JPS60248009A - Wide bank amplifier - Google Patents

Wide bank amplifier

Info

Publication number
JPS60248009A
JPS60248009A JP10501084A JP10501084A JPS60248009A JP S60248009 A JPS60248009 A JP S60248009A JP 10501084 A JP10501084 A JP 10501084A JP 10501084 A JP10501084 A JP 10501084A JP S60248009 A JPS60248009 A JP S60248009A
Authority
JP
Japan
Prior art keywords
resistor
collector
feedback
gain
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10501084A
Other languages
Japanese (ja)
Inventor
Hiroshi Onishi
博 大西
Kimihide Misaizu
美細津 公英
Sadahiko Yamashita
山下 貞彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10501084A priority Critical patent/JPS60248009A/en
Publication of JPS60248009A publication Critical patent/JPS60248009A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • H03F1/48Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers

Abstract

PURPOSE:To form a wide bank amplifier with an excellent temperature characteristic by using a transistor (TR) for microwave so as to apply DC feedback and high frequency feedback at the same time from the collector to the base. CONSTITUTION:The characteristic having a flat gain from low to high frequencies is obtained by using a resistor 17 and a capacitor 22 for high frequency signal feedback. When a collector current flowing to a collector resistor 20 is increased because of temperature fluctuation, the collector potential of a transistor (TR)16 is lowered by the collector resistor 20 and a DC feedback resistor 19, the base potential is decreased through a resistor 19, thereby preventing the collector current from being increased. On the other hand, when the collector current is decreased, the base potential rises conversely so as not to decrease the collector current. Since the fluctuation of the collector current due to temperature fluctuation is suppressed, the gain characteristic is hardly changed. Thus, a wide band amplifier with an excellent temperature characteristic is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ディジタル光信号を受信する光受信器等に用
いる広帯域増幅器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a wideband amplifier used in an optical receiver or the like that receives digital optical signals.

従来例の構成とその問題点 以下、ディジタル光信号を受信する光受信器の従来の構
成について、第1図を参照しながら説明する。第1図に
おいて、1は光受信用フォト・ダイオード、2は低雑音
特性の前置増幅器、3,5は高利得の広帯域増幅器、4
は入力電圧により入力信号の減衰量を変化させるAGC
(自動利得制御)回路、6は直流再生回路、7は識別回
路、8は尖頭値検出回路、9はフォト・ダイオード1の
バイアス電圧を制御するとともに、AGC回路4のバイ
アス電圧を制御する電圧制御回路である。
Conventional Structure and Problems Therebelow, the conventional structure of an optical receiver for receiving digital optical signals will be explained with reference to FIG. In Fig. 1, 1 is a photodiode for optical reception, 2 is a preamplifier with low noise characteristics, 3 and 5 are high gain wideband amplifiers, and 4 is a preamplifier with low noise characteristics.
is an AGC that changes the amount of attenuation of the input signal depending on the input voltage.
(automatic gain control) circuit, 6 is a DC regeneration circuit, 7 is an identification circuit, 8 is a peak value detection circuit, 9 is a voltage that controls the bias voltage of the photodiode 1 and the bias voltage of the AGC circuit 4. It is a control circuit.

上記構成において、まず入力光信号はフォト・ダイオー
ド1により電気信号に変換される。変換された信号は前
置増幅器2.高利得広帯域増幅器3.5で増幅され直流
再生回路6で直流再生された後、識別回路7で所定の識
別レベルで識別された後、出力端子に識別出力が出力さ
れる。
In the above configuration, an input optical signal is first converted into an electrical signal by the photodiode 1. The converted signal is sent to preamplifier 2. After being amplified by the high-gain broadband amplifier 3.5 and subjected to DC regeneration by the DC regeneration circuit 6, it is identified by the identification circuit 7 at a predetermined identification level, and then an identification output is output to the output terminal.

一方、受信回路のAGCループとして、直流再生回路6
の出力信号の尖頭値を尖頭値検出回路8で検出し、この
尖頭値が一定となるようにフォト・ダイオード1のバイ
アス電圧とAGC回路4のバイアス電圧を電圧制御回路
9から供給する。
On the other hand, as the AGC loop of the receiving circuit, the DC regeneration circuit 6
The peak value of the output signal is detected by the peak value detection circuit 8, and the bias voltage of the photodiode 1 and the bias voltage of the AGC circuit 4 are supplied from the voltage control circuit 9 so that the peak value is constant. .

AGCループにより、光受信レベルが変動した場合にお
りて電圧制御回路9から送出されるフォト・ダイオード
1のバイアス電圧を変化させることにより、増幅利得を
変化させるとともに、AGC回路4のバイアス電圧をも
変化させることにより、識別回路7の入力電気信号レベ
ルを一定とするものである。
The AGC loop changes the amplification gain by changing the bias voltage of the photodiode 1 sent from the voltage control circuit 9 when the optical reception level fluctuates, and also changes the bias voltage of the AGC circuit 4. By changing the input electric signal level of the identification circuit 7, the input electric signal level is kept constant.

なお上記構成では、フォト・ダイオード1の増倍利得と
増幅器の利得を制御して一定の電気出力を得る光受信回
路について説明したが、他の方式としてフォト・ダイオ
ード1の増倍利得だけを制御する方式や増幅器の利得だ
けを制御する方式の光受信回路がある。
In the above configuration, we have explained an optical receiver circuit that obtains a constant electrical output by controlling the multiplication gain of photodiode 1 and the gain of the amplifier, but as another method, it is possible to control only the multiplication gain of photodiode 1. There are optical receiving circuits that control the gain of the amplifier and others that control only the gain of the amplifier.

さて、上述した光受信回路において、識別回路7の動作
を良好とするため、直流再生回路60入力レベルは、0
.5〜1.0V程度の電圧が必要となる。一方、フォト
・ダイオード1の光検知電流は、非常に小さく、前置増
幅器2の出力は、数mV〜数士TrLvである。このた
め、広帯域増幅器3および6の電圧利得は40〜5od
B必要である。また、ディジタル光信号を受信する光受
信器においては、低域周波数が高域周波数に比較して増
幅利得が異なるとパターン効果によシアイ・パターンが
劣化し誤シ率を劣化させる。
Now, in the optical receiving circuit described above, in order to improve the operation of the identification circuit 7, the input level of the DC regeneration circuit 60 is set to 0.
.. A voltage of about 5 to 1.0V is required. On the other hand, the photodetection current of the photodiode 1 is very small, and the output of the preamplifier 2 is several mV to several TrLv. Therefore, the voltage gain of broadband amplifiers 3 and 6 is 40 to 5 od
B is necessary. In addition, in an optical receiver that receives a digital optical signal, if the amplification gain of the low frequency range is different from that of the high frequency range, the shear pattern deteriorates due to the pattern effect and the error rate deteriorates.

このため、低域周波数(数十に比)からディジタル光信
号のピット・レート周波数以上まで広帯域で、利得の平
坦な増幅器が必要となる。
Therefore, there is a need for an amplifier with a flat gain and a wide band from low frequencies (several tens of times) to the pit rate frequency or higher of the digital optical signal.

従来、このような低域周波数から高域周波数まで利得の
平坦な増幅器として負帰還増幅器がよく使用されている
Conventionally, a negative feedback amplifier is often used as an amplifier with a flat gain from low frequencies to high frequencies.

第2図はそのような従来よく使用されている負帰還増幅
器の回路を示すものである。
FIG. 2 shows a circuit of such a conventional negative feedback amplifier.

第2図において、1oはバイポーラ・トランジスタ、1
1、.12は)ランジスタのベース・バイアス設定用の
抵抗、13はコレクタ抵抗、14は帰還抵抗、15は帰
還容量である。
In FIG. 2, 1o is a bipolar transistor, 1
1. 12 is a resistor for setting the base bias of the transistor, 13 is a collector resistor, 14 is a feedback resistor, and 15 is a feedback capacitor.

上記構成の回路において、低域周波数(数十に庵)から
高域周波数C数百MHz)まで利得を平坦とするために
、帰還抵抗14は通常数百Ωの値のものが使用される。
In the circuit configured as described above, the feedback resistor 14 is normally used with a value of several hundred ohms in order to flatten the gain from a low frequency range (several tens of MHz) to a high frequency range of several hundred MHz.

第2図のような帰還形増幅器においては、温度の上昇に
よりベース・エミッタ間電圧に対するコレクタ電流が第
3図に示すように変化する。
In a feedback amplifier as shown in FIG. 2, as the temperature rises, the collector current with respect to the base-emitter voltage changes as shown in FIG.

なお第3図において、横軸は温度、縦軸はコレクタ電流
であり、Aはベース・エミッタ間電圧一定の場合の温度
に対するコレクタ電流の変化の状況を示したものである
In FIG. 3, the horizontal axis is temperature, the vertical axis is collector current, and A shows the change in collector current with respect to temperature when the base-emitter voltage is constant.

第3図からも明らかなように温度変化が生じると、コレ
クタ電流が変化するため、第2図に示すような従来の負
帰還増幅器では、増幅利得が温度変化に対し変化する。
As is clear from FIG. 3, when a temperature change occurs, the collector current changes, so in the conventional negative feedback amplifier as shown in FIG. 2, the amplification gain changes with respect to the temperature change.

たとえば、その−例の特性を説明すると、第2図に示す
ような構成の一段の帰還形増幅器では、温度−6℃から
+60℃で約2dB程度利得が変化する。
For example, to explain the characteristics of this example, in a single-stage feedback amplifier configured as shown in FIG. 2, the gain changes by about 2 dB from temperature -6°C to +60°C.

ディジタル光信号を受信する光受信器に使用する広帯域
増幅器としては、先に述べたように利得が40〜6o 
dB必要である。このため、第2図に示すような帰還形
増幅器を多段に接続することが必要であり、広帯域増幅
器全体としては10dB近くの利得変動が温度変化に対
し生じる。
As mentioned earlier, a wideband amplifier used in an optical receiver that receives digital optical signals has a gain of 40 to 6o.
dB is required. For this reason, it is necessary to connect feedback amplifiers in multiple stages as shown in FIG. 2, and as a whole, a gain variation of nearly 10 dB occurs with respect to temperature changes in the broadband amplifier.

一方、AGCループとしては、低域周波数から高域周波
数まで平坦な利得を得る必要から、ある一定の範囲まで
しかAGCとして動作させることができない。このだめ
、広帯域増幅器の利得の温度変動はAGC許容範囲を狭
めることになシ、ディジタル光信号を用いる光受信機の
入力許容範囲を小さくしてしまう欠点がある。
On the other hand, since the AGC loop needs to obtain a flat gain from low frequencies to high frequencies, it can only operate as an AGC within a certain range. However, temperature fluctuations in the gain of the broadband amplifier do not narrow the AGC tolerance range, but have the drawback of narrowing the input tolerance range of an optical receiver using digital optical signals.

このため広帯域増幅器全体として温度変化に対し利得変
動が少なくなるような温度補償対策をする必要がある。
For this reason, it is necessary to take measures for temperature compensation to reduce gain fluctuations due to temperature changes in the wideband amplifier as a whole.

そこで従来より温度補償対策として、温度補償用ダイオ
ードを付加するなど種々の方式が検討され実施されてい
るが、回路部品点数が多くなり、また回路として複雑な
回路となる等の欠点がある。
Therefore, various methods have been considered and implemented as temperature compensation measures, such as adding a temperature compensation diode, but these methods have disadvantages such as increasing the number of circuit components and making the circuit complicated.

発明の目的 本発明はかかる従来の欠点に鑑み、簡単な回路構成によ
る、温度特性の良好な広帯域増幅器を提供することを目
的とする。
OBJECTS OF THE INVENTION In view of these conventional drawbacks, it is an object of the present invention to provide a broadband amplifier with a simple circuit configuration and good temperature characteristics.

発明の構成 本発明は、マイクロ波用のトランジスタを用い、前記ト
ランジスタのコレクタ側からベース側へ直流帰還と高周
波帰還とを同時に行なうようにしたものである。
Structure of the Invention The present invention uses a microwave transistor, and simultaneously performs DC feedback and high frequency feedback from the collector side to the base side of the transistor.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第4図はトランジスタを使用した本発明の一実施例にお
ける広帯域増幅器の回路図を示したものである。
FIG. 4 shows a circuit diagram of a broadband amplifier according to an embodiment of the present invention using transistors.

第4図において、16はマイクロ波トランジスタ、17
は高周波信号帰還用の抵抗、18は1に流カプト用のコ
ンデンサ、19は直流帰還用の抵抗、20はコレクタ抵
抗、21はエミッタ抵抗、22は高域周波数帯の利得を
補正するコンデンサである。
In FIG. 4, 16 is a microwave transistor, 17
is a resistor for high frequency signal feedback, 18 is a capacitor for current coupling, 19 is a resistor for DC feedback, 20 is a collector resistor, 21 is an emitter resistor, and 22 is a capacitor for correcting the gain in the high frequency band. .

以下、」二記構成の回路につめて説明する。In the following, the circuit having the configuration described in "2" will be explained.

上記構成によれば、高周波信号帰還用の抵抗1了とコン
デンサ22により、低域周波数(数十に+−[z)から
高域周波数まで利得の平坦な特性とすることができる。
According to the above configuration, the high frequency signal feedback resistor 1 and the capacitor 22 can provide a flat gain characteristic from low frequencies (several tens of +-[z) to high frequencies.

また、コレクタ抵抗2oと直流帰還抵抗19により、温
度変動などでコレクタ抵抗2oを流れるコレクタ電流が
増大すると、トランジスタ16のコレクタ電位が下がり
、直流帰還抵抗19を通してベース電位が下がり、コレ
クタ電流を増加させないように動作する。コレクタ電流
が減少する場合には、上記とは逆に、ベース電位が−に
昇し、コレクタ電流を減少させないように動作する。
Furthermore, when the collector current flowing through the collector resistor 2o increases due to temperature fluctuations, the collector potential of the transistor 16 decreases due to the collector resistor 2o and the DC feedback resistor 19, and the base potential decreases through the DC feedback resistor 19, preventing the collector current from increasing. It works like this. When the collector current decreases, the base potential rises to -, contrary to the above, and operates so as not to decrease the collector current.

以上のように温室変動などによるコレクタ電流の変動を
抑えるように動作するため、利得特性もほとんど変化し
ないことになる。
As described above, since the device operates to suppress fluctuations in the collector current due to greenhouse fluctuations, etc., the gain characteristics also hardly change.

以上本実施例によれば、トランジスタ16のコレクタと
ベース間に直流帰還用の抵抗19と高周波信号帰還用の
抵抗17を並列に接続し、コレクタ抵抗20と直流帰還
抵抗19を適当に選定することにより、温度変動による
利得の変化を少なく干ることが可能となる。
As described above, according to this embodiment, the resistor 19 for DC feedback and the resistor 17 for high frequency signal feedback are connected in parallel between the collector and base of the transistor 16, and the collector resistor 20 and the DC feedback resistor 19 are appropriately selected. This makes it possible to minimize changes in gain due to temperature fluctuations.

発明の効果 以上の説明から明らかなように本発明の広帯域増幅器は
、簡単な回路構成により温度特性の良好な増幅器を構成
することができ、とりわけディジタル光信号の光受信器
に好適なものとなる。
Effects of the Invention As is clear from the above explanation, the wideband amplifier of the present invention can provide an amplifier with good temperature characteristics with a simple circuit configuration, and is particularly suitable for optical receivers for digital optical signals. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光受信回路のブロック結線図、第2図は
従来の負帰還型広帯域増幅器の回路図、第3図は従来の
広帯域増幅器における温度変化に対するコレクタ電流の
変化を示す特性図、第4図は本発明の一実施例における
広帯域増幅器の回路図である。 16 ・・・マイクロ波トランジスタ、17・・・・・
高周波信号帰還用の抵抗、18・・−・・直流カット用
のコンデンサ、19・・・・直流帰還用の抵抗、20−
・・・・コレクタ抵抗、21・・・・・エミッタ抵抗、
22−・・・・利得補正用のコンデンサ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Fig. 1 is a block diagram of a conventional optical receiver circuit, Fig. 2 is a circuit diagram of a conventional negative feedback type wideband amplifier, and Fig. 3 is a characteristic diagram showing changes in collector current with respect to temperature changes in a conventional wideband amplifier. FIG. 4 is a circuit diagram of a wideband amplifier in one embodiment of the present invention. 16...Microwave transistor, 17...
Resistor for high frequency signal feedback, 18... Capacitor for DC cut, 19... Resistor for DC feedback, 20-
... Collector resistance, 21 ... Emitter resistance,
22-...Capacitor for gain correction. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
figure

Claims (1)

【特許請求の範囲】[Claims] トランジスタのベースとエミッタ間に第1の抵抗トコン
デンサからなる直列回路を接続し、前記直列回路と並列
に第2の抵抗を接続したことを特徴とする広帯域増幅器
1. A wideband amplifier comprising: a series circuit comprising a first resistor and a capacitor connected between a base and an emitter of a transistor; and a second resistor connected in parallel with the series circuit.
JP10501084A 1984-05-23 1984-05-23 Wide bank amplifier Pending JPS60248009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10501084A JPS60248009A (en) 1984-05-23 1984-05-23 Wide bank amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10501084A JPS60248009A (en) 1984-05-23 1984-05-23 Wide bank amplifier

Publications (1)

Publication Number Publication Date
JPS60248009A true JPS60248009A (en) 1985-12-07

Family

ID=14396100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10501084A Pending JPS60248009A (en) 1984-05-23 1984-05-23 Wide bank amplifier

Country Status (1)

Country Link
JP (1) JPS60248009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005441A (en) * 1998-01-21 1999-12-21 Mitsubishi Denki Kabushiki Kaisha Amplifying circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187006A (en) * 1982-04-27 1983-11-01 Nec Corp Broad band amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187006A (en) * 1982-04-27 1983-11-01 Nec Corp Broad band amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005441A (en) * 1998-01-21 1999-12-21 Mitsubishi Denki Kabushiki Kaisha Amplifying circuit

Similar Documents

Publication Publication Date Title
US3671886A (en) Method and apparatus for automatic gain control
US4019160A (en) Signal attenuator circuit for TV tuner
US4327319A (en) Active power supply ripple filter
US5105165A (en) Low distortion, low noise, amplifier
US4492926A (en) Amplitude modulation detector
US4229707A (en) Automatic gain control circuit
US4115741A (en) Fast attack automatic gain control circuit
JPS5844803A (en) 11/2 pole audio power amplifier
US4255716A (en) Automatic gain control circuit
JPS60248009A (en) Wide bank amplifier
US4105976A (en) Automatic gain control
US3413562A (en) Clipper amplifier circuit
US3873932A (en) Gain control circuit having variable impedance to determine circuit gain and to control minimum gain
JPH04274607A (en) Pre-amplifier
US3519946A (en) Class a audio amplifier
JPS6335121B2 (en)
US3731216A (en) Automatic gain control circuit
JPS6228087Y2 (en)
US3543174A (en) Variable gain transistor amplifier
US3416094A (en) Automatic gain control system
US3526847A (en) Temperature insensitive amplifier employing a differential stage
US4485350A (en) Variable electronic impedance circuit
JPS6347085Y2 (en)
US20040090269A1 (en) Variable gain current amplifier with a feedback loop including a diffrential pair
JP2814501B2 (en) Automatic gain control amplifier