JPS60245718A - Cooler for axisymmetrical object - Google Patents

Cooler for axisymmetrical object

Info

Publication number
JPS60245718A
JPS60245718A JP10061984A JP10061984A JPS60245718A JP S60245718 A JPS60245718 A JP S60245718A JP 10061984 A JP10061984 A JP 10061984A JP 10061984 A JP10061984 A JP 10061984A JP S60245718 A JPS60245718 A JP S60245718A
Authority
JP
Japan
Prior art keywords
pipe
cooling
hot water
injection
ring pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10061984A
Other languages
Japanese (ja)
Other versions
JPH036964B2 (en
Inventor
Teruo Fujibayashi
晃夫 藤林
Toyokazu Teramoto
寺本 豊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10061984A priority Critical patent/JPS60245718A/en
Publication of JPS60245718A publication Critical patent/JPS60245718A/en
Publication of JPH036964B2 publication Critical patent/JPH036964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Nozzles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To perform cooling uniform in circumferential and axial directions by constituting a cooler of a ring pipe having plural pieces of injection ports formed by incising diagonally and notching the pipe toward the down flow direction of the inside swirling flow and plural pieces of injection pipes connected thereto from the direction tangential therewith and provided with orifices in the mid- way. CONSTITUTION:The cooler 11 is constituted by connecting, for example, two hot water ejecting pipes 12, 12a connected to the ring pipe 15 made of a steel pipe in the tangential direction thereof to hot water pipes via the evaporating orifices 13, 13a. Plural pieces of the injection ports 16 are provided to the pipe 15 by incising diagonally and notching said pipe in the down flow direction of the inside swirling flow. For example, the incising angle alpha of the injection port 16 is set at 45 deg. and 8 pieces of the ports 6 are provided equidistantly (beta=45 deg.) on the inside circumferential surface of the pipe 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えばパイプビレットのような軸対称物の冷
却装置に関するものでらる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cooling device for an axially symmetrical object such as a pipe billet.

〔従来技術〕[Prior art]

周方向及び軸方向に均一な冷却が要求されるパイプビレ
ットの如き軸対称物のオンラインにおけ冷却には、現在
各種の方式が提案され、一部実施に供されているが、実
施化の面で種々問題がある。
Currently, various methods have been proposed for online cooling of axially symmetric objects such as pipe billets, which require uniform cooling in the circumferential and axial directions, and some have been put into practice. There are various problems with this.

以下その一例として、パイプビレット連続鋳造設備(以
下ビレットCCという)の二次冷却において、現在実施
されているスプレー冷却方式と、ばスト冷却方式につい
て説明する。
As an example, a spray cooling method and a burst cooling method currently used in secondary cooling of pipe billet continuous casting equipment (hereinafter referred to as billet CC) will be described below.

スプレー冷却方式においては、フラットスプレーノズル
及びフルコーンノズルが用いられておシ、これらは同心
円状に中心に向けて8個のノズルが配置されている(ノ
ズル噴出口を結んだ円の直径は約400m−)。
In the spray cooling method, flat spray nozzles and full cone nozzles are used, and these have eight nozzles arranged concentrically toward the center (the diameter of the circle connecting the nozzle nozzles is approximately 400m-).

フラットスプレーノズルのスプレーパターンは非常に幅
の狭い帯状であるため、冷却にあたっては、パイプビレ
ットが引き抜かれる方向(軸方向)に冷却の不均一が生
じ、その結果割れや疵が発生し易い。また、ノズルは目
詰りし易く、これが不拘1’il却の原因となっている
。−万、フルコーンノズルにおいては、原理的には冷却
の不均一性は生じないが、構造上目詰シが発生し易く、
そのため目詰シを生じたノズルの冷却性能が低下し、結
局不均一冷却が発生するという問題がある。
Since the spray pattern of a flat spray nozzle is in the form of a very narrow band, the pipe billet is not cooled uniformly in the direction in which it is pulled out (in the axial direction), and as a result, cracks and flaws are likely to occur. In addition, the nozzle is easily clogged, which is a cause of failure. - In principle, full cone nozzles do not cause uneven cooling, but due to their structure, clogging is likely to occur.
Therefore, there is a problem in that the cooling performance of the clogged nozzle deteriorates, resulting in uneven cooling.

一方、ミスト冷却方式は、冷却の均一化という点ではス
プレー冷却方式より優れているが、ビレツ)CCの二次
冷却帯では均一な冷却を行なうため特に多量の高圧空気
が必要である。このため、空気量の増大に伴なう大空気
圧縮機、エアホルダ等が必要であり、また当然に配管が
多くなるなど設備が大規模になるため設備費が高額にな
るばかりでなく、空気量が多いため運転費も高くなる等
、多くの欠点がある。
On the other hand, the mist cooling method is superior to the spray cooling method in terms of uniform cooling, but a particularly large amount of high-pressure air is required in the secondary cooling zone of the CC to achieve uniform cooling. For this reason, large air compressors, air holders, etc. are required as the amount of air increases, and of course the equipment becomes large-scale due to the number of piping, which not only increases equipment costs, but also increases the amount of air. There are many disadvantages, such as high operating costs due to the large number of

特に最近は、高炭素鋼の如く不均一な冷却によって割れ
や疵が発生し易い高級鋼材の製造が増加しているため、
新らしい均−冷却方式及び時代の要請に漬った省エネル
ギー、省設備型の軸対称物冷却技術の確立が切望されて
いる。
Particularly recently, there has been an increase in the production of high-grade steel materials, such as high-carbon steel, which are prone to cracking and flaws due to uneven cooling.
There is a strong desire to establish a new uniform cooling method and an energy-saving, equipment-saving cooling technology for axially symmetrical objects that meets the demands of the times.

〔発明の目的〕[Purpose of the invention]

本発明は、上記のような従来の問題点を解決すべくなさ
れたもので、周方向及び軸方向に均一な冷却を行なうこ
とができ、かつ省エネルギー、省設備の要求を満足する
ことのできる軸対称物用冷却装置を得ることを目的とし
たものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and provides a shaft that can perform uniform cooling in the circumferential direction and the axial direction, and that can satisfy the requirements for energy saving and equipment saving. The purpose is to obtain a cooling device for symmetrical objects.

〔発明の概要〕[Summary of the invention]

本発明の発明者は、先に100℃を超える高温高圧水を
ノズルに供給し、ノズル出口で自己圧力から大気圧力下
へ放出される減圧効果によって自己蒸発(フラッシング
)シ、体質膨張した水蒸気及びその際に発生する微細に
砕かれた水滴からなる高圧気液二相流を被冷却物に在俗
する、熱水による高温物体の冷却方法に関する発明を出
願し、特許された(特許第1151494号、特公昭5
7−27926号)。
The inventor of the present invention first supplies high-temperature, high-pressure water with a temperature exceeding 100°C to a nozzle, and at the exit of the nozzle, self-evaporation (flushing) occurs due to the depressurization effect released from the self-pressure to atmospheric pressure, resulting in water vapor that expands and An application was filed for an invention relating to a method for cooling a high-temperature object using hot water, in which a high-pressure gas-liquid two-phase flow consisting of finely broken water droplets generated at that time is applied to the object to be cooled, and the invention was patented (Patent No. 1151494) , Special public school 5th year
7-27926).

本発明は、このような冷却方法に実施して特に有効な冷
却装置に関するもので、内側から旋回流の下流方向に向
けて斜めに切込んで切除した複数個の噴射口を有するリ
ング管と、該リング管に接線方向より接続され途中にオ
リフィスが設けられた複数個の噴射管とからなる軸対称
物用冷却装置を提供するものである。
The present invention relates to a cooling device that is particularly effective when implemented in such a cooling method, and includes a ring pipe having a plurality of injection ports cut diagonally from the inside toward the downstream direction of the swirling flow; The present invention provides a cooling device for an axially symmetrical object, which comprises a plurality of injection pipes connected tangentially to the ring pipe and having orifices provided therebetween.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の詳細な説明するだめの概念図、第2図
は本発明実施例の平面図でらる。図において、1は肌熱
手段(図示せず)を有する熱水タンク、2は給水弁3を
介して熱水タンク1に給水する給水管、4は蒸気制御弁
5を介して熱水タンク1に高温水蒸気を吹込む加熱水蒸
気管、6は熱水タンク1からの熱水を制御弁7を介して
冷却装置11に供給する熱水管、8は圧力計、9は液面
計、10は温度肝である。
FIG. 1 is a conceptual diagram for explaining the present invention in detail, and FIG. 2 is a plan view of an embodiment of the present invention. In the figure, 1 is a hot water tank having skin heating means (not shown), 2 is a water supply pipe that supplies water to the hot water tank 1 via a water supply valve 3, and 4 is a water supply pipe that supplies water to the hot water tank 1 via a steam control valve 5. 6 is a hot water pipe that supplies hot water from the hot water tank 1 to the cooling device 11 via a control valve 7, 8 is a pressure gauge, 9 is a liquid level gauge, and 10 is a temperature gauge. It is the liver.

冷却装置11は、第2図に示すように、鋼管製のリング
管15の接線方向に接4続された2本の熱水噴出管12
.’12a を蒸発オリフィス(フラッシングオリフィ
ス)13.13aを介して熱水管乙に接続したものであ
る。
As shown in FIG. 2, the cooling device 11 includes two hot water jetting pipes 12 connected tangentially to a ring pipe 15 made of steel pipes.
.. '12a is connected to the hot water pipe B via an evaporation orifice (flushing orifice) 13.13a.

このように構成した冷却装置において、熱水タンク1か
ら送られた高温高圧の熱水(100〜160℃m a 
x 7に9G/ca )は、フラッシングオリフィス1
3゜131k において高温高圧の熱水単相から一部自
己蒸発し、蒸気と、蒸発する際の体績膨張によシ微細に
砕かれた微小水滴との高速二相流となってリング管15
に流れ込み、リング管15内で旋回流となる。この旋回
流は、リング管15の内側に設けた多数の噴射口16か
ら被冷却物20に噴射され、被冷却物20を冷却する7
、 次に、本発明に係る冷却液[11の実施例にりいて詳細
に説明する。先ず、フラッシングオリフィス(以下オリ
フィスという)13,13aは第3図に示すような構造
のもので、絞り部14は、通持つ流路形状となっている
。これは、高温高圧水が絞)部14を通過する際に、圧
力の低い領域を発生させて気泡核の生成、成長を助長し
、以降の気体に連続的に気泡を供給して液を破断させ、
安定したフラッシングを実現させるためである。
In the cooling device configured in this way, high-temperature, high-pressure hot water (100 to 160°C m a
x 7 to 9G/ca) is the flushing orifice 1
At 3°131k, a portion of the high-temperature, high-pressure single-phase hot water self-evaporates, forming a high-speed two-phase flow of steam and minute water droplets that are finely crushed by physical expansion during evaporation, and flows through the ring pipe 15.
The liquid flows into the ring pipe 15 and becomes a swirling flow. This swirling flow is injected to the object to be cooled 20 from a large number of injection ports 16 provided inside the ring pipe 15, and cools the object to be cooled 20.
Next, the cooling liquid according to the present invention will be described in detail with reference to Example 11. First, the flushing orifices (hereinafter referred to as orifices) 13, 13a have a structure as shown in FIG. 3, and the constricted portion 14 has a flow path shape. When high-temperature, high-pressure water passes through the constriction section 14, a low-pressure region is generated to promote the generation and growth of bubble nuclei, and the bubbles are continuously supplied to the subsequent gas to break the liquid. let me,
This is to achieve stable flushing.

次にリング管15の内側に設けた噴射口16について説
明する。オリフィス13,13aで生じた高速の気液二
相流は、リング管15へ接線方向から流入してリング管
15内で旋回流となるので、この旋回流を被冷却物20
に在俗できる形状にする必要がある。本実施例において
は、第4図に示すように、リング管15に垂直な面と、
旋回流の下流方向へこの垂直面に対して鋭角をもった面
とによシ、リング管15の被冷却物20に対する内側の
方向から切シ込んだときに生ずる切シ込みを噴射口16
としたもので、噴射口16の切込み角度αを45°とし
、リング管15の内周上に等間隔ψ−45°)で8個設
けられたものである。
Next, the injection port 16 provided inside the ring pipe 15 will be explained. The high-speed gas-liquid two-phase flow generated in the orifices 13, 13a flows tangentially into the ring pipe 15 and becomes a swirling flow within the ring pipe 15.
It is necessary to create a shape that can be used in everyday life. In this embodiment, as shown in FIG. 4, a plane perpendicular to the ring tube 15,
In the downstream direction of the swirling flow, a surface having an acute angle with respect to the perpendicular surface is used to cut the cut that occurs when the ring pipe 15 cuts into the object 20 to be cooled from the inside direction.
The cutting angle α of the injection ports 16 is 45°, and eight injection ports are provided on the inner circumference of the ring pipe 15 at equal intervals ψ−45°).

噴射口16の切込み角度αを45°としたのは、本冷却
装置11をビレツ)CCに実施する場合を想定したため
である。即ち、ビレットCCにおいてはビレット(被冷
却物)20の搬送は、第5図に示すように片側ロール固
定、他方のロール移動という構造になっているため、ビ
レット(被冷却物)20の径の変更があってもこれに対
応しうるようにしたもので、切込み角度αを45°とす
ることによシ、噴射口16から噴射した気液二相流が、
最大径から最/」・径のビレット(被冷却物)20につ
いて、すべて接線方向に在俗しうるように設定したもの
である。
The cutting angle α of the injection port 16 was set to 45° because it was assumed that the present cooling device 11 would be implemented on a billet (CC). That is, in the billet CC, the billet (object to be cooled) 20 is transported in a structure in which one roll is fixed and the other roll is moved, as shown in FIG. Even if there is a change, it can be accommodated, and by setting the cutting angle α to 45°, the gas-liquid two-phase flow injected from the injection port 16
The billets (objects to be cooled) 20 having diameters from the maximum diameter to the maximum diameter are all set so that they can be oriented in the tangential direction.

第6図は本発明に係る冷却装置11によって得られた水
量密度分布の実測図で、実験条件は次の通シである。
FIG. 6 is an actual measurement diagram of the water amount density distribution obtained by the cooling device 11 according to the present invention, and the experimental conditions were as follows.

(1)熱水条件 熱水圧力(熱水タンク内)4.2kgG/cd熱水温度
(熱水タンク内) 151℃ (2)冷却装置 リング管内径 21.5mm オリフィス 内径 2.5mm 厚さ 5.Qmm 噴射口の数 8個 噴射口の切込み角度 45゜ 流量 3.54/m−n o z z l e(3)測
定位置 外径200mm円柱表面上(噴射口との距離 
100 mm) 図から明らかなように、周方向に気液二相流の在俗が均
等に行なわれていることが確認された。
(1) Hot water conditions Hot water pressure (in the hot water tank) 4.2 kgG/cd Hot water temperature (in the hot water tank) 151°C (2) Cooling device ring pipe inner diameter 21.5 mm Orifice inner diameter 2.5 mm Thickness 5 .. Qmm Number of injection ports 8 Cutting angle of injection ports 45° Flow rate 3.54/m-no z z l e (3) Measurement position On the surface of a cylinder with an outer diameter of 200 mm (distance to the injection port)
100 mm) As is clear from the figure, it was confirmed that the gas-liquid two-phase flow was evenly distributed in the circumferential direction.

第7図は、本冷却装置11の1つの噴射口16から、上
記と同じ条件下で平面上に垂直に気液二相流を噴射した
場合の水量密度分布図である。なお、噴射口16と平面
間の距離は100mmである。
FIG. 7 is a water volume density distribution diagram when a gas-liquid two-phase flow is injected vertically onto a plane from one injection port 16 of the cooling device 11 under the same conditions as above. Note that the distance between the injection port 16 and the plane is 100 mm.

図から明らかなように、スプレーバターフtlim円状
になっておシ、シたがって、本噴出口16を円周上に設
けた場合、被冷却物の円周方向だけでなく軸方向(前後
方向)にもある幅をもった在俗が可能である。
As is clear from the figure, the spray butterfly has a circular shape. Therefore, when the main jet nozzle 16 is provided on the circumference, it can be used not only in the circumferential direction of the object to be cooled but also in the axial direction (back and forth). It is also possible to have a certain range of secularism in the direction (direction).

次にノズルの目詰りについて、従来のノズルと本発明に
係る冷却装置とを比較してみる。
Next, regarding nozzle clogging, a comparison will be made between a conventional nozzle and the cooling device according to the present invention.

表 1 表1は、フラットスプレーノズル、フルツー/ノズル及
び本発明装置の噴射口の寸法等を比較したものである。
Table 1 Table 1 compares the dimensions of the injection port of the flat spray nozzle, the full two/nozzle, and the device of the present invention.

本発明装置では、1つのリング管15に設けるオリフィ
ス1ろ、16aは2か所でよいため、オリフィス13.
1!lの絞り部14の径を大きくすることができ、した
がって目詰りを起し難いことがわかる。
In the device of the present invention, only two orifices 1 and 16a are provided in one ring pipe 15, so the orifice 13.
1! It can be seen that the diameter of the constricted portion 14 of L can be increased, and therefore clogging is less likely to occur.

第8図は本発明に係る冷却装置と、従来のミストノズル
との冷却能を比較した線図で、このデータは、本発明装
置の1つの噴射口16から垂直な面へ熱水を噴射させた
場合の性能と、従来のミストノズルを下記条件のもとで
行なった実験結果とを比較したものである。
Figure 8 is a diagram comparing the cooling performance of the cooling device according to the present invention and a conventional mist nozzle. This figure compares the performance when using a conventional mist nozzle with the results of an experiment conducted under the following conditions.

本発明の熱水冷却 ミスト冷却 流 量 8t/−水 81/− 空気 16ONt/1ml+ 圧 力 4.2に9 G /lri 水 3kgG/d
(温度151℃) 空気 4ゆG/m 気水比儂積比)約200. 20 噴射の角度が大きくなったところでは、ごスト冷却の場
合は衝突力が低下し、特に伝熱面温度が高温の場合は、
冷却能が極端に落ちてしまうが、熱水冷却の場合は瞬時
に自己蒸発し、体積膨張による蒸気−液滴の体積比が約
200と大きいため、蒸気が速やかVC液滴を運び、衝
突力が広い面積に亘って強いま一維持きれる。このため
、高温伝熱面でも高い冷却能が得られる。したがって単
一の噴射口16でも広い範囲の冷却をカバーでき、冷却
の均一性において他のノズルよシ優れていることがわか
る。
Hot water cooling of the present invention Mist cooling flow rate 8t/-Water 81/- Air 16ONt/1ml+ Pressure 4.2 to 9G/lri Water 3kgG/d
(Temperature: 151°C) Air: 4g/m Air/water specific volume ratio) Approximately 200. 20 When the injection angle becomes large, the collision force decreases in the case of direct cooling, and especially when the heat transfer surface temperature is high,
However, in the case of hot water cooling, self-evaporation occurs instantaneously, and the vapor-droplet volume ratio due to volume expansion is as large as approximately 200, so the steam quickly transports the VC droplets and increases the collision force. can be maintained strongly over a wide area. Therefore, high cooling performance can be obtained even on high-temperature heat transfer surfaces. Therefore, it can be seen that even a single injection port 16 can cover a wide range of cooling, and is superior to other nozzles in terms of uniformity of cooling.

本発明の冷却装置をビレットCCに適用した場合を考え
ると、ビレットCCでは第5図に示すようにビレット(
被冷却物)20の径の変更が行なわれるため、周方向に
おける噴射口16とビレット20の表面との距離が著し
く相違するという問題が生じる。熱水冷却においては、
気水比の高い高速気液二相流による冷却のため、水量密
度が多少変化しても衝突力は大きいため、冷却能の変化
は少ない。例えば、第8図において、噴射角104゜上
の点における水量密度は、噴射口16の直下の水量密度
の約1/2でおるにもか\わらず、冷却能にはほとんど
差が生じない。すなわち、ビレット20の径の変更によ
シ、ビレット20と噴射口16との間の距離が変化し、
水量密度が周方向において均一性を失なつ゛だ場合にお
いても、熱水を用φた本発明の冷却装置は、均一冷却に
対して有効である。
Considering the case where the cooling device of the present invention is applied to a billet CC, as shown in FIG.
Since the diameter of the object to be cooled (20) is changed, a problem arises in that the distance between the injection port 16 and the surface of the billet 20 in the circumferential direction is significantly different. In hot water cooling,
Cooling is performed by high-speed gas-liquid two-phase flow with a high air-water ratio, so even if the water density changes slightly, the collision force is large, so there is little change in cooling capacity. For example, in Fig. 8, the water density at a point above the injection angle of 104° is about 1/2 of the water density directly below the injection port 16, but there is almost no difference in cooling capacity. . That is, by changing the diameter of the billet 20, the distance between the billet 20 and the injection port 16 changes,
Even if the water density loses uniformity in the circumferential direction, the cooling device of the present invention using hot water is effective for uniform cooling.

第9図は目詰シ防止と流量調節を可能した構造のオリフ
ィス16の他の実施例の縦断面図である。
FIG. 9 is a longitudinal sectional view of another embodiment of the orifice 16 having a structure that prevents clogging and allows flow rate adjustment.

この実施例は、オリフィス13(絞り部14の内径8m
m)に流量調節弁17(直径10mm、先端角60°)
を軸方向に移動可能に取付け、シール材18で軸封した
ものである。このようなオリフィス16によれば、安定
したフラッシングを維持できると共に、流量を6〜20
t/−の広範囲に調節することが可能であシ、さらに自
給りした際の対応が容易で、目詰シした異物を容易かつ
迅速に除去することができる。
In this embodiment, the orifice 13 (inner diameter of the constriction part 14 is 8 m)
m) flow control valve 17 (diameter 10 mm, tip angle 60°)
is mounted so as to be movable in the axial direction, and the shaft is sealed with a sealing material 18. According to such an orifice 16, stable flushing can be maintained and the flow rate can be increased from 6 to 20.
It is possible to adjust t/- over a wide range, and it is also easy to handle when self-supplied, and clogging foreign matter can be easily and quickly removed.

第10図は、本発明に係る冷却装置を、さらに大きな軸
対称物の均一冷却に適用する場合の実施例を示す平面図
である。(11図の実施例は熱水噴射管12をリング管
14の接線方向に6か所取付けてそれぞれオリフィス1
3を設けると共に、噴射口16を30°間隔で12個設
けたもので必る。また、(bJ図の実施例はオリフィス
16を有する熱水噴射管12を4か所に取付けると共に
、噴射口16を22.5°間隔で16個設けたものであ
る。表2は、被冷却物の大きさに応じて、それぞれ同程
度の冷却能を得るだめには、オリフィス13及び噴射口
16をそれぞれ何個設ければよいかを表わしたものであ
る。
FIG. 10 is a plan view showing an embodiment in which the cooling device according to the present invention is applied to uniformly cooling a larger axially symmetrical object. (In the embodiment shown in Fig. 11, the hot water injection pipes 12 are installed at six locations in the tangential direction of the ring pipe 14, and each orifice 1 is
3 and 12 injection ports 16 are provided at 30° intervals. In addition, in the embodiment shown in Figure bJ, hot water injection pipes 12 having orifices 16 are installed at four locations, and 16 injection ports 16 are provided at intervals of 22.5 degrees. This represents how many orifices 13 and injection ports 16 should be provided in order to obtain the same level of cooling performance depending on the size of the object.

表 2 上記の説明では、リング管15の噴射口16の切込み角
度を450とした場合について説明したが、被冷却物2
0の径に応じて第10図(&)に示すように切込み角度
侑を0〜90°の間に設定してもよく、また(b)図に
示すように、旋回流の上流側にもめる角度傾けて斜めに
切除(−1切込み角α2全体を90゜〜150°の範囲
に設定してもよい。
Table 2 In the above explanation, the case where the cutting angle of the injection port 16 of the ring pipe 15 was set to 450 was explained.
Depending on the diameter of 0, the cutting angle may be set between 0 and 90° as shown in Figure 10 (&), or it can be set on the upstream side of the swirling flow as shown in Figure (b). Diagonal cutting at an angle (-1) The entire cutting angle α2 may be set in the range of 90° to 150°.

以上本発明の実施例について説明したが、本発明の噴射
管及び噴射口の数並びに噴射口の形状は上記実施例に限
定するものではなく、被冷却□物の大きさ、形状、必要
冷却能、均−性等によって適宜選択しうろことは云うま
でもない。
Although the embodiments of the present invention have been described above, the number of injection pipes and injection ports and the shape of the injection ports of the present invention are not limited to the above embodiments. Needless to say, it should be selected appropriately depending on the uniformity and the like.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば軸対称
物を周方向及び軸方向に均一冷却することができ、しか
も省エネルギ、省設備の要求を満足させることができる
ので、実施による効果大でろる。
As is clear from the above description, according to the present invention, an axially symmetrical object can be uniformly cooled in the circumferential and axial directions, and the requirements for energy saving and equipment saving can be satisfied. It's big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するだめの概念図、第2図
は本発明実施例の平面図、第6図はオリフイスの実施例
の断面図、第4図は噴射口の実施例の側面図、第5図は
本発明によるビレットの冷却状態を示す説明図、第6図
は本発明装置による水量密度分布の実測図、第7図は本
発明の1つの噴射口から平面に垂直に気液二相流を噴射
した場合の密度分布図、第8図は本発明装置と従来のミ
ストノズルとの冷却能を比較した線図、第9図はオリフ
ィスの他の実施例の断面図、第10図(a)。 (b)は一部を省略して示した本発明の他の実施例の平
面図、第11図(a)、 (b)は噴射口の他の実施例
を示す説明図でろる。 11・・・冷却装置、12.12a・・・熱水噴射管、
13.13&・・・オリフィス、14・・・絞夛、15
・・・リング管、16・・・噴射口、20・・・被冷却
物。 代理人 弁理士 木 村 三 朗
Fig. 1 is a conceptual diagram for explaining the present invention in detail, Fig. 2 is a plan view of an embodiment of the invention, Fig. 6 is a cross-sectional view of an embodiment of the orifice, and Fig. 4 is an embodiment of the injection port. 5 is an explanatory diagram showing the billet cooling state according to the present invention, FIG. 6 is an actual measurement diagram of the water amount density distribution by the apparatus of the present invention, and FIG. A density distribution diagram when a gas-liquid two-phase flow is injected, FIG. 8 is a diagram comparing the cooling ability of the device of the present invention and a conventional mist nozzle, and FIG. 9 is a sectional view of another embodiment of the orifice. Figure 10(a). 11(b) is a plan view of another embodiment of the present invention with some parts omitted, and FIGS. 11(a) and 11(b) are explanatory views showing other embodiments of the injection port. 11... Cooling device, 12.12a... Hot water injection pipe,
13.13&... orifice, 14... strangulation, 15
...Ring pipe, 16...Injection port, 20...Object to be cooled. Agent Patent Attorney Sanro Kimura

Claims (1)

【特許請求の範囲】[Claims] 内側旋回流の下流方向に向けて斜めに切込んで切除した
複数個の噴射口を有するリング管と、該リング管に接線
方向よシ接続され途中にオリフィスが設けられた複数個
の噴射管とからなる軸対称物用冷却装置。
A ring pipe having a plurality of injection ports cut out diagonally toward the downstream direction of the inner swirl flow, and a plurality of injection pipes connected tangentially to the ring pipe and having an orifice in the middle. A cooling device for axially symmetrical objects consisting of:
JP10061984A 1984-05-21 1984-05-21 Cooler for axisymmetrical object Granted JPS60245718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10061984A JPS60245718A (en) 1984-05-21 1984-05-21 Cooler for axisymmetrical object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10061984A JPS60245718A (en) 1984-05-21 1984-05-21 Cooler for axisymmetrical object

Publications (2)

Publication Number Publication Date
JPS60245718A true JPS60245718A (en) 1985-12-05
JPH036964B2 JPH036964B2 (en) 1991-01-31

Family

ID=14278853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10061984A Granted JPS60245718A (en) 1984-05-21 1984-05-21 Cooler for axisymmetrical object

Country Status (1)

Country Link
JP (1) JPS60245718A (en)

Also Published As

Publication number Publication date
JPH036964B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
US4591099A (en) Nozzle to provide fan-shaped spray pattern
US6036116A (en) Fluid atomizing fan spray nozzle
AU729427B2 (en) Gas-assisted atomizing device
EP1444047B1 (en) Full cone liquid spray nozzle
RU2213627C2 (en) Slotted nozzle for sprinkling article produced by continuous casting with cooling liquid
EP0057720A1 (en) Variable gas atomization.
KR20010014795A (en) Method and apparatus for agglomerating fine snow particles
JP2013063369A (en) Spray nozzle, spray nozzle device and spray method
US4474331A (en) Recessed center vane for full cone nozzle
JP2511877B2 (en) Low pressure fog jet device
JPH09220495A (en) Fluid injection nozzle
CA1157655A (en) Multiple orifice bushing
US3981347A (en) Method and apparatus for strand cooling with a flat spray pattern
US3880354A (en) Method and apparatus for controlling heat effect in metal cutting operations
JPS60245718A (en) Cooler for axisymmetrical object
JPS625657B2 (en)
JP2005111575A (en) Co2 snow jetting device and co2 snow jetting method
JPS6345903B2 (en)
JPH0353984B2 (en)
JPS627400Y2 (en)
SU1096445A1 (en) Spray attemperator of steam turbine exhaust
RU2066404C1 (en) Spraying apparatus and method of its operation
JPS5937203A (en) Nozzle for hot water turbine
JPH0353061B2 (en)
JP2005230684A (en) Cooling apparatus and cooling method of steel material