JPS60246821A - Preparation of carbon yarn - Google Patents

Preparation of carbon yarn

Info

Publication number
JPS60246821A
JPS60246821A JP59099758A JP9975884A JPS60246821A JP S60246821 A JPS60246821 A JP S60246821A JP 59099758 A JP59099758 A JP 59099758A JP 9975884 A JP9975884 A JP 9975884A JP S60246821 A JPS60246821 A JP S60246821A
Authority
JP
Japan
Prior art keywords
elongation
flame
yarn
rollers
resistant treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59099758A
Other languages
Japanese (ja)
Other versions
JPH0551686B2 (en
Inventor
Jinko Izumi
仁子 泉
Yoshitaka Imai
今井 義隆
Soji Nakatani
中谷 宗嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59099758A priority Critical patent/JPS60246821A/en
Priority to KR1019850002754A priority patent/KR870000533B1/en
Priority to US06/733,797 priority patent/US4609540A/en
Priority to EP85105947A priority patent/EP0165465B1/en
Priority to DE8585105947T priority patent/DE3584539D1/en
Publication of JPS60246821A publication Critical patent/JPS60246821A/en
Publication of JPH0551686B2 publication Critical patent/JPH0551686B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon yarn having high performance and a small amount of fluff, by arranging plural rollers in a flame-resistant treatment process, setting degrees of elongation and shrinkage between rollers at specific values determined by a specific method, subjecting acrylonitrile polymer yarn to flame-resistant treatment, followed by carbonizing it. CONSTITUTION:In subjecting acrylonitrile polymer yarn to flame-resistant treatment by drawing it in an oxidizing atmosphere at 200-400 deg.C by multiple stages, each ratio of elongation of multiple stages is set at the elongation and shrinkage point En+ or -3% range showing the inflection Pn determined from load and degree of elongation and shrinkage, preobtained from an experiment of a batch furnace on yarn, the yarn is subjected to flame-resistant treatment, and carbonized. A retention time of yarn between rollers is preferably 2-15min.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はアクリロニトリル系重合体繊維を特定条件下で
耐炎化処理しfC後、炭素化する高性能炭素繊維の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing high-performance carbon fibers in which acrylonitrile polymer fibers are flame-resistant treated under specific conditions and carbonized after fC.

〔従来技術〕[Prior art]

一般にアクリル系繊維から炭素繊維を製造するには、2
00〜400℃の酸化性雰囲気中で熱処理全行い、耐炎
化構造を形成せしめた後、次いで400℃以上の不活性
雰囲気中で炭素化する方法が用いられている。その際、
耐炎・化工程における張力の付与あるいは伸長が、強度
ならびに弾性率の優れた炭素繊維全製造するのに効果的
である。例えば、特開昭筒49−54632号公報には
、耐炎化処理時の伸長を初期領域と後期領域とで配分す
ることによp高性能炭素繊維を製造するという方法が開
示されている。
Generally, to produce carbon fiber from acrylic fiber, 2
A method is used in which a heat treatment is performed in an oxidizing atmosphere at a temperature of 00 to 400°C to form a flame-resistant structure, and then carbonization is performed in an inert atmosphere at a temperature of 400°C or higher. that time,
The application of tension or elongation during the flame-retardant process is effective in producing carbon fibers with excellent strength and elastic modulus. For example, Japanese Patent Application Laid-Open No. 49-54632 discloses a method of producing high-performance carbon fiber by distributing the elongation during flameproofing treatment between an early region and a late region.

しかし、アクリル系繊維においては、その初期の分子配
向度または分子凝集力の差異によって耐炎化処理過程で
伸長するよシ、むしろ収縮させた万が、優れた性能を有
する炭素繊維が得られることがある。従って、上記の方
法においては、過度な伸長を行うと毛羽の発生や構造的
な欠陥を助長することも起こり得る。このように、耐炎
化での最適伸長率もしく祉収縮率は、そのイレカーサー
によって異なり、また、雰囲気温度によっても左右され
ることから、その量適化を図ることは極めて困難な現状
にある。
However, in acrylic fibers, due to differences in the initial degree of molecular orientation or molecular cohesive force, carbon fibers with excellent performance may not be obtained even if they are elongated or contracted during the flame-retardant treatment process. be. Therefore, in the above method, excessive elongation may promote fuzzing and structural defects. As described above, the optimum elongation rate or shrinkage rate for flame resistance differs depending on the elongation cursor and is also influenced by the ambient temperature, so it is currently extremely difficult to optimize the amount.

〔発明の目的〕[Purpose of the invention]

そこで本発明者等は、耐炎化工程において複数個の駆動
ローラー全般け、各ローラー間の伸縮率を、その間の供
給側ローラー点での繊維について予めバッチ実験によっ
てめらnた値に設定することにより極めて優れた性能金
有する炭素繊維が得られることを見い出し、本発明を完
成した。
Therefore, the present inventors set the expansion/contraction rate between all the plurality of driving rollers in the flameproofing process to a random value in advance for the fibers at the supply roller point between them through batch experiments. The inventors have discovered that carbon fibers with extremely superior performance can be obtained by the above method, and have completed the present invention.

〔発明の構成〕[Structure of the invention]

本発明の要旨とするところは、PAN系重合体繊維を、
複数個の駆動ローラーケ有する耐炎化炉において、20
0〜400℃の酸化性雰囲気中で多段伸長して耐炎化す
るに際し、その多段伸長の割合を予め実測によりめた荷
重と伸縮率よりまる変曲点Pnを示す伸縮点mnもしく
はその値に対して±3%以内に各々に設定し、耐炎化処
理を行い、その後炭素化することを特徴とする高性能炭
素繊維の製造方法であり、より効果的には多段伸長の各
駆動ローラー間に繊維が滞在する時間が20分以内であ
るものである。
The gist of the present invention is that PAN-based polymer fibers are
In a flameproofing furnace having a plurality of driving rollers, 20
When flame-proofing is achieved by multi-step elongation in an oxidizing atmosphere at 0 to 400°C, the ratio of multi-step elongation is determined in advance by actual measurement, and the inflection point Pn is determined by the load and the expansion/contraction rate. This is a method for producing high-performance carbon fiber, which is characterized by setting the fibers within ±3% of each other, subjecting them to flame-retardant treatment, and then carbonizing them. The stay time is 20 minutes or less.

本発明における複数個の駆動ローラーを有する耐炎化炉
の一例f!:第−図に示した。第2図は出発原糸である
アクリル系繊維の240C1窒気中における各定荷重下
での時間に対する伸縮挙動の一例を示したものである。
An example of a flameproofing furnace having a plurality of drive rollers according to the present invention f! : Shown in Fig. FIG. 2 shows an example of the expansion/contraction behavior of the starting yarn, acrylic fiber, in 240C1 nitrogen atmosphere with respect to time under various constant loads.

本発明における製造方法を以下に記す。The manufacturing method in the present invention will be described below.

第1図においてローラーRoからR11での炉内に繊維
が滞在する時間が10分で、その雰囲気温度が240℃
であるとする。次に第2図から同じ時間10分における
伸縮率及びその荷重をプロットすると、第5図の如く近
似的にPnになる変曲点を有する@椋関係が得られる。
In Figure 1, the time the fiber stays in the furnace from roller Ro to R11 is 10 minutes, and the ambient temperature is 240°C.
Suppose that Next, by plotting the expansion/contraction rate and its load at the same time of 10 minutes from FIG. 2, a @Muku relationship with an inflection point approximately equal to Pn is obtained as shown in FIG.

ただし一般には焼成工程における耐炎化炉とバッチ炉と
では同じ雰囲気温度でも、その装置特性の違いにより、
繊維の物性変化の温度時間依存性が異なるのが通常であ
る。
However, in general, even though the ambient temperature is the same between a flameproofing furnace and a batch furnace in the firing process, due to differences in equipment characteristics,
Normally, the temperature and time dependence of changes in physical properties of fibers is different.

そこで、上述のように炉内に滞在する時間を同じにする
よりも、物性パラメーター、特に耐炎化の進行度を示す
一つの尺度である繊維の密度を同じにした万が良い場合
もある。がくして変曲点P、に対応する伸長率F+’を
める。広角X線回折よりまる配向度によると、伸長率E
Therefore, rather than making the stay time in the furnace the same as described above, it may be better to make the physical property parameters, especially the density of the fibers, which is one measure of the progress of flame resistance, the same. Then, find the elongation rate F+' corresponding to the inflection point P. According to the degree of orientation determined by wide-angle X-ray diffraction, the elongation rate E
.

までは伸長の増加につれて配向度は増加するが、Fi、
以上ではその増加は頭打ちになり、毛羽の発生も見られ
る。即ち、この伸長率ElがローラーRo とR1の間
の最適伸長率となる。
The degree of orientation increases with increasing elongation up to Fi,
Above this, the increase has reached a plateau, and the appearance of fuzz is also observed. That is, this elongation rate El becomes the optimum elongation rate between the rollers Ro and R1.

次にローラーR亘 とR2の間の伸長率の設定であるが
、この場合は、供給側ローラーR1での繊維、つまv2
40tl:、10分間処理中で伸長E。
Next is the setting of the elongation rate between rollers R and R2. In this case, the fibers and tabs v2
40 tl: Elongated during processing for 10 minutes.

を付与させた繊維について前述と同様にバッチ実験で第
4図のような荷重と伸長率の関係全プロットし、伸長率
F!z’をめる。
The relationship between load and elongation rate as shown in Figure 4 was plotted in the same batch experiment as described above for the fibers to which elongation rate F! Enter z'.

以下、同様に各ローラー間の伸長率を決定する。このよ
うに決定された伸長率Kn(n = 1.2・・・・・
)は、アクリル系繊維によって収縮側に最適点が現われ
るものもある。この際、各ローラー間に繊維が滞在する
時間ti2o分以内、好ましくは2〜15分が望ましい
。20分より多いと、伸長領域の長さが増大し、七nに
応じてそのローラー間の伸長率も増大するため、伸長斑
が生じ、かつ次のローラー間との張力差が大きくなるた
めに、その境のローラーでスリップ等も生じ、毛羽の発
生の頻度が増大する。2分以下になるとローラーとの接
触回数が増え、これもまた毛羽の発生の原因となり、ま
7’CO−ラーの個数が極めて膨大になるため装置的に
メリットはない。
Hereinafter, the elongation rate between each roller is determined in the same manner. The elongation rate Kn (n = 1.2...
), the optimum point appears on the contraction side depending on the acrylic fiber. At this time, it is desirable that the time for the fibers to stay between each roller is within ti2o minutes, preferably 2 to 15 minutes. If it is longer than 20 minutes, the length of the stretching region will increase and the stretching rate between the rollers will also increase according to 7n, causing uneven stretching and increasing the tension difference between the next roller. , slipping occurs on the rollers at the border, increasing the frequency of fluff. When the time is less than 2 minutes, the number of times of contact with the roller increases, which also causes the generation of fuzz, and the number of CO-rollers becomes extremely large, so there is no advantage in terms of the equipment.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

ストランド強度、ストランド弾性率はJI8R7601
の方法に従い測定した。
Strand strength and strand elastic modulus are JI8R7601
Measured according to the method.

実施例1 アクリロニトリル98 wt4.アクリル酸メチ ′ル
1 wt%、メタクリル酸1 wt%の組成を有するア
クリル糸繊維(全デニール4560,3000フイラメ
ント、単繊維強度5.0t/d、伸度1五〇%)を22
0−240−260℃の3段階の温度プロファイル?有
する熱風循環型耐炎化炉において熱処理する際、耐炎化
第1ゾーン、第2ゾーン及び第3ゾーンの各々の境に駆
動ローラーを設け、その駆動ローラー間即ち各ゾーン間
に繊維が滞在する時間が20分ということから、バッチ
炉で本発明による手法により伸長率E、。
Example 1 Acrylonitrile 98 wt4. Acrylic yarn fibers (total denier 4560,3000 filaments, single fiber strength 5.0 t/d, elongation 150%) having a composition of 1 wt% methyl acrylate and 1 wt% methacrylic acid were
3-step temperature profile from 0-240-260℃? When performing heat treatment in a hot air circulation type flame retardant furnace with 20 minutes, the elongation rate E, by the method according to the invention in a batch furnace.

E2および請求めた、その結果、第1ゾーンの伸長率が
15.0±1.0%以下、第2ゾーン。
As a result, the elongation rate of the first zone was 15.0±1.0% or less, and the second zone was found to be E2.

第3ゾーンの伸長率が各々5.2士α6%、α0±1.
2%であった。以上の条件によす耐炎化処理を行った後
、次にその耐炎化II III ’e N2気流中60
0℃の第1炭素化炉中に3分間通過せしめるに際して5
%の伸長を加え、さらに同雰囲気中1200℃の第2炭
素化炉中において400m?/デニールの張力下に熱処
理を行った。得られた炭素繊維のストランド強度、スト
ランド弾性率を第1表に示した。
The elongation rate of the third zone is 5.2, α6%, α0±1.
It was 2%. After flame-retardant treatment under the above conditions, the flame-retardant II
5 when passed through the first carbonization furnace at 0°C for 3 minutes.
% elongation and further 400 m in the same atmosphere at 1200°C in the second carbonization furnace. Heat treatment was performed under a tension of /denier. Table 1 shows the strand strength and strand elastic modulus of the obtained carbon fibers.

実施例2 実施例1と同じ耐炎化炉における各駆動ローラー間にお
いて、その中央に位置するフリーローラーを駆動ローラ
ーに変え、各駆動ローラー間に繊維が滞在する時間を1
0分とした。同様の方法で伸長率F!、、K2・・・・
・E6 請求めた結果、K、から順に12.0±1.2
%、5.4士α6%、五4±0.9%、2.0±1.0
%、0.8±1.0係、−α8十0.8%であった。こ
の耐炎化伸長条件以外は全て実施例1と同様の条件によ
り炭素縁#を得た。その性能管筒1表に示した。
Example 2 In the same flameproofing furnace as in Example 1, the free roller located in the center was changed to a driving roller between each driving roller, and the time the fibers stayed between each driving roller was reduced to 1.
It was set to 0 minutes. Using the same method, the elongation rate F! ,,K2...
・E6 Request result: 12.0±1.2 in order from K.
%, 5.4 α6%, 54 ± 0.9%, 2.0 ± 1.0
%, 0.8±1.0 ratio, -α80.8%. A carbon edge # was obtained under the same conditions as in Example 1 except for this flame-resistant elongation condition. Its performance is shown in Table 1.

比較例1 実施例1において伸長率”! + ”2およびHz t
”1(LO%、2.0%および0%とし、その他の条件
は全て実施例1と同様で炭素繊維を得た。その性能を第
1表に示した。
Comparative Example 1 In Example 1, the elongation rate "! + "2 and Hz t
1 (LO%, 2.0% and 0%, and all other conditions were the same as in Example 1 to obtain carbon fibers. The performance is shown in Table 1.

比較例2 実施例1において、耐炎化工程中の駆動ローラーを全て
フリーローラーに変え、耐炎化炉の入口と出口のゴデツ
トローラーだけで20%の伸長を加えた。その性能を第
1表に示した。
Comparative Example 2 In Example 1, all drive rollers during the flameproofing process were changed to free rollers, and 20% elongation was applied only to the godet rollers at the entrance and exit of the flameproofing furnace. Its performance is shown in Table 1.

第 1 表 〔発明の効果〕 本発明方法全採用することにより1強度、弾性率が共に
大きく向上したものが得られる。
Table 1 [Effects of the Invention] By employing all the methods of the present invention, a product with significantly improved strength and elastic modulus can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

■ 第1図は、本発明を実施するに用いた耐炎化炉の一例で
ある。 第2図は、アクリル系繊維の9気中240℃での各荷重
下での伸縮全、横軸を時間、縦軸を収縮率で示したもの
である。デニール扛、ブレカーサ−のデニールを使用し
た。 第5図は、第2図での時間10分における伸縮y$全各
荷重に対してプロットしたものである。 第4図社、供給側ローラーR1での繊維について第3図
と同様のプロンIしたものである0R8 キ l 図 内向 (仝) “キ 2 回 脅3回 才4凹
(2) Figure 1 is an example of a flameproofing furnace used to carry out the present invention. FIG. 2 shows the total expansion and contraction of acrylic fibers under various loads at 240° C. in 9 atmospheres, with the horizontal axis representing time and the vertical axis representing contraction rate. I used denier and breaker denier. FIG. 5 is a plot of the expansion/contraction y$ for each total load at the time of 10 minutes in FIG. Figure 4 Co., Ltd., the same prong I as in Figure 3 for the fibers on the supply roller R1.

Claims (1)

【特許請求の範囲】 LEAN系重合体繊維を、複数個の駆動ローラーを有す
る耐炎化炉において、200〜400℃の酸化性雰囲気
中で多段伸長して耐炎化するに際し、その多段伸長の各
割合を予め実測によりめた荷重と伸長率よりまる変曲点
Pnヲ示す伸長innもしくはその値に対して±3%以
内に各々設定し耐炎化処理1行い、その後炭素化するこ
とを特徴とする炭素繊維の製造方法。 λ 多段伸長の各駆動ローラー間にI!維が滞在する時
間が、20分以内であることを特徴とする特許請求の範
囲第1項記載の炭素繊維の製造方法◎
[Claims] When LEAN polymer fiber is made flame resistant by being stretched in multiple stages in an oxidizing atmosphere at 200 to 400°C in a flame resistant furnace having a plurality of driving rollers, each ratio of the multiple stages of stretching is The carbon is characterized in that the elongation in which indicates the inflection point Pn or the elongation rate determined by actual measurements in advance or within ±3% of the value thereof is subjected to flameproofing treatment 1, and then carbonized. Fiber manufacturing method. λ I! between each drive roller of multistage extension! The method for producing carbon fibers according to claim 1, wherein the fiber stays for less than 20 minutes.
JP59099758A 1984-05-18 1984-05-18 Preparation of carbon yarn Granted JPS60246821A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59099758A JPS60246821A (en) 1984-05-18 1984-05-18 Preparation of carbon yarn
KR1019850002754A KR870000533B1 (en) 1984-05-18 1985-04-24 Carbon fiber's making method
US06/733,797 US4609540A (en) 1984-05-18 1985-05-14 Process for producing carbon fibers
EP85105947A EP0165465B1 (en) 1984-05-18 1985-05-14 Process for producing carbon fibers
DE8585105947T DE3584539D1 (en) 1984-05-18 1985-05-14 METHOD FOR THE PRODUCTION OF CARBON FIBERS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099758A JPS60246821A (en) 1984-05-18 1984-05-18 Preparation of carbon yarn

Publications (2)

Publication Number Publication Date
JPS60246821A true JPS60246821A (en) 1985-12-06
JPH0551686B2 JPH0551686B2 (en) 1993-08-03

Family

ID=14255880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099758A Granted JPS60246821A (en) 1984-05-18 1984-05-18 Preparation of carbon yarn

Country Status (1)

Country Link
JP (1) JPS60246821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250228A (en) * 1986-04-18 1987-10-31 Mitsubishi Rayon Co Ltd Carbon fiber of high strength and high elasticity
WO1990010101A1 (en) * 1989-02-23 1990-09-07 Mitsubishi Rayon Co., Ltd. Flameproofing apparatus
JP2010510406A (en) * 2006-11-22 2010-04-02 ヘクセル コーポレイション Carbon fibers with improved strength and modulus and related methods and apparatus for preparing them

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49526A (en) * 1972-03-10 1974-01-07
JPS4993615A (en) * 1972-10-31 1974-09-05
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49526A (en) * 1972-03-10 1974-01-07
JPS4993615A (en) * 1972-10-31 1974-09-05
JPS5742925A (en) * 1980-08-22 1982-03-10 Toho Rayon Co Ltd Production of high-performance carbon fiber strand
JPS58136834A (en) * 1982-02-03 1983-08-15 Mitsubishi Rayon Co Ltd Production of carbon fiber of high performance

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250228A (en) * 1986-04-18 1987-10-31 Mitsubishi Rayon Co Ltd Carbon fiber of high strength and high elasticity
WO1990010101A1 (en) * 1989-02-23 1990-09-07 Mitsubishi Rayon Co., Ltd. Flameproofing apparatus
US5142796A (en) * 1989-02-23 1992-09-01 Mitsubishi Rayon Co., Ltd. Flameresisting apparatus
JP2010510406A (en) * 2006-11-22 2010-04-02 ヘクセル コーポレイション Carbon fibers with improved strength and modulus and related methods and apparatus for preparing them
US8591859B2 (en) 2006-11-22 2013-11-26 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8734754B2 (en) 2006-11-22 2014-05-27 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8871172B2 (en) 2006-11-22 2014-10-28 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9121112B2 (en) 2006-11-22 2015-09-01 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9340905B2 (en) 2006-11-22 2016-05-17 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9677195B2 (en) 2006-11-22 2017-06-13 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9938643B2 (en) 2006-11-22 2018-04-10 Hexel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US10151051B2 (en) 2006-11-22 2018-12-11 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same

Also Published As

Publication number Publication date
JPH0551686B2 (en) 1993-08-03

Similar Documents

Publication Publication Date Title
US3539295A (en) Thermal stabilization and carbonization of acrylic fibrous materials
KR870000533B1 (en) Carbon fiber's making method
JPS60246821A (en) Preparation of carbon yarn
JPS58136838A (en) Production of high-performance carbon fiber
JPS58163729A (en) Multi-stage preoxidation of acrylic yarn bundle
JPS62257422A (en) Production of carbon fiber
US3330895A (en) Method of making acrylic bicomponent yarn or fabric with latent crimp development
DE102019105292A1 (en) Process for the ionizing irradiation of textile polyacrylonitrile fibers and their use as a carbon fiber precursor
JPS6088129A (en) Preparation of carbon yarn having high strength and high elasticity
JPS62215018A (en) Production of carbon fiber
EP0242401B1 (en) Process for producing carbon fibers
JPH04222229A (en) Production of graphite fiber
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation
JPS61119719A (en) Production of carbon fiber of high strength
JPS6088128A (en) Preparation of carbon yarn having high strength and high elasticity
JPH0424446B2 (en)
JPS6224525B2 (en)
JPH10280231A (en) Production of low shrinkage ultrafine polyester fiber
JPH06158435A (en) Production of flame-resistant fiber
JPS59150109A (en) Manufacture of high-tenacity polyester fiber
JPS62257424A (en) Production of carbon fiber having high strength and elastic modulus
JPS6233826A (en) Production of high-strength and high-modulus carbon fiber
JPS62133125A (en) Production of carbon fiber
JPS5828374B2 (en) Polyester material
JP2001192937A (en) Method of producing carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term