feedstock oil, and the heavy oil fraction is similar to that of heavy oil A. Furthermore, the yield of the middle distillate is extremely high, and the dehydrogenation reaction is remarkable, with a large amount of 112 min in the cracked gas.Furthermore, the naphtha fraction has an aromatic content of 25 to 26%. It shows a remarkable dehydrocyclization reaction, and the gas oil fraction also contains a large amount of olefins, of which 1 part is α-olefin, and can be used as a raw material for higher alcohols, etc. It has f features such as.

Claims (1)

【特許請求の範囲】 ■平均粒径約5μm0以下のアロフェンを約5〜8゜係
、及び残りの主成外をノリ力アルミナヒドロゲルとする
スラリーを、・焼成してなり、比表面積が約35〜25
0Tn2/!;/で、か/〕かさ田型が約045〜o9
5Cあることを特徴とする屯質曲処叩用1仙某。 ■アロフェンを湿式分数して平均粒径約5μm以ドのも
のよりなるアロフェンスラリーヲ作す、河亥アロフェン
スラリーにケイ酸1席@液及び1′l!2ヰアルミニウ
ム液?加えてノリ力アルミナゲルなスラリー中で生成せ
しめ、その後スラリー容歌す約−〜−に脱水濃縮して不
純物を除去し、次いで水を]0 加えてスラリー濃度を約15〜25%とし、噴霧乾燥し
た後焼成することを特徴とする市醒油処叩用触媒の製造
法。
[Claims] ■ A slurry containing allophane with an average particle size of about 5 μm or less in a ratio of about 5 to 8 degrees, and the remaining main component being alumina hydrogel, is fired, and has a specific surface area of about 35 ~25
0Tn2/! ;/de,ka/]Kasada type is approximately 045~o9
A certain 1 immortal who is characterized by having 5Cs. ■Wet-fraction allophane to make an allophane slurry consisting of particles with an average particle diameter of approximately 5 μm or less. Kawai allophane slurry, silicic acid 1@liquid and 1'l! 2. Aluminum liquid? In addition, the paste is produced in a slurry of alumina gel, and then the slurry is dehydrated and concentrated to remove impurities, and then water is added to make the slurry concentration about 15 to 25%, and the slurry is sprayed. 1. A method for producing a catalyst for beating oil, which is characterized by drying and then calcination.
JP57115466A 1982-07-05 1982-07-05 Catalyst for treating heavy oil and preparation thereof Pending JPS596944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115466A JPS596944A (en) 1982-07-05 1982-07-05 Catalyst for treating heavy oil and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115466A JPS596944A (en) 1982-07-05 1982-07-05 Catalyst for treating heavy oil and preparation thereof

Publications (1)

Publication Number Publication Date
JPS596944A true JPS596944A (en) 1984-01-14

Family

ID=14663230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115466A Pending JPS596944A (en) 1982-07-05 1982-07-05 Catalyst for treating heavy oil and preparation thereof

Country Status (1)

Country Link
JP (1) JPS596944A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250090A (en) * 1984-05-25 1985-12-10 Res Assoc Petroleum Alternat Dev<Rapad> Process for treating heavy oil
JPS63270527A (en) * 1987-04-27 1988-11-08 Tokushu Seishi Kk Sheet excellent in moisture absorbing and desorbing performance and its manufacture
JPH04316665A (en) * 1991-04-15 1992-11-09 Terukazu Sato Cleaning
JPH0718563A (en) * 1993-06-30 1995-01-20 Duskin Co Ltd Method for washing fiber containing oil for cleaning
WO2020179501A1 (en) * 2019-03-05 2020-09-10 戸田工業株式会社 Catalyst particles and hydrogen production method using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250090A (en) * 1984-05-25 1985-12-10 Res Assoc Petroleum Alternat Dev<Rapad> Process for treating heavy oil
JPH0257114B2 (en) * 1984-05-25 1990-12-04 Shinnenryoyu Kaihatsu Gijutsu Kenkyu Kumiai
JPS63270527A (en) * 1987-04-27 1988-11-08 Tokushu Seishi Kk Sheet excellent in moisture absorbing and desorbing performance and its manufacture
JPH04316665A (en) * 1991-04-15 1992-11-09 Terukazu Sato Cleaning
JPH0718563A (en) * 1993-06-30 1995-01-20 Duskin Co Ltd Method for washing fiber containing oil for cleaning
WO2020179501A1 (en) * 2019-03-05 2020-09-10 戸田工業株式会社 Catalyst particles and hydrogen production method using same

Similar Documents

Publication Publication Date Title
US3304254A (en) Catalytic hydrocracking with a physical mixture of a crystalline aluminosilicate and a porous support containing a hydrogenation component
EP1333920B1 (en) Structurally enhanced cracking catalysts
JP5336480B2 (en) Structurally enhanced cracking catalyst
TW200538539A (en) Structurally enhanced cracking catalysts
KR20040011418A (en) Structurally Enhanced Cracking Catalysts
MX2012003901A (en) Improved heavy metals trapping co-catalyst for fcc processes.
JP2019141845A (en) Mesoporous fcc catalysts with excellent attrition resistance
AU2009252242A1 (en) Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same
TWI627269B (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
TWI281878B (en) Method of enhancing the activity of FCC catalysts
JPS596944A (en) Catalyst for treating heavy oil and preparation thereof
JPS62225248A (en) Catalyst composition
JP3920966B2 (en) Additive catalyst for heavy oil cracking
CA2084929C (en) Catalyst and process for cracking hydrocarbons with highly attrition resistant mesoporous catalytic cracking catalysts
JP6307074B2 (en) Magnesium stabilized ultra-low soda decomposition catalyst
JP2004525762A (en) Zeolite-based catalysts with extremely high dynamic conversion activity
JP2020032352A (en) Fluid contact cracking catalyst for hydrocarbon oil
JP5445780B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JPH09285728A (en) Additive for heavy oil cracking and catalyst for fluid catalytic cracking of heavy oil
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP2016010765A (en) Catalytic cracking catalyst for hydrocarbon oil and catalytic cracking method of hydrocarbon oil
JP3643843B2 (en) Additive for fluid catalytic cracking catalyst of heavy oil
JP5445779B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP2004130193A (en) Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same
JPH1085603A (en) Catalyst composition for catalytic cracking of hydrocarbon oil and method for catalytically cracking hydrocarbon oil with the same