JPS60249250A - Electrolyte for battery - Google Patents

Electrolyte for battery

Info

Publication number
JPS60249250A
JPS60249250A JP10434884A JP10434884A JPS60249250A JP S60249250 A JPS60249250 A JP S60249250A JP 10434884 A JP10434884 A JP 10434884A JP 10434884 A JP10434884 A JP 10434884A JP S60249250 A JPS60249250 A JP S60249250A
Authority
JP
Japan
Prior art keywords
aluminum
battery
electrolyte
anode
passive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10434884A
Other languages
Japanese (ja)
Inventor
Masahide Ichikawa
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10434884A priority Critical patent/JPS60249250A/en
Publication of JPS60249250A publication Critical patent/JPS60249250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte

Abstract

PURPOSE:To form a battery having aluminum metal as an anode by using electrolyte prepared by adding acidic solution which makes aluminum passive and halide which accelerates ionization to water and acetate. CONSTITUTION:A carbon cathode C and an aluminum anode A are faced and immersed in electrolyte prepared by mixing nitric acid, hydrochloric acid, water, and acetate to form a battery. Aluminum ion produced from the aluminum anode is combined with chlorine ion to form aluminium chloride. Nitric acid oxidizes the surface of aluminum to make the surface passive. Chlorine ion breaks the passive film and aluminum is ionized again. This cycle is repeated to increase current density and energy density. Accordingly, by specifying electrolyte, a battery having aluminum anode is economically obtained.

Description

【発明の詳細な説明】 アルミニューム金属または、類似した金属を電池用陰極
材として、その電解液になるべく不働態作用が起きる酸
性液と、イオン化作用の促進剤となるハロゲン族(K 
OI −Na 01 oMg G12− Al、 C1
3−+v1a12−pb 0140H0l−au 01
2−NH4C1−K F−NH,、、FO)の化合物等
を水分と酢酸有機化合物とに添加し混合した溶液である
事が特徴の電池用電解液である。従来−次電に使用され
る陰極月としては、はとんど亜鉛金属、またはその合金
等の材料が常識であったが、一部リチュム金属を用いた
陰極材も製品化されたがコスト的にもかなり高価であり
、あまり大エネルギー用電池としでは不向きであった。
Detailed Description of the Invention Aluminum metal or a similar metal is used as a cathode material for a battery, and the electrolyte contains an acidic liquid that causes a passivation effect and a halogen group (K) that acts as an ionization accelerator.
OI-Na 01 oMg G12- Al, C1
3-+v1a12-pb 0140H0l-au 01
This battery electrolyte is characterized by being a solution in which compounds such as 2-NH4C1-K F-NH,..., FO) are added and mixed with water and an acetic acid organic compound. Conventionally - The cathode material used for next-generation electricity has generally been made of materials such as zinc metal or its alloys, but some cathode materials using lithium metal have also been commercialized, but due to cost considerations. However, it was also quite expensive, making it unsuitable for use as a battery for high energy use.

このような状況の中で、エンチング加工したアルミニュ
ーム金属使用の陰極材を用いた新しい電池が開発された
のである。
Under these circumstances, a new battery using a cathode material made of etched aluminum metal was developed.

(特許出願 昭和57年 第198133号)この電池
は、従来一般に使用されている塩化アンモニュームやア
ルカリ等を使用した電解液では一切電池としての機能は
しないのである。
(Patent Application No. 198133 of 1982) This battery does not function as a battery at all with the conventional electrolyte containing ammonium chloride, alkali, etc.

そこで本発明のような電解液を発明したのである。その
実施例を説明すると、第一図の組合わけのようになる。
Therefore, an electrolytic solution such as the present invention was invented. An explanation of this embodiment is as shown in FIG. 1.

まず右側に炭素陽極(C)左側にアルミニューム陰極(
Al) 、その周囲に硝酸(I(No3)と塩酸(HC
1)及び、普通の水道水および酢酸有機化合物を混合し
た溶液だけである。この両電極間に負荷を接続すると速
かに化学反応が生じ、負荷に電流が流れるのである。
First, the carbon anode (C) is on the right side, and the aluminum cathode (C) is on the left side.
Al), nitric acid (I (No3) and hydrochloric acid (HC
1) and just a solution of ordinary tap water and acetic acid organic compound. When a load is connected between these two electrodes, a chemical reaction quickly occurs and current flows through the load.

この作用行程を更に詳しく説明すると、第二図のように
なる。まず陰極材であるアルミニューム金属(A1)は
、イオン化作用でアルミニュームイオン(A13+)と
なって前記電解液中に溶は込み始めるのであ′る。それ
と同時にアルミニューム(A1)陰極はマイナスに帯電
され生じたアルミニュームイオノ〈A1)は塩素イオン
(01)3と化合し、塩化アルミニューム(Al (C
!1) 3)となる。更に周囲には別種の電解質である
硝酸イオン(No−3>等が多くさんあるのである。こ
の中の一部はその強力な酸化力でアルミニューム陰極の
表面を一時的に酸化し、不働態化するのである。結果、
酸化膜が生じ化学反応が停■するのである。しかし活性
力のある塩素イオン(cl−)はその強力なイオン化作
用で酸fヒ膜を破壊しアルミニュームを再度イオン化T
る、このように破壇交れや1い希薄な酸化膜部分は塩素
イオン(C1−)の活性力で簡単に破壊される。
A more detailed explanation of this action process is shown in Figure 2. First, the aluminum metal (A1), which is the cathode material, becomes aluminum ions (A13+) by ionization and begins to dissolve into the electrolyte. At the same time, the aluminum (A1) cathode is negatively charged, and the resulting aluminum ion (A1) combines with chlorine ions (01)3, forming aluminum chloride (Al (C
! 1) 3) becomes. Furthermore, there are many nitrate ions (No-3), which are other types of electrolytes, in the surrounding area. Some of these ions temporarily oxidize the surface of the aluminum cathode with their strong oxidizing power, turning it into a passive state. As a result,
An oxide film is formed and the chemical reaction stops. However, the active chlorine ion (Cl-) destroys the acid film with its strong ionizing action and re-ionizes the aluminum.
In this way, the oxidized film portions where the oxidation film is diluted or broken are easily destroyed by the active force of the chlorine ions (C1-).

その結果アルミニューム(A1)陰極の表面は、ピンホ
ールの穴が無数にあき、とhどム化学反応が進みアルミ
ニューム陰極の表面積は正味の数百倍に増加されるので
ある。この作用で電流密度も増加しエネルギー密度が上
昇することになる。
As a result, countless pinholes are formed on the surface of the aluminum (A1) cathode, and a chemical reaction proceeds, increasing the surface area of the aluminum cathode several hundred times. This action also increases the current density, resulting in an increase in energy density.

一方、陽極側の炭素材(0) 表面は非金属なのでイオ
ン化作用はなく、むしろ触媒としての働きをするだけで
ある。アルミニューム陰極(A1)より生じる電子(e
−)は負荷を通し陽憧側に流れるので周囲にある電解液
中の水素イオン(H+)は静電的に中和し、水素原子も に変り陽極上より消滅して行くのである。更に水素原子
(H)は一原子として不安定なので、水素原子と互に共
有結合をし、水素分子(H2)として安定な形に展開さ
れて行くのである。この時、別種の電解液である硝酸イ
オンOvo;)は酸素原子(o)1個をうばゎれ、部分
C,3) 子(H2O)とし変換しで行く、このような行程を何度
も繰り返し、連続的に電流を発生し電池機能を発起だせ
るのである。
On the other hand, since the surface of the carbon material (0) on the anode side is non-metallic, it does not have an ionizing effect, but rather only functions as a catalyst. Electrons (e) generated from the aluminum cathode (A1)
-) flows to the positive side through the load, so the hydrogen ions (H+) in the surrounding electrolyte are electrostatically neutralized, and the hydrogen atoms also change to disappear from above the anode. Furthermore, since the hydrogen atom (H) is unstable as a single atom, it forms a covalent bond with another hydrogen atom and expands into a stable form as a hydrogen molecule (H2). At this time, the nitrate ion Ovo;), which is a different type of electrolyte, removes one oxygen atom (o) and converts it into a part C,3) (H2O).This process is repeated many times. This allows the battery to function by repeatedly and continuously generating current.

故にこのような電解液、でないとアルミニューム金属(
、xl)を用いた電池では一切、電池機能を発起しない
のである。
Therefore, if such an electrolyte is not used, aluminum metal (
, xl) do not perform any battery function at all.

また電解液であるが、水道水と塩化物(u2o+Na 
cl、またはH20+HC1)の代用として海の海水を
利用しても寸分実用になる。
Also, although it is an electrolyte, tap water and chloride (U2O + Na
Cl, or H20+HC1), it is also practical to use seawater.

更に電解液中にある酢酸有機化合物の効果は、自己放電
防止のため添加物である。これ等種類も豊富にあるが、
実施例ではポリ酢酸ビニールを添加し使用した。
Furthermore, the effect of the acetic acid organic compound in the electrolyte is that it is an additive to prevent self-discharge. There are many types of these, but
In the examples, polyvinyl acetate was added and used.

【図面の簡単な説明】[Brief explanation of drawings]

第一図はアルミニューム金属陰極電池の電解液性分と、
電極材との絹合わせを示した側断面図。 第二図はアルミニューム金属陰極電池の化学反応を図に
よって示した側断面図。 特許出願人 市 川 稚 英 (4−)
Figure 1 shows the electrolyte content of an aluminum metal cathode battery,
A side cross-sectional view showing silk mating with electrode material. Figure 2 is a side sectional view diagrammatically showing the chemical reactions of an aluminum metal cathode battery. Patent applicant: Hide Ichikawa (4-)

Claims (1)

【特許請求の範囲】[Claims] アルミニューム金属または、類イリした金属を電池用陰
極材として、その電解液になるべく不働態作用が起こる
酸性液と、イオン化作用の促進剤となるハロゲン族の化
合物等を水分と酢酸有機化合物とに添加し、混合した溶
液であることが特徴の電池用電解液。
Aluminum metal or a similar metal is used as a cathode material for batteries, and the electrolyte is made of an acidic solution that produces a passivation effect as much as possible, and a halogen group compound that acts as an ionization accelerator with moisture and an acetic acid organic compound. Electrolyte for batteries is characterized by being a solution of additives and mixtures.
JP10434884A 1984-05-23 1984-05-23 Electrolyte for battery Pending JPS60249250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10434884A JPS60249250A (en) 1984-05-23 1984-05-23 Electrolyte for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10434884A JPS60249250A (en) 1984-05-23 1984-05-23 Electrolyte for battery

Publications (1)

Publication Number Publication Date
JPS60249250A true JPS60249250A (en) 1985-12-09

Family

ID=14378381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10434884A Pending JPS60249250A (en) 1984-05-23 1984-05-23 Electrolyte for battery

Country Status (1)

Country Link
JP (1) JPS60249250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466853B2 (en) 2010-09-30 2016-10-11 Ut-Battelle, Llc High energy density aluminum battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466853B2 (en) 2010-09-30 2016-10-11 Ut-Battelle, Llc High energy density aluminum battery
US9997802B2 (en) 2010-09-30 2018-06-12 Ut-Battelle, Llc High energy density aluminum battery

Similar Documents

Publication Publication Date Title
US3279949A (en) Fuel cell half-cell containing vanadium redox couple
KR960034467A (en) Electrode for secondary battery, method of manufacturing the same, and secondary battery
US3006980A (en) Printed battery
US5225291A (en) Deferred actuated battery assembly
US20170288287A1 (en) Rechargeable aluminum-air electrochemical cell
US3005864A (en) Sea water battery
JPS60249250A (en) Electrolyte for battery
US3441445A (en) Magnesium-cupric oxide primary battery
JPS6124153A (en) Electrolyte for battery
JPS6412467A (en) Rebalance method of secondary battery
JPS59132571A (en) Electrolyte for battery
US4063006A (en) High power battery with liquid depolarizer
CA1202071A (en) Method and apparatus for maintaining the ph in zinc- bromine battery systems
JPS59104442A (en) Preparation of porous metal nickel
FR2356286A1 (en) Electrochemical compsn. esp. for fuel cell cathodes - consists of a mixed oxide of manganese and copper, nickel and/or silver
JP2006073523A (en) Battery
US3532552A (en) Cell with peroxydisulfate depolarizer
WO1984001966A1 (en) Battery using porous aluminum metal
Molodov et al. Ring-and-Disc Electrode Determination of the Cu exp+ Ion Formation Mechanism from Cu Metal in a Solution Containing Cu exp 2+ Ions
JP3338138B2 (en) Gas diffusion electrode
TWI678830B (en) The structure of oxalic acid battery
US2521082A (en) Electrolytic production of silver chloride
US2306409A (en) Primary cell
US5332634A (en) Method of making lead electrodes
RU2105395C1 (en) Fuel cell