JPS6024635A - Parallel multiplying circuit - Google Patents

Parallel multiplying circuit

Info

Publication number
JPS6024635A
JPS6024635A JP13261383A JP13261383A JPS6024635A JP S6024635 A JPS6024635 A JP S6024635A JP 13261383 A JP13261383 A JP 13261383A JP 13261383 A JP13261383 A JP 13261383A JP S6024635 A JPS6024635 A JP S6024635A
Authority
JP
Japan
Prior art keywords
carry
circuit
ofa
output
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13261383A
Other languages
Japanese (ja)
Inventor
Tamotsu Hiwatari
樋渡 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13261383A priority Critical patent/JPS6024635A/en
Publication of JPS6024635A publication Critical patent/JPS6024635A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5306Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products
    • G06F7/5312Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products using carry save adders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To increase a shift speed without increasing the number of gates of a multiplying circuit by coupling a carry skip operating circuit with a carry of each row of a unit circuit arranged like a matrix in a parallel operating circuit. CONSTITUTION:An operating circuit of a carry skip system consisting of an output of an OR gate G1 of each OFA in OFA rows of four vertical rows, an output of a 5-input AND gate G2 which inputs a carry of the OFA of the uppermost row, and an OR gate G3 which inputs a carry output of the OFA of the lowest row is added to a unit parallel multiplying circuit. In this way, if a carry input of the OFA of the uppermost row is ''1'', and also the sum of K of the four OFAs and X.Y is all ''1'', the carry output of the OFA of the lowest row does not pass through the four OFAs but only passes through the gates G2, G3 of the operating circuit of the skip system, by which ''1'' is outputted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本兜明は、並列乗算回路に関するものである〇〔発明の
技術的背景とその問題点〕 二進数の演算装置として、全加算器(フルアダー)にア
ンド・ゲートを組み合せた単位回路を桁数×桁数たけ、
行列状に配置し、さらに、その最終段の下に桁数個の全
加算器を配置して乗算を行なう、並列乗算回路がある。
[Detailed description of the invention] [Technical field of the invention] This book relates to a parallel multiplication circuit. [Technical background of the invention and its problems] A full adder is used as a binary number arithmetic device. The unit circuit that combines AND gates is the number of digits x the number of digits,
There is a parallel multiplier circuit that is arranged in a matrix and further has full adders of several digits arranged below the final stage to perform multiplication.

第1図は、従来の並列乗算回路を示すものである。第1
図は8桁の2進数の並列乗算回路であり、8行8列に配
置された64個の単位回路””11 J (t I J
 =i + 2 +・・・、8)と8個の全加算器にA
i(i=l、2.・・・、8)で信成されている。8桁
の乗数、被栄数をx8.x7・・X、 、 Y8. Y
、・・・Ylとし、その乗算結果をPIQ+PC+・・
Plで表わしている。
FIG. 1 shows a conventional parallel multiplication circuit. 1st
The figure shows an 8-digit binary parallel multiplication circuit, which consists of 64 unit circuits arranged in 8 rows and 8 columns.
= i + 2 +..., 8) and A to the 8 full adders.
It is established by i (i=l, 2..., 8). 8-digit multiplier, multiply the number of trophies by x8. x7...X, , Y8. Y
,...Yl, and the multiplication result is PIQ+PC+...
It is expressed as Pl.

第2図は、ね)1図の単位回路および最終段の全加算器
の入出力信号関係を示すもので、Ci、jおよびCiは
各セルの桁上り一人出力で・ある。
FIG. 2 shows the input/output signal relationship of the unit circuit of FIG. 1 and the final stage full adder, where Ci, j and Ci are the carry single outputs of each cell.

これらのイへ号の間には、次のような論理式が成立つ。The following logical formula holds between these numbers.

この方式によれは桁上りをいわゆるリップルキャリ一方
式により行なうので、桁上は信号が最終段の全加算器に
到逐するまでに、その前のすべての単位回路を通ること
になり、極めて時間がかかる。また、この理由によって
、大きい桁数の乗算に長時間を喪する。
In this method, the carry is carried out by a so-called ripple carry method, so the carry takes an extremely long time as the signal passes through all the previous unit circuits before reaching the final stage full adder. It takes. Also, for this reason, multiplication with a large number of digits takes a long time.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情を考慮してなされたもので、乗算回
路のダート数をいたずらに増大させることなく1桁送り
速度の向上を図った並列乗算回路を提供づ−ることを目
的とする。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to provide a parallel multiplier circuit capable of improving the feed speed by one digit without unnecessarily increasing the number of darts in the multiplier circuit.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明においては、並列乗算
回路において行列状に配置、された単位°回路の各列の
桁上げに、キャリー・スキップ方式の演算回路を結合し
たことを特徴、とするものである。
In order to achieve the above object, the present invention is characterized in that a carry-skip type arithmetic circuit is coupled to the carry of each column of unit circuits arranged in a matrix in a parallel multiplier circuit. It is something.

〔発り」の効果〕[Effect of departure]

本発明によれは、従来の並列乗算回路に比べ、下記の効
果が得られる。単位回路の各列の桁上げに、キャリー・
スキップ方式の演算回路を結合することにより、入力が
ある条件を満たす場合には、桁上1tj信号は、単位回
路を通過することなく、比較的少ないゲート数で(11
成されるキャリーΦスキップ方式の患算回路を通過する
だけで、最終段の全加あ1、器に、41J辿する。桁上
り信号が、キャリースキップ方式の鼠算回路を通過する
時間は、多数のUド1位回路を通過するそれに比べて短
く、従って、桁上り一他匂伝播の高速化がFil能であ
り、その結果、大ぎい桁敬の乗↓−4時間の短縮化が可
能となる。
According to the present invention, the following effects can be obtained compared to conventional parallel multiplication circuits. A carry is added to each column of the unit circuit.
By combining skip-type arithmetic circuits, if the input satisfies a certain condition, the carry 1tj signal can be processed without passing through the unit circuit and with a relatively small number of gates (11
By simply passing through the carry Φ-skip type calculation circuit, 41J are traced to the final stage of the total summation circuit. The time it takes for a carry signal to pass through a carry-skip type mouse calculation circuit is shorter than the time it takes for a carry signal to pass through a large number of U-Do 1 circuits. As a result, it is possible to shorten the time by 4 hours.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により具体的に説す」する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

第3図は、あ1図に於いて破線で分割された16個の単
位回路から成る部分に、本発明の特徴とする、キャリー
・スキップ方式の15’1. %L回h:i’+を結合
した回路を示すものである。第゛3図に於ける回路OF
Aは、第4図にンJ<すように、第1必jに於ける従来
の単位回路に’A 1 、jにオア・ゲートG、を付加
したものである。第3図の4個の力と最上列のOFA 
の桁上げ入力とする5人カアンド・ゲートG2と、その
5人カアンド・ゲートG2の出力と最下列のUFAの’
tri上け゛出力を入力とするオア・ゲートG、から成
るキャリーΦスキップ方式の演算回路を付加したことが
、この回路の特徴である0 このよう−にキャリー・スキップ方式の演算す路を付加
することにより、得られ暮効果を具体的に説明する。第
3図の4個のOFAの縦列に於てあれは、最下列の(1
’Aの桁上は出力は、4個のUFAを通過することなく
、上述のキャリー・スキップ方式の演算回路のグー) 
G 2 、 G sを通過するだけで、“l”が出力び
れる。この鏑件の−下では、最下列のOFAの桁上は出
力は、キャリー・スキップ方式の演算回路を付加しない
場合に比して、高退化される。
FIG. 3 shows a section consisting of 16 unit circuits divided by broken lines in FIG. %L times h:i'+ is shown. Circuit OF in Figure 3
A is a conventional unit circuit in the first case with an OR gate G added to 'A 1 ,j, as shown in FIG. The four forces in Figure 3 and the OFA in the top row
The 5-man AND gate G2 is used as a carry input, and the output of the 5-man AND gate G2 and the UFA in the bottom row are
The feature of this circuit is the addition of a carry-skip calculation circuit consisting of an OR gate G that receives the output of the higher value of tri. The benefits obtained will be explained in detail. In the column of four OFA in Figure 3, that is (1
'The output of the digit of A is the result of the above-mentioned carry-skip type arithmetic circuit without passing through the four UFAs)
Just by passing through G2 and Gs, "l" is output. At the bottom of this case, the output of the OFA in the bottom row is highly degraded compared to the case where no carry-skip type arithmetic circuit is added.

第3図に4くず回路を第1図の破線で分飽された16個
の単位回路から成る4個の部分にそれぞれ適用すること
により、FAi、8(i=1,2.・・・。
By applying the four waste circuits shown in FIG. 3 to the four portions consisting of 16 unit circuits that are saturated by the broken lines in FIG. 1, FAi, 8 (i=1, 2, . . .

8)の桁上げ出力の同速化が図れ・従って乗算結果の上
位8桁Pi(i=9+IO,・・・、16)の出力の高
速化が¥現されるO なお、上記実施例は好しい一つの実施例として挙けだも
のにすきず5本発明はこれに限定されることなく他に辿
々の態椋で実施できるものである。
8) The same speed of carry output can be achieved. Therefore, the output of the upper 8 digits Pi (i=9+IO,...,16) of the multiplication result can be faster. Note that the above embodiment is preferable. Although the present invention is given as one example, the present invention is not limited thereto and can be implemented in various other ways.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の並列乗算回路σ)−例を力り1−図、
第2図(a) 、 (b)は、抛1図σ)単位回路とム
シ下段全力日、1−器の一面理と大田力を示す図、第3
11、キャリー・スキップ方式の演算回路を第1図の回
路に結合した本発明の一天施例σ)11号成を示1−図
、第4図は第3図のIL!回路01!’Aσ)(;・)
成を示す図である。 FA・・・単位回路、G1・・・オア・グー)、G2・
・・アンド拳ゲート% G3・・・オアeケート。 出願人代理人 弁理士 鈴 江 武 彦第1 図 罹 1 晴 R3FI2 吊 詔 ら 第2図
Figure 1 shows an example of a conventional parallel multiplier circuit σ).
Figures 2 (a) and (b) are diagrams showing the unit circuit and the lower half of the unit circuit, the one-sided principle of the vessel, and the force of Ota, and Figure 3.
11. A one-day embodiment of the present invention in which a carry-skip type arithmetic circuit is combined with the circuit shown in FIG. Circuit 01! 'Aσ) (;・)
FIG. FA...unit circuit, G1...or goo), G2...
...And Fist Gate% G3...Or e Kate. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Haru R3FI2 Hane et al. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 全加算器とアンドゲートな組合せた単位回路を行列状に
配置近しt二進数の乗算を行なう並列乗算回路において
、前記単位回路の各列の桁上げに、キャリー・ス六ツブ
方式の演算回路を結合したことを特徴とする並列乗算回
路。
In a parallel multiplication circuit that multiplies binary numbers by arranging unit circuits that are a combination of a full adder and an AND gate in a matrix, a carry-strip type arithmetic circuit is used to carry each column of the unit circuits. A parallel multiplication circuit characterized by combining the following.
JP13261383A 1983-07-20 1983-07-20 Parallel multiplying circuit Pending JPS6024635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13261383A JPS6024635A (en) 1983-07-20 1983-07-20 Parallel multiplying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13261383A JPS6024635A (en) 1983-07-20 1983-07-20 Parallel multiplying circuit

Publications (1)

Publication Number Publication Date
JPS6024635A true JPS6024635A (en) 1985-02-07

Family

ID=15085419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13261383A Pending JPS6024635A (en) 1983-07-20 1983-07-20 Parallel multiplying circuit

Country Status (1)

Country Link
JP (1) JPS6024635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114338A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Multiplier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731042A (en) * 1980-07-31 1982-02-19 Toshiba Corp Multiplaying and dividing circuits

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731042A (en) * 1980-07-31 1982-02-19 Toshiba Corp Multiplaying and dividing circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114338A (en) * 1984-11-09 1986-06-02 Hitachi Ltd Multiplier
JPH0584530B2 (en) * 1984-11-09 1993-12-02 Hitachi Ltd

Similar Documents

Publication Publication Date Title
US4168530A (en) Multiplication circuit using column compression
JP2671120B2 (en) Data processing cell and data processor
KR940002479B1 (en) High speed parallel multiplier
US5347482A (en) Multiplier tree using nine-to-three adders
US4575812A (en) X×Y Bit array multiplier/accumulator circuit
WO2010049218A1 (en) A high radix digital multiplier
JPH0456339B2 (en)
US4441158A (en) Arithmetic operation circuit
JPS6375932A (en) Digital multiplier
Dadda et al. A variant of a radix-10 combinational multiplier
JPS62280930A (en) Digital multiplier
US20040010536A1 (en) Apparatus for multiplication of data in two's complement and unsigned magnitude formats
US4571701A (en) Integrated circuit fast multiplier structure
JPS60179840A (en) Adder
JPS6024635A (en) Parallel multiplying circuit
JP3227538B2 (en) Binary integer multiplier
US6282557B1 (en) Low latency fused multiply-adder
JPS61156433A (en) Parallel multiplier
JPH0816903B2 (en) Multiply-accumulate operation circuit
JPH07141150A (en) Multiplier
JP2607735B2 (en) Multiplier partial product addition method
JPS6355627A (en) Semiconductor logic arithmetic unit
JPS61246837A (en) Parallel multiplier
JPH09505170A (en) Short run time multiplier
JPH0377539B2 (en)