JPS60249067A - Characteristic measuring device of conductive film - Google Patents

Characteristic measuring device of conductive film

Info

Publication number
JPS60249067A
JPS60249067A JP10369484A JP10369484A JPS60249067A JP S60249067 A JPS60249067 A JP S60249067A JP 10369484 A JP10369484 A JP 10369484A JP 10369484 A JP10369484 A JP 10369484A JP S60249067 A JPS60249067 A JP S60249067A
Authority
JP
Japan
Prior art keywords
conductive film
eddy current
film
current detectors
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10369484A
Other languages
Japanese (ja)
Inventor
Tomio Sugimoto
杉本 富雄
Yoshinori Sato
佐藤 吉憲
Toshikazu Nakajima
中嶋 壽和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Engineering Ltd
Teijin Ltd
Original Assignee
Teijin Engineering Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Engineering Ltd, Teijin Ltd filed Critical Teijin Engineering Ltd
Priority to JP10369484A priority Critical patent/JPS60249067A/en
Publication of JPS60249067A publication Critical patent/JPS60249067A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure characteristics of a conductive film by non-contact, at a low cost and with high accuracy by positioning a conductive film between a pair of eddy current detectors, and measuring an eddy current of the conductive film. CONSTITUTION:An eddy current of a conductive film 2 moved at a prescribed speed through a transfer roll 3 is detected by eddy current detectors 1a, 1b which are opposed by placing the film 2 inbetween. Its detecting signal is brought to operation processing by an average arithmetic unit 5 through an amplifier 4, and an obtained electric resistance value is indicated on an indicator 6. In this way, characteristics of the conductive film 2 are measured by non-contact, at a low cost and with high accuracy.

Description

【発明の詳細な説明】 [利用分野] 本発明は導電性フィルムの導電度、導電性薄膜厚等の特
定値を測定するための特性測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a characteristic measuring device for measuring specific values such as conductivity and conductive thin film thickness of a conductive film.

[従来技術] 導電性フィルムにはプラスチックフィルム等の非導電性
基材1に、例えば、金、銀、銅、アルミニウム、ニッケ
ル、クロム及びそれらを主成分と覆る各種金属の導電性
薄膜をそのまま、又は高屈折率誘電体層と組合せて形成
した選択的光透過性シート、又は酸化インジウムまたは
/及び酸化スズを厚さ2000〜5000人の導電性薄
膜に形成した選択的光透過シートがある。これらは、可
視光域に透明で、赤外線波長域を選択的に反射する熱線
反射フィルム(通常面積電気抵抗は0.5〜20Ω/口
を示す)として、ビル、住宅等の省エネルギー。
[Prior art] For conductive films, conductive thin films of, for example, gold, silver, copper, aluminum, nickel, chromium, and various metals containing these as main components are directly coated on a non-conductive base material 1 such as a plastic film. Alternatively, there is a selective light transmitting sheet formed in combination with a high refractive index dielectric layer, or a selective light transmitting sheet formed of indium oxide and/or tin oxide as a conductive thin film with a thickness of 2,000 to 5,000 people. These films are transparent in the visible light range and selectively reflect the infrared wavelength range (generally exhibiting an area electrical resistance of 0.5 to 20 Ω/hole), and are used to save energy in buildings, residences, etc.

太陽エネルギー利用などの点で有効である。It is effective in terms of solar energy utilization, etc.

また、プラスチック等の上に上記酸化インジュウム及び
/又は酸化スズ、パラジュウム、金等からなる厚さ50
〜1000人の導電性薄膜を形成したいわゆるif性フ
ィルムが知られている。このフィルムは、電子写真記録
、ELランプ等のディスプレイ、光メ干り、透明スイッ
チ、静電遮断、太陽電池等の光電変換素子、及び面発熱
体等に広く使用されている(通常50Ω/ロー、10に
Ω/【」の面積電気抵抗を示ず)。
In addition, a thickness of 50 mm made of the above-mentioned indium oxide and/or tin oxide, palladium, gold, etc. on plastic etc.
A so-called IF film in which a conductive thin film of up to 1,000 people is formed is known. This film is widely used for electrophotographic recording, displays such as EL lamps, light curtains, transparent switches, electrostatic shielding, photoelectric conversion elements such as solar cells, and surface heating elements (usually 50Ω/low , 10 does not show the area electrical resistance of Ω/[].

これらの導電性フィルムの特性測定においては、前当の
選択的透過性シートとして使用する場合は、膜厚が重要
な特性であり、透過率及び/又は赤外反射率の検出器も
しくはX線厚さ計算により膜厚を測定していた。また後
者の導電性フィルムとして使用する場合は、その電気抵
抗が重要な特性であり、フィルム表面に直接接触した電
極間の面積電気抵抗を測定し導電性フィルムの特性とし
ていIこ。
In measuring the properties of these conductive films, when used as a selectively transparent sheet, the film thickness is an important characteristic, and the transmittance and/or infrared reflectance detector or X-ray thickness The film thickness was measured by calculation. When using the latter as a conductive film, its electrical resistance is an important property, and the area electrical resistance between electrodes that are in direct contact with the film surface is measured to determine the properties of the conductive film.

[問題点及び発明の目的] 従来実施されていた透過率及び/又は反射率法は、検出
する機器の価格が高いだけでなく、検出精度も充分ひな
い。又、X線法は、検出精度は高いが、機器の価格が非
常に高いので、使用されている例はほとんど見当らない
。一方、導電性フィルム表面に直接接触して電気抵抗を
測定する方法は、フィルム表面にキズ、スクラッチ等が
入り商品価値を低下させるだけでなく、用途によっては
、全く使用に耐えず、工業的に安価でかつ精度よく迅速
に特性を測定する方法が渇望されていた。
[Problems and Objects of the Invention] Conventionally implemented transmittance and/or reflectance methods not only require high cost detection equipment but also lack sufficient detection accuracy. Furthermore, although the X-ray method has high detection accuracy, the cost of the equipment is very high, so there are almost no examples of its use. On the other hand, the method of measuring electrical resistance by directly contacting the surface of a conductive film not only causes scratches and scratches on the surface of the film, reducing the product value, but also may not be usable at all depending on the application, making it difficult to use industrially. There has been a desire for a method to quickly and accurately measure characteristics at low cost.

本発明はかかる坦状に鑑みなされICもので、フィルム
表面に接触することなく、安価且つ精度良く、導電性フ
ィルムの膜厚もしくは電気抵抗という特性が測定できる
装置の提供を目的とするものである。
The present invention is an IC device developed in view of such flatness, and aims to provide an apparatus that can measure the thickness or electrical resistance of a conductive film at low cost and with high accuracy without contacting the film surface. .

[発明の構成及び作用1 上述の目的は以下の本発明により達成される。[Structure and operation of the invention 1 The above objects are achieved by the invention as follows.

ずなわら、本発明は、導電性フィルムの特性を測定する
に際し所定間隔で対向配置した一組の渦電流検出器間に
6ffi性フイルムを位置せしめて測定するようになし
たことを特徴とする導電性フィルムの特性測定装置であ
る。
However, the present invention is characterized in that when measuring the characteristics of a conductive film, the 6ffi film is positioned between a pair of eddy current detectors arranged oppositely at a predetermined interval. This is a device for measuring the characteristics of conductive films.

上述の本発明は、渦電流検出器により、導電性フィルム
の渦電流を測定した場合、その出力は導電性フィルムの
電気抵抗に比例りることを見出覆と共に、電気抵抗が一
定した金属層ならば膜の電気抵抗と膜厚が比例すること
を見出しなされたものである。
The present invention described above has the discovery that when an eddy current detector measures an eddy current in a conductive film, the output is proportional to the electrical resistance of the conductive film, and the present invention also provides a metal layer with a constant electrical resistance. Then, it was discovered that the electrical resistance of the film is proportional to the film thickness.

従って、導電性フィルムの特性とは、具体的にその電気
抵抗若しくは膜厚のことである。
Therefore, the characteristics of the conductive film specifically refer to its electrical resistance or film thickness.

以下本発明の詳細を実施例に基いて図面により説明する
The details of the present invention will be explained below based on examples and drawings.

第1図は本発明の一実施例の説明図、第2図はその測定
回路のブロック図である。第1図は導電性フィルムの品
質管理を行うための検査装置に適用した例で、図に於て
、2は移送ロール3に支持された導電性フィルムで所定
速度で移送されている。1a、1bは渦電流検出器で導
電性フィルムをはさむように対向して取付られている。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of its measuring circuit. FIG. 1 shows an example in which the present invention is applied to an inspection apparatus for quality control of conductive films. In the figure, 2 is a conductive film supported by a transport roll 3, which is transported at a predetermined speed. Eddy current detectors 1a and 1b are mounted facing each other with a conductive film in between.

尚、ここで渦電流検出器とは、公知の通りコイルを巻い
た強磁性体の測定子に高周波電流を流すと交流磁力線が
発生し、測定子と一定間隔で配置された導電体に誘起さ
れる渦電流を測定するもので市販品をそのまま適用する
As is well known, an eddy current detector is a sensor that generates alternating magnetic lines of force when a high-frequency current is passed through a ferromagnetic probe wrapped in a coil, which are induced in a conductor placed at a constant distance from the probe. A commercially available product can be used as is for measuring eddy currents.

ところで、1ffi性フイルムの渦電流は、前述の通り
その電気抵抗に比例するので渦電流検出器の出力から該
電気抵抗を知ることができる。導電性フィルム2は基板
のフィルムの上面又は下面、いづれに導電性薄膜が形成
されていてもよい。導電性フィルムの基板フィルムが透
明、不透明いづれでもよく、該基板フィルムの材質はプ
ラスチックフィルムであれば、いかなるものぐもよく、
通常その厚さは1μTrL〜1 mmである。
By the way, since the eddy current of a 1ffi film is proportional to its electrical resistance as described above, the electrical resistance can be determined from the output of the eddy current detector. The conductive film 2 may have a conductive thin film formed on either the upper surface or the lower surface of the film of the substrate. The substrate film of the conductive film may be transparent or opaque, and the material of the substrate film may be any plastic film.
Usually its thickness is between 1 μTrL and 1 mm.

渦電流検出器1a、1bど導電性フィルム2との距離、
すなわち検出距離は、通常0.1m/m〜10TrL/
mであるが、検出距離が小さい稈測定精度は高い。1個
の渦電流検出器で測定する場合、導電性フィルム2が走
行中に振動するのぐ渦電流検出器と導電性フィルムの間
隙が変化し、測定の誤差要因となる。しかし、本発明で
は、導電性フィルム2の両面の各1個の渦電流検出器1
a、1bを一定距離で対向配置し、該渦電流検出器1a
、1bの出力を平均演算するようになしているので、以
下のように導電性フィルム2の振動の影響は除去される
The distance between the eddy current detectors 1a and 1b and the conductive film 2,
That is, the detection distance is usually 0.1 m/m to 10 TrL/
m, but the detection distance is small and the culm measurement accuracy is high. When measuring with one eddy current detector, as the conductive film 2 vibrates while running, the gap between the eddy current detector and the conductive film changes, causing a measurement error. However, in the present invention, one eddy current detector 1 is provided on each side of the conductive film 2.
a, 1b are arranged opposite to each other at a certain distance, and the eddy current detector 1a
, 1b are averaged, so the influence of vibration of the conductive film 2 is removed as described below.

すなわち、導電性フィルム2の撮動により、導電性フィ
ルム2がその上面側の渦電流検出器1aに近づいた時は
イの検出出力はプラス側に変動し、一方下面側の渦電流
検出器1bの出力は導電性フィルム2が遠ざかった分だ
けマイノス側に変動するので、両出力を加えればフィル
ム振動による変動分を互いに打ち消しフィルム振動の影
響を相殺することができる。
That is, by photographing the conductive film 2, when the conductive film 2 approaches the eddy current detector 1a on the upper surface side, the detection output of A changes to the positive side, while the detection output of eddy current detector 1b on the lower surface side changes to the positive side. Since the output of 2 fluctuates toward the minus side by the distance of the conductive film 2, by adding both outputs, the fluctuations due to film vibration can be mutually canceled out, and the influence of the film vibration can be canceled out.

更に、両温電流検出器1a、1bの励磁によって交流磁
界の磁束密度は2倍になり、両温電流検出器1a、lb
の出力を加えることにより出力は更に2倍されるので、
結局4倍の検出感度を得ることができる。
Furthermore, the magnetic flux density of the alternating current magnetic field is doubled by excitation of both hot current detectors 1a and 1b, and both hot current detectors 1a and lb
The output is further doubled by adding the output of
In the end, it is possible to obtain four times the detection sensitivity.

この2つの作用によって特性測定の精痕が著しく高まる
とともに安定した測定が可能となる。なお、かかる作用
から両温電流検出器1a、1bは同一特性のものが好ま
しい。
These two effects significantly increase the accuracy of characteristic measurement and enable stable measurement. In view of this effect, it is preferable that both hot current detectors 1a and 1b have the same characteristics.

第2図は上述の測定回路の一例で、渦電流検出器1a、
1bの検出信号を増巾器4で増巾後、平均演算装置5で
演算処理し指示計6に電気抵抗値を指示覆る様にしてい
る。
FIG. 2 shows an example of the above-mentioned measurement circuit, including an eddy current detector 1a,
After the detection signal 1b is amplified by an amplifier 4, it is subjected to arithmetic processing by an average calculation device 5, and an electric resistance value is indicated on an indicator 6.

第3図は渦電流検出器1a、1bを一体構造のコの字形
支持部材7に対向配置した例で、導電性フィルム2に対
向配置した渦電流検出器1a、1bを同一支持部材7に
取付け、振動等によって2つの渦電流検出器1a、Ib
の相対位置が変化しない様にしている。勿論一体構lr
あればコの字形だけでなく、他の形状でもよい。要覆る
に2つの渦電流検出器1a、1bの相対位置が固定でき
る構造であればいかなる形状でもよい。
FIG. 3 shows an example in which eddy current detectors 1a and 1b are arranged facing each other on an integrated U-shaped support member 7, and eddy current detectors 1a and 1b arranged facing each other on a conductive film 2 are mounted on the same support member 7. , two eddy current detectors 1a, Ib due to vibration etc.
The relative positions of the two do not change. Of course it's all in one piece lr
If available, it can be not only U-shaped but also other shapes. In short, any shape may be used as long as the relative positions of the two eddy current detectors 1a and 1b can be fixed.

尚、平均演算装置5は渦電流検出器1a、1bの出力を
加算できるものであれば良く、その特性に合わせ必要に
応じリニアライザーを付加することもある。
The averaging device 5 may be of any type as long as it can add the outputs of the eddy current detectors 1a and 1b, and a linearizer may be added as necessary depending on its characteristics.

又、指示計6は記録計やプリンターを代りに使用するこ
ともある。
Also, a recorder or a printer may be used instead of the indicator 6.

又、本実施例では導電性フィルl\の品質管理を行うた
めの検査装置に適用した例であるが、本発明は蒸着、ス
パッタリング、イオンプレーディング等の従来公知の・
方法により導電性薄膜を基板上に形成せしめる際にもオ
ンラインで特性を検知し、フードパック回路を組んで制
御することにも適用できる。
Furthermore, although this embodiment is an example in which the present invention is applied to an inspection device for quality control of conductive films, the present invention can be applied to conventionally known methods such as vapor deposition, sputtering, and ion plating.
It can also be applied to detecting the characteristics online when forming a conductive thin film on a substrate using this method, and controlling it by building a food pack circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は該実施例の測
定回路のブロック図、第3図は測定ベッドの他の態様の
概略側面図である。 1a、1b:渦電流検出器、2:導電性フィルム、3:
移送ロール、4:増巾器、5;平均演算器、6:指示計
、7:指示部材 特許出願人 帝 人 株 式 会 社 帝人工ンジニアリング株式会社 第119 易21す f、3(幻
FIG. 1 is a detailed explanatory diagram of the present invention, FIG. 2 is a block diagram of the measuring circuit of the embodiment, and FIG. 3 is a schematic side view of another embodiment of the measuring bed. 1a, 1b: Eddy current detector, 2: Conductive film, 3:
Transfer roll, 4: Multiplier, 5: Average calculator, 6: Indicator, 7: Indicator member Patent applicant: Teijin Co., Ltd. Teijin Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】 1、所定間隔で対向配置した一組の渦電流検出器と、該
渦電流検出器の出力を平均する演算手段とからなり、前
記渦電流検出器間に導電性フィルムを位置せしめて測定
するようになしたことを特徴とする導電性フィルムの特
性測定装置。 2、前記渦電流検出器が同一支持部材に対向配置された
特許請求の範囲第1項記載の特性測定装置。
[Claims] 1. Consists of a pair of eddy current detectors arranged oppositely at a predetermined interval, and a calculation means for averaging the outputs of the eddy current detectors, and a conductive film is placed between the eddy current detectors. A device for measuring characteristics of a conductive film, characterized in that measurement is performed by positioning the conductive film. 2. The characteristic measuring device according to claim 1, wherein the eddy current detectors are arranged facing each other on the same support member.
JP10369484A 1984-05-24 1984-05-24 Characteristic measuring device of conductive film Pending JPS60249067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10369484A JPS60249067A (en) 1984-05-24 1984-05-24 Characteristic measuring device of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10369484A JPS60249067A (en) 1984-05-24 1984-05-24 Characteristic measuring device of conductive film

Publications (1)

Publication Number Publication Date
JPS60249067A true JPS60249067A (en) 1985-12-09

Family

ID=14360885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10369484A Pending JPS60249067A (en) 1984-05-24 1984-05-24 Characteristic measuring device of conductive film

Country Status (1)

Country Link
JP (1) JPS60249067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187393A1 (en) * 2018-03-27 2019-10-03 日東電工株式会社 Resistance measurement device, film manufacturing device, and conductive film manufacturing method
JP2019174159A (en) * 2018-03-27 2019-10-10 日東電工株式会社 Resistance measuring device, film manufacturing device, and conductive film manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187393A1 (en) * 2018-03-27 2019-10-03 日東電工株式会社 Resistance measurement device, film manufacturing device, and conductive film manufacturing method
JP2019174158A (en) * 2018-03-27 2019-10-10 日東電工株式会社 Resistance measuring device, film manufacturing device, and conductive film manufacturing method
JP2019174159A (en) * 2018-03-27 2019-10-10 日東電工株式会社 Resistance measuring device, film manufacturing device, and conductive film manufacturing method
US11237196B2 (en) 2018-03-27 2022-02-01 Nitto Denko Corporation Resistance measurement device, film manufacturing apparatus, and manufacturing method of electrically conductive film
US11789053B2 (en) 2018-03-27 2023-10-17 Nitto Denko Corporation Resistance measurement device, film manufacturing apparatus, and manufacturing method of electrically conductive film

Similar Documents

Publication Publication Date Title
US5411600A (en) Ultrathin film thermocouples and method of manufacture
KR860003492A (en) Method and device for measuring thickness of thin metal film deposited on conductive support
US3045473A (en) Apparatus for measuring thermal conductivity
JP7142736B2 (en) Magnetic displacement sensor with high accuracy and stability in the presence of electromagnetic interference
CN109781287A (en) A kind of fexible film thermocouple temperature sensor with high spatial resolution
JPS59166801A (en) Differential feedback type vortex distance meter
FR2606213B1 (en) NOVEL COMPOSITE MATERIAL PREFERABLY FLEXIBLE, MEASURING DEVICE FORMING A FLUX METER AND A TEMPERATURE SENSOR COMPRISING SUCH A COMPOSITE MATERIAL AND METHOD FOR PREPARING SUCH A MATERIAL
JPS60249067A (en) Characteristic measuring device of conductive film
JPS61120961A (en) Inspecting device for conductive film
JPS61120960A (en) Inspecting device for conductive film
JPS61259580A (en) Thermopile
Marshall et al. A capacitance depth gauge for thin liquid films
JPS60131404A (en) Measuring device for film thickness
US7123004B2 (en) Method of non-destructive inspection of rear surface flaws and material characteristics using electromagnetic technique and apparatus therefor
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
JPS60127454A (en) Preparation of conductive laminate
JP3398089B2 (en) Measurement method of resistivity value of resistive film
JPS63169513A (en) Coating film thickness measuring instrument
Hughes Detection of rapid electrical conductivity fluctuations in high temperature liquid metals
JP2003084020A (en) Non-contact surface resistance measuring device
Kosaka et al. Plating thickness evaluation with the radial basis functions
JPS60138430A (en) Temperature measuring method of metallic plate by electromagnetic induction
JPS5648145A (en) Measurement for sheet resistance of semiconductor layer
JPH01152305A (en) Thickness measurement for photosensitive layer
JPS56112602A (en) Measuring device for thickness of nonmagnetic thin metal plate