JPS60247311A - Amplifier using dc superconduction quantum interference device - Google Patents

Amplifier using dc superconduction quantum interference device

Info

Publication number
JPS60247311A
JPS60247311A JP10493884A JP10493884A JPS60247311A JP S60247311 A JPS60247311 A JP S60247311A JP 10493884 A JP10493884 A JP 10493884A JP 10493884 A JP10493884 A JP 10493884A JP S60247311 A JPS60247311 A JP S60247311A
Authority
JP
Japan
Prior art keywords
impedance
signal source
circuit
power
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10493884A
Other languages
Japanese (ja)
Inventor
Taku Noguchi
卓 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10493884A priority Critical patent/JPS60247311A/en
Publication of JPS60247311A publication Critical patent/JPS60247311A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F19/00Amplifiers using superconductivity effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)

Abstract

PURPOSE:To improve greatly the amplification capacity of an AC signal with no reduction of an action frequency by inserting an impedance transformation circuit between an inpt coil of a DC superconduction quantum interference device (dc SQUID) and a signal source or between an output terminal of the dc SQUID and a load resistance. CONSTITUTION:A transformation circuit 7 is used for matching of impedance between a signal source 1 and an input coil 3; while an impedance transformation circuit 8 is added for matching between the output resistance of a dc SQUID4 and a load 5. The power reflection of the circuit 7 can be eliminated by securing a proper constitution of the circuit 7, and it is possible to transmit all available powers to an amplifier circuit 30. The impedance matching is secured between the source 1 and the SQUID4 to improve the power gain. In addition, the impedance matching is secured also between an output load and the dc SQUID4 at the output side. Thus the maximum available power is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は直流超伝導量子干渉素子(以下dcSQIJ
IDと記す)を用いた増幅装置に関し、特に信号源とd
c 5QUIDのインピーダンスを整合させることによ
り、効率的な電力増幅を行なうことを可能にしたものに
関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a direct current superconducting quantum interference device (hereinafter referred to as dcSQIJ).
Regarding the amplification device using the signal source and d
This relates to a system that enables efficient power amplification by matching the impedance of c5QUID.

〔従来技術〕[Prior art]

従来のdc 5QUIDを用いた増幅器の構成は第1図
に示すようになっている。図において、1は交流信号源
、2は信号源1の出力インピーダンス、4はdc 5Q
UID、3ばdc 5QUTD4に信号を伝達するため
の入力コイル、5ば負荷、6はdc 5QUID4に電
流を供給するための端子である。
The configuration of a conventional amplifier using a dc 5QUID is shown in FIG. In the figure, 1 is an AC signal source, 2 is the output impedance of signal source 1, and 4 is a dc 5Q
UID, 3 is an input coil for transmitting a signal to the dc 5QUTD4, 5 is a load, and 6 is a terminal for supplying current to the dc 5QUID4.

次に動作について説明する。第1図において、入力信号
源1と5QUIDループのインダクタンスをそれぞれL
i、Lpとし、両者は相互インダクタンスMiで結合し
ているものとする。いま信号源1にV i (tlの電
圧が発生したとすると、本増幅器の出力端には電圧vo
 (tlが発生し、その大きさは、となる。ここで21
 V/c)φはdc 5QIIID 4の磁束−電圧変
換係数、ll(t)は入力信号源1を流れる電流であり
、 である。ここでR3は信号源1の出力抵抗である。
Next, the operation will be explained. In Figure 1, the inductances of input signal source 1 and 5QUID loops are respectively L
It is assumed that i and Lp are connected by a mutual inductance Mi. Now, if a voltage of V i (tl is generated in the signal source 1), a voltage vo is generated at the output terminal of this amplifier.
(tl occurs, and its size is .Here, 21
V/c)φ is the magnetic flux-to-voltage conversion coefficient of dc 5QIIID 4, ll(t) is the current flowing through the input signal source 1, and . Here, R3 is the output resistance of the signal source 1.

Zinは、 で与えられ、Rdはdc 5QLIID4の微分抵抗、
ωは信号源1の周波数であり、 ωべRd/Lp ・・・(4) を満足するものとする。
Zin is given by, Rd is the differential resistance of dc 5QLIID4,
ω is the frequency of the signal source 1, and it is assumed that ωbeRd/Lp (4) is satisfied.

この時、信号1lJiilの供給する電力PiはPi=
Re (Zin+Rs) l If l 2・=f51
となり、他方、出力電力POは となる。従って、この時の電力利得Gはとなる。
At this time, the power Pi supplied by the signal 1lJiil is Pi=
Re (Zin+Rs) l If l 2・=f51
On the other hand, the output power PO becomes. Therefore, the power gain G at this time is as follows.

ところで、通常Rs、Roは50Ωの純抵抗である。M
i、Rd、aV/aφ等はdc 5QLIID 4に関
するパラメータであり、以下のような値であると仮定す
る。 ゛ 旧−1n H,Lp= 100p H Rd=10Ω B V/ii)φ= 5 XIOV/wb −(8)ω
= 2 πXl08Hz ここで、 となるので、(7)式は として良い。(8)式のパラメータを用いて(7)゛ 
式を計算すると、 GΣ0.833 < 1 ・・・(9)となり、電力利
得が得られない。
By the way, normally Rs and Ro are pure resistances of 50Ω. M
It is assumed that i, Rd, aV/aφ, etc. are parameters related to dc 5QLIID 4, and have the following values.゛Old -1n H, Lp = 100p H Rd = 10Ω B V/ii) φ = 5 XIOV/wb - (8) ω
= 2 πXl08Hz Here, since it becomes, formula (7) can be written as. Using the parameters of equation (8), (7)゛
When the formula is calculated, it becomes GΣ0.833 < 1 (9), and no power gain can be obtained.

このように、dc SQ[IrDをただ単に信号源に接
続しただけでは増幅器として動作させることは難しい。
In this way, it is difficult to operate dc SQ[IrD as an amplifier by simply connecting it to a signal source.

またこの状態で増幅させるためには、相互インピーダン
スMiを大きくすることが考えられるが、Miを大きく
すると、動作周波数の上限が下がってしまうという欠点
がある。
Further, in order to amplify in this state, it is conceivable to increase the mutual impedance Mi, but there is a drawback that increasing Mi lowers the upper limit of the operating frequency.

〔発明の概要〕[Summary of the invention]

間に適当なインピーダンス変成回路を設けることにより
、電力利得を有し、また動作周波数低下も防止できる増
幅装置を提供せんとするものである。
By providing an appropriate impedance transformation circuit between them, it is an object of the present invention to provide an amplifier device that has a power gain and can also prevent a drop in operating frequency.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図において、7は信号源1と入力コイル3とのインピー
ダンスを整合させるための変成回路であり、8も同様に
dc 5QUID4の出力抵抗と負荷5を整合させるた
めのインピーダンス変成回路である。9は純抵抗Riで
ある。10は同調用キャパシタンスCiであり、 ■ 即ち、 を満足するような容量をもつものである。キャパシタン
ス10によって図中破線で囲まれた部分20の入力イン
ピーダンスは純抵抗となり、信号源からの全電力が抵抗
9で消費されることとなる。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, 7 is a transformation circuit for matching the impedance of the signal source 1 and the input coil 3, and 8 is an impedance transformation circuit for matching the output resistance of the DC 5QUID 4 and the load 5. 9 is a pure resistance Ri. 10 is a tuning capacitance Ci, which has a capacitance that satisfies the following. The input impedance of a portion 20 surrounded by a broken line in the figure due to the capacitance 10 becomes a pure resistance, and all the power from the signal source is consumed by the resistor 9.

ところで信号源1から取出すことのできる最大有能電力
pi、avは、信号源1の電圧、出力抵抗2をそれぞれ
Vs、Rsとすると、 となる。(11)式で与えられる電力がインピーダンス
変成回路7を通って増幅回路30に入力され、この時、
インピーダンス変成回路7を適当に構成することにより
、該回路7での電力の反射を無くすことができ、増幅回
路30にすべての有能電力を伝達できる。伝達された電
力はすべて抵抗9で消費されるから、抵抗9あるいはコ
イル3を流れる電流Iiは Pi、 av +1i12=−□ ・・・(12) i ?満足する。
By the way, the maximum available powers pi and av that can be extracted from the signal source 1 are as follows, where the voltage of the signal source 1 and the output resistance 2 are Vs and Rs, respectively. The power given by equation (11) is input to the amplifier circuit 30 through the impedance transformation circuit 7, and at this time,
By appropriately configuring the impedance transformation circuit 7, reflection of power in the circuit 7 can be eliminated and all available power can be transmitted to the amplifier circuit 30. Since all the transmitted power is consumed by the resistor 9, the current Ii flowing through the resistor 9 or the coil 3 is Pi, av +1i12=-□ (12) i? be satisfied.

他方、dc SQI]ID4は、+11式で与えられる
電圧を発生する電源とみなすことができ、この電源から
取出すことのできる最大有能電力Po、avはである。
On the other hand, dc SQI] ID4 can be regarded as a power source that generates a voltage given by the formula +11, and the maximum available power Po, av that can be extracted from this power source is.

上記インピーダンス変成回路7と同様の働きをするイン
ピーダンス変成回路8を用いることにより、負荷5で消
費される電力は(13)式で与えられることになる。従
って、第2図に示した回路の電力利得G =Po、 a
v/Pi、 avは(12) (13)式から となる。
By using the impedance transformation circuit 8 which functions similarly to the impedance transformation circuit 7 described above, the power consumed by the load 5 is given by equation (13). Therefore, the power gain G of the circuit shown in FIG. 2 = Po, a
v/Pi and av are obtained from equations (12) and (13).

さて、(14)式に(8)式で用いたパラメータを代入
し、電力利得Gを評価すると、G = 125/ Ri
となり、抵抗Riの大きさに依存した電力利得が得られ
る。例えば、信号源1の出力抵抗2との整合の取り易さ
を考慮して、Ri=10Ωとすれば、G=12.5の電
力利得かえられる。
Now, by substituting the parameters used in equation (8) into equation (14) and evaluating the power gain G, G = 125/ Ri
Therefore, a power gain depending on the size of the resistor Ri can be obtained. For example, if Ri=10Ω in consideration of ease of matching with the output resistor 2 of the signal source 1, the power gain can be changed to G=12.5.

但し、dc 5QUIDを用いた場合、必要以上の大き
な電力が入力すると増幅器としての線形性が失わ(! れる。従って、本発明による増幅器柑微小信号の増幅、
即ちいわゆる前置増幅器としての利用が有効であり、d
c 5QUIDのもつ低雑音性が充分に発揮できる。
However, when using a dc 5QUID, the linearity of the amplifier will be lost if a larger power than necessary is input.
In other words, it is effective to use it as a so-called preamplifier, and d
c The low noise property of 5QUID can be fully demonstrated.

このように、本実施例では、信号源とdc 5QUID
との間のインピーダンス整合をとることにより、電力利
得を向上できた。しかも出力側でも出力負荷とdc 5
QUIDとの間のインピーダンス整合をとったので、最
大有能電力を取り出すことができた。
In this way, in this embodiment, the signal source and the dc 5QUID
By matching the impedance between the two, the power gain could be improved. Moreover, on the output side, the output load and DC 5
By matching the impedance with the QUID, the maximum available power could be extracted.

なお上記実施例では、信号源の出力抵抗を50Ωとした
が、これは複素インピーダンスであっても良く、またそ
のインピーダンスの大きさもいくらであっても良い。さ
らに、増幅器の動作周波数を100 MHzとしたが、
これは、(4)式が満足される交流であれば良い。
In the above embodiment, the output resistance of the signal source is 50Ω, but it may be a complex impedance, and the impedance may be of any value. Furthermore, although the operating frequency of the amplifier was set to 100 MHz,
This may be any alternating current that satisfies equation (4).

また、上記実施例では能動素子としてのdc 5QUI
Dは1個であったが、これを多段に接続したものであっ
てもよく、上記実施例と同様の効果を奏する。
Further, in the above embodiment, the dc 5QUI as an active element
Although there is only one D, it may be connected in multiple stages, and the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、dc 5QLIID
素子を用いた増幅器において、dc 5QUID素子の
入力ヌ1! コイルと信号源及つdc 5QUID素子の出力端と負
荷抵抗との間に毒衾尋#インピーダンス変成回路を挿入
するようにしたので、動作周波数を低下させることなく
交流信号の増幅能力を大きく向上できる効果がある。
As described above, according to the present invention, dc 5QLIID
In an amplifier using a dc 5QUID element, the input of the dc 5QUID element is 1! Since an impedance transformation circuit is inserted between the coil, the signal source, the output end of the DC 5QUID element, and the load resistor, the amplification ability of AC signals can be greatly improved without reducing the operating frequency. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流超伝導量子干渉素子を用いた増幅装
置を示す回路図、第2図はこの発明の一実施例による増
幅装置の回路図である。 図において、1は信号源、2は信号源の出力抵抗、3は
dc 5QUIDへの信号入力コイル、4はdc 5Q
UID、 5は負荷、6はdc 5QUIDの電流バイ
アス端子、7,8はインピーダンス変成回路、9は純抵
抗、10は同調用コンデンサである。 なお図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄 第1図
FIG. 1 is a circuit diagram showing an amplifier using a conventional DC superconducting quantum interference device, and FIG. 2 is a circuit diagram of an amplifier according to an embodiment of the present invention. In the figure, 1 is the signal source, 2 is the output resistance of the signal source, 3 is the signal input coil to the dc 5QUID, and 4 is the dc 5Q
UID, 5 is a load, 6 is a current bias terminal of DC 5QUID, 7 and 8 are impedance transformation circuits, 9 is a pure resistor, and 10 is a tuning capacitor. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも1個以上の直流超伝導量子干渉素子を
能動素子として有し電力増幅を行なう増幅装置において
、信号源あるいは負荷側に、信号源と入力コイルあるい
は上記直流超伝導量子干渉素子と負荷とのインピーダン
ス整合をとるためのインピーダンス変成回路を設けたこ
とを特徴とする直流超伝導量子干渉素子を用いた増幅装
置。
(1) In an amplifier device that performs power amplification and has at least one DC superconducting quantum interference element as an active element, the signal source and the input coil or the DC superconducting quantum interference element and the load are connected to the signal source or load side. An amplifier device using a direct current superconducting quantum interference device, characterized in that it is provided with an impedance transformation circuit for impedance matching with a direct current superconducting quantum interference device.
JP10493884A 1984-05-22 1984-05-22 Amplifier using dc superconduction quantum interference device Pending JPS60247311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10493884A JPS60247311A (en) 1984-05-22 1984-05-22 Amplifier using dc superconduction quantum interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10493884A JPS60247311A (en) 1984-05-22 1984-05-22 Amplifier using dc superconduction quantum interference device

Publications (1)

Publication Number Publication Date
JPS60247311A true JPS60247311A (en) 1985-12-07

Family

ID=14394029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10493884A Pending JPS60247311A (en) 1984-05-22 1984-05-22 Amplifier using dc superconduction quantum interference device

Country Status (1)

Country Link
JP (1) JPS60247311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232311A (en) * 2008-03-25 2009-10-08 National Institute Of Information & Communication Technology Signal processing circuit and interface circuit
CN104698406A (en) * 2013-12-05 2015-06-10 中国科学院上海微系统与信息技术研究所 Offset voltage regulating circuit and superconducting quantum interference sensor which offset voltage regulating circuit is applicable to

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173877A (en) * 1982-03-29 1983-10-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Superconductive integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173877A (en) * 1982-03-29 1983-10-12 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Superconductive integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232311A (en) * 2008-03-25 2009-10-08 National Institute Of Information & Communication Technology Signal processing circuit and interface circuit
CN104698406A (en) * 2013-12-05 2015-06-10 中国科学院上海微系统与信息技术研究所 Offset voltage regulating circuit and superconducting quantum interference sensor which offset voltage regulating circuit is applicable to

Similar Documents

Publication Publication Date Title
US10608313B2 (en) Wilkinson combiner with coupled inductors
TW201001906A (en) Feedback technique and filter and method
JP2859584B2 (en) Centralized parameter balun
JPS60247311A (en) Amplifier using dc superconduction quantum interference device
US4403196A (en) Pulse width modulated power amplifier with differential connecting line voltage drop comparators
JPS62278813A (en) Phase shifter
US3624536A (en) High-dynamic-range amplifier
JPH011320A (en) Distributed amplifier and its operating method
JPH10150328A (en) Electronic circuit converting differential input voltage into single end output voltage
US4453131A (en) Transformer coupled amplifier circuit
US6066948A (en) Squid magnetometer having resistor-capacitor damping circuits
JPS63219214A (en) Amplifier
US4968949A (en) Ohmically isolating input circuit
US4779058A (en) Ohmically isolated input circuit
US3482179A (en) Broadband stable power multiplier
EP0829016B1 (en) Squid magnetometer
JP2001326546A (en) Input circuit for differential amplifier
JPS6017941Y2 (en) Negative impedance repeater
JPH0278327A (en) Blocking filter for indoor power line carrier
CN220173212U (en) On-chip integrated parametric amplifier and quantum computer
JPH0422581Y2 (en)
US5442323A (en) Broad-band power amplifier
JPS6327459Y2 (en)
JPH0321064Y2 (en)
JPS6330012A (en) Differential amplifier circuit