JPS60245701A - Production of sintered metallic body - Google Patents

Production of sintered metallic body

Info

Publication number
JPS60245701A
JPS60245701A JP10193284A JP10193284A JPS60245701A JP S60245701 A JPS60245701 A JP S60245701A JP 10193284 A JP10193284 A JP 10193284A JP 10193284 A JP10193284 A JP 10193284A JP S60245701 A JPS60245701 A JP S60245701A
Authority
JP
Japan
Prior art keywords
sintered body
powder
self
synthetic resin
resin binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10193284A
Other languages
Japanese (ja)
Other versions
JPH0153326B2 (en
Inventor
Osamu Furubayashi
古林 修
Yoshihisa Yamamura
山村 佳久
Shigeo Miyamoto
茂雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10193284A priority Critical patent/JPS60245701A/en
Publication of JPS60245701A publication Critical patent/JPS60245701A/en
Publication of JPH0153326B2 publication Critical patent/JPH0153326B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered metallic body which has no defects such as corrosion and cracks and has excellent sintering strength, shape maintainability, etc. by decomposing thermally and removing a synthetic resin binder from the molding of a kneaded plastic mixture composed of self-fluxing alloy powder, high melting metallic powder and said binder. CONSTITUTION:The kneaded matter composed of, for example, the Ni self- fluxing alloy powder, pulverized Mo powder and synthetic resin binder is subjected to a heating treatment and is molded to a sheet-shaped plastic material P. The plastic material P is adhered to the base surface 2 of a cast iron die body I0 and thereafter the plastic material P is pressed by a pattern M to form a work forming part Ia. The body I0 is then installed in a vacuum sintering furnace 5 and is subjected to decomposition of the synthetic resin binder and sintering of the metallic powder under heating-cooling conditions consisting of the regions (A-C)D1-D3 shown in the figure. The sintered body S to be obtd. as a result thereof has good weldability with the body I0, has uniform porosity, obviates generation of cracks, corrosion, etc. and has good dimensional accuracy.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は金属焼結体の製造方法に関する。[Detailed description of the invention] A0 Purpose of invention (1) Industrial application fields The present invention relates to a method for manufacturing a metal sintered body.

(2) 従来の技術。(2) Conventional technology.

金属焼結体を製造する場合、自溶性合金粉と合成樹脂バ
インダとを混練した可塑性物より成形体を得、次いでそ
の成形体中の合成樹脂バインダを熱分解すると共に前記
自溶性合金粉を焼結することが行われる。
When producing a metal sintered body, a molded body is obtained from a plastic material obtained by kneading a self-fusing alloy powder and a synthetic resin binder, and then the synthetic resin binder in the molded body is thermally decomposed and the self-fusing alloy powder is sintered. tying is done.

(3) 発明が解決しようとする問題点上記製造方法に
おいては、可塑性物より成形体を成形するので、所定の
形状を持つ成形体を容易に得ることができる反面、焼結
前に殆どの合成樹脂バインダを熱分解により除去してお
かないとその分解ガスが焼結体を腐食する等焼結体の品
質に悪影響を及ぼす。また粉末体をいきなり焼結温度に
昇温すると気孔率のばらつきが多くなり均一な気孔率を
有する焼結体を得ることできなくなる。
(3) Problems to be solved by the invention In the above manufacturing method, since a molded body is formed from a plastic material, a molded body with a predetermined shape can be easily obtained. If the resin binder is not removed by thermal decomposition, the decomposed gas will corrode the sintered body and adversely affect the quality of the sintered body. Furthermore, if the temperature of the powder body is suddenly raised to the sintering temperature, the porosity will vary greatly, making it impossible to obtain a sintered body having a uniform porosity.

さらに焼結強度を向上させるためには、自熔性合金の同
相線直下から液相線を越える温度で粉末体を焼結するこ
とが必要であるが、このような高温下においては自溶性
合金が流動して焼結体の形状維持性および寸法精度が低
下する。さらにまた焼結後焼結体の冷却条件によっては
それにクラック等の欠陥が発生することになる。
In order to further improve the sintering strength, it is necessary to sinter the powder at a temperature from just below the in-phase line of the self-fusing alloy to above the liquidus line. flows, reducing the shape retention and dimensional accuracy of the sintered body. Furthermore, defects such as cracks may occur in the sintered body depending on the cooling conditions of the sintered body after sintering.

本発明は上記に鑑み、腐食、クラック等の欠陥がなく、
また焼結強度が高く、さらに形状維持性および寸法精度
が良好で均一な気孔率を有する焼結体を得ることのでき
る前記製造方法を提供することを目的とする。
In view of the above, the present invention is free from defects such as corrosion and cracks, and
Another object of the present invention is to provide the above-mentioned manufacturing method, which makes it possible to obtain a sintered body having high sintering strength, good shape retention and dimensional accuracy, and uniform porosity.

B0発明の構成 (1)問題点を解決するための手段 本発明は、自溶性合金粉と高融点金属粉と合成樹脂バイ
ンダとを混練した可塑性物より成形体を得る工程と、前
記成形体を600〜650°Cに保持することにより前
記合成樹脂バインダを熱分解して前記自溶性合金粉と高
融点金属粉よりなる粉末体を残置する工程と、前記粉末
体を900〜1000℃に保持して仮焼結体を得る工程
と、前記仮焼結体を1000〜1200°Cに保持して
焼結体を得る工程と、1000〜1200°Cから略8
00℃まで最高2°C/分の冷却速度で前記焼結体を1
次冷却する工程と、略800℃から略400°Cまで最
高3°C/分の冷却速度で前記焼結体を2次冷却する工
程と、略400°Cから常温まで前記焼結体を3次冷却
する工程とを用いることを特徴とする。
B0 Structure of the Invention (1) Means for Solving Problems The present invention comprises a step of obtaining a molded body from a plastic material obtained by kneading a self-fusing alloy powder, a high melting point metal powder, and a synthetic resin binder; a step of thermally decomposing the synthetic resin binder by holding the synthetic resin binder at 600 to 650°C to leave a powder consisting of the self-fusing alloy powder and high melting point metal powder; and holding the powder at 900 to 1000°C. a step of obtaining a pre-sintered compact by holding the pre-sintered compact at 1000-1200°C to obtain a sintered compact;
The sintered body is cooled at a maximum cooling rate of 2°C/min to 00°C.
a second cooling step of the sintered body from about 800°C to about 400°C at a maximum cooling rate of 3°C/min; and a step of cooling the sintered body from about 400°C to room temperature for 3 seconds. The method is characterized by using a second step of cooling.

(2)作 用 焼結前に、成形体を前記温度に保持することにより殆ど
の合成樹脂バインダを熱分解により除去することができ
る。また粉末体を前記温度ムこ保持して仮焼結すること
により気孔率のばらつきを防止して均一な気孔率を有し
、クランク等の欠陥のない焼結体を得ることができる。
(2) Function Most of the synthetic resin binder can be removed by thermal decomposition by maintaining the molded body at the above temperature before sintering. Further, by temporarily sintering the powder body while maintaining the above-mentioned temperature, it is possible to prevent variations in porosity and obtain a sintered body having a uniform porosity and free of defects such as cranks.

さらに自溶性合金粉に高融点金属粉を混合することによ
り、自溶性合金の同相線直下から液相線を超える温度で
粉末体を焼結しても焼結体の形状維持性および寸法精度
を良好にすることができ、また焼結強度の高い焼結体を
得ることができる。さらにまた前記冷却条件にてクラッ
ク等の欠陥の発生を防止することができる。
Furthermore, by mixing high melting point metal powder with self-fusing alloy powder, the shape retention and dimensional accuracy of the sintered body can be maintained even when the powder is sintered at temperatures from just below the in-phase line to above the liquidus line of the self-fusing alloy. Moreover, a sintered body with high sintering strength can be obtained. Furthermore, the occurrence of defects such as cracks can be prevented under the above cooling conditions.

(3)実施例 第1図は、プレス用金型1を示し、その金型1は金型本
体1oと、それと一体化されたワーク成形部1aとより
なり、そのワーク成形部1aは以下に述べる手法により
得られる金属焼結体Sより構成される。
(3) Example FIG. 1 shows a press mold 1, which consists of a mold body 1o and a workpiece molding section 1a integrated with the mold body 1o.The workpiece molding section 1a is as follows. It is composed of a metal sintered body S obtained by the method described below.

i、可塑性物の製造 自溶性合金粉としてのNi自熔性合金粉 80部と、高
融点金属粉としてのMo粉砕粉 20部とをV−ブレン
ダにより十分に混合して混合粉を得る。
i. Production of plastic material 80 parts of Ni self-melting alloy powder as self-melting alloy powder and 20 parts of Mo pulverized powder as high melting point metal powder are sufficiently mixed in a V-blender to obtain a mixed powder.

四フッ化エチレン樹脂エマルジョンとアクリル樹脂エマ
ルジョンを1:14こ混合して合成樹脂バインダを得る
A synthetic resin binder is obtained by mixing a tetrafluoroethylene resin emulsion and an acrylic resin emulsion in a ratio of 1:14.

上記混合粉 100部に対し合成樹脂バインダ3部を添
加して卓とニーダにより十分に混練し、この混練物を1
00〜150℃に加熱して合成樹脂バインダ中の水分を
蒸発させる。得られた混練物の性状は、合成樹脂バイン
ダにより粘結されて無数の団塊状を呈する。
Add 3 parts of synthetic resin binder to 100 parts of the above mixed powder and thoroughly knead with a table and kneader.
The water in the synthetic resin binder is evaporated by heating to 00 to 150°C. The obtained kneaded product has a shape of numerous nodules due to being caked by the synthetic resin binder.

上記混練物を80〜100℃に加熱してロール機に複数
回通しシート状可塑性物を得る。この場合ロール機のロ
ールを混練物と同程度に加熱するとシート成形作業が容
易に行われる。得られたシート状可塑性物は常温におい
て適度な可撓性と引裂き強度を有する。
The kneaded product is heated to 80 to 100°C and passed through a roll machine multiple times to obtain a sheet-like plastic material. In this case, if the rolls of the roll machine are heated to the same degree as the kneaded material, the sheet forming operation can be easily performed. The obtained sheet-like plastic material has appropriate flexibility and tear strength at room temperature.

ii 、金型の製造 第2図(a)に示すように、金型本体1oは鋳鉄(JI
S Fe12材)より鋳造されたもので、そのワーク成
形部1aを形成するベース面2は完成された金型1にお
けるワーク成形部1a外面(鎖線水)よりも5〜30鮪
低くなるように成形されている。金型本体1oは鋳放し
のまま使用されるもので、その黒皮を持つベース面2に
ば清掃後アクリル樹脂接着剤を塗布する。
ii. Manufacture of the mold As shown in Fig. 2(a), the mold body 1o is made of cast iron (JI
The base surface 2 forming the workpiece molding part 1a is casted from S Fe12 material) and is molded so that the base surface 2 forming the workpiece molding part 1a is 5 to 30 mm lower than the outer surface of the workpiece molding part 1a (dashed line water) in the completed mold 1. has been done. The mold body 1o is used as-cast, and an acrylic resin adhesive is applied to the base surface 2 having a black crust after cleaning.

第2図(b)に示すように、ベース面2にシート状可塑
性物Pを貼着する。この場合所定厚さを得るためにはシ
ート状可塑性物Pを積層する。また金型本体10を80
〜100℃に加熱しておくと、前記シート状可塑性物P
の貼着作業が容易に行われる。
As shown in FIG. 2(b), a sheet-like plastic material P is attached to the base surface 2. In this case, in order to obtain a predetermined thickness, sheet-like plastic materials P are laminated. Also, the mold body 10 is 80
When heated to ~100°C, the sheet-like plastic material P
The pasting work can be done easily.

第2図(C)に示すように、可塑性物Pを模型Mにより
押圧してワーク成形部1aを成形する。
As shown in FIG. 2(C), the plastic material P is pressed by the model M to form the workpiece forming portion 1a.

第2図(d)に示すように、金型本体10に囲い3を取
付けて可塑性物Pの周りを囲み、可塑性物Pの表面をセ
ラミ・ツク粉で覆い、その上に直径0.75mの鋼球4
を載せてバックアップを行う。
As shown in FIG. 2(d), an enclosure 3 is attached to the mold body 10 to surround the plastic material P, the surface of the plastic material P is covered with ceramic powder, and a 0.75 m diameter steel ball 4
and perform a backup.

このハックアップは鋼球4の重さにより後述するNi自
溶性合金−Mo粉末の焼結時焼結体Sの寸法変化、即ち
膨張を抑制するものである。
This hack-up suppresses the dimensional change, that is, expansion, of the sintered body S during sintering of Ni self-fusing alloy-Mo powder, which will be described later, due to the weight of the steel ball 4.

次いで、上記金型本体10を真空焼結炉5に設置して第
3閏に示す加熱−冷却条件で合成樹脂バインダの分解と
金属粉末の焼結を行う。キャリヤガスは窒素ガスまたは
還元性の強い水素ガスが用、いられる。
Next, the mold body 10 is placed in a vacuum sintering furnace 5, and the synthetic resin binder is decomposed and the metal powder is sintered under the heating-cooling conditions shown in the third step. As the carrier gas, nitrogen gas or highly reducing hydrogen gas is used.

(A)第1加熱ゾーン(第3図A) この加熱ゾーンAは常温から650℃までであり、昇温
速度は10〜b 熱ゾーンAでは先ず水分が蒸発し、次いで合成樹゛脂バ
インダ中の四フッ化エチレン樹脂およびアクリル樹脂が
分解してガス化する。これら合成樹脂は300〜400
°Cでガス化するが、熱伝導を考慮して600〜650
℃に90分間均熱保持して殆どの合成樹脂を除去し、N
i自溶性合金−Mo粉末体を残置する。この合成樹脂の
ガス化を真空焼結炉5内の真空度の変化により説明する
と、常温ではI Torrであるが、650°Cで90
分間均熱保持したときは最高2 Torrに真空度が低
下する。これは主として合成樹脂の分解ガスの生成によ
る。そして90分を経過した後は真空度は再び1 ”I
”orrに上昇するもので、これは真空焼結炉5内より
分解ガスが除去されたことを意味する。
(A) First heating zone (Fig. 3 A) This heating zone A is from room temperature to 650°C, and the temperature increase rate is 10~b. In the heating zone A, water first evaporates, and then the temperature in the synthetic resin binder evaporates. The tetrafluoroethylene resin and acrylic resin decompose and gasify. These synthetic resins are 300 to 400
It gasifies at °C, but considering heat conduction, the temperature is 600-650 °C.
℃ for 90 minutes to remove most of the synthetic resin, and
i. Leave the self-fusing alloy-Mo powder body. Explaining the gasification of this synthetic resin by the change in the degree of vacuum inside the vacuum sintering furnace 5, it is 1 Torr at room temperature, but 90 Torr at 650°C.
When the temperature is soaked for a minute, the degree of vacuum decreases to a maximum of 2 Torr. This is mainly due to the generation of decomposed gas from synthetic resins. After 90 minutes, the degree of vacuum will return to 1"I.
This means that the cracked gas has been removed from the vacuum sintering furnace 5.

(B)第2加熱ゾーン(第3図B) この加熱ゾーンBば900〜1000℃の範囲であり、
Ni自溶性合金−Mo粉末体をNi自溶性合金の固相線
(1010〜1020℃)以下の温度、例えば950°
Cに30分間均熱保持して固相焼結処理を施し、これを
仮焼結する。第1加熱ゾーンAからの昇温速度は10〜
b る。
(B) Second heating zone (Fig. 3B) This heating zone B is in the range of 900 to 1000°C,
The Ni self-fusing alloy-Mo powder body is heated at a temperature below the solidus line (1010 to 1020°C) of the Ni self-fusing alloy, for example 950°.
C is soaked for 30 minutes and subjected to solid phase sintering treatment, and then pre-sintered. The temperature increase rate from the first heating zone A is 10~
b Ru.

真空焼結炉5内のNi自溶性合金−Mo粉末体は、その
表面から加熱されて昇温するので、粉末体全体が均一温
度に達するまでは所定の加熱時間が必要である。若し焼
結温度である1000〜1200℃にいきなり加熱する
とNi自溶性合金−Mo粉末体の表面部分とベース面2
に接する部分および心部間に温度差ができて、気孔率の
ばらつきが多くなり均一な気孔率を有する焼結体が得ら
れないだけでなく、焼結後クランク等の欠陥を生じ易く
なる。
Since the Ni self-fusing alloy-Mo powder body in the vacuum sintering furnace 5 is heated from its surface and increases in temperature, a predetermined heating time is required until the entire powder body reaches a uniform temperature. If it is suddenly heated to the sintering temperature of 1000 to 1200°C, the surface part of the Ni self-fusing alloy-Mo powder body and the base surface 2
There is a temperature difference between the part in contact with the core and the core, which increases the variation in porosity, making it impossible to obtain a sintered body with uniform porosity, and also making it more likely to produce defects such as cranks after sintering.

第2加熱ゾーンBでは未分解の微量合成樹脂が完全にガ
ス化して除去される。このガス化等により真空焼結炉5
内の真空度は一時的に47or、rに低下するが30分
経過後にはI Torrに復帰する。
In the second heating zone B, a small amount of undecomposed synthetic resin is completely gasified and removed. Due to this gasification etc., the vacuum sintering furnace 5
The degree of vacuum inside the chamber temporarily drops to 47 orr, but returns to I Torr after 30 minutes.

(C)第3加熱ゾーン(第3図C) この加熱ゾーンCは、Ni自溶性合金の固相線(1(l
 l O〜1020’c)直下から液相線(1075〜
1085℃)を越える温度、即ち1000〜1200℃
の範囲であり、Ni自溶性合金−MO仮焼結体を、例え
ば液相線を越える温度である1100〜1180℃、好
ましくは1120゛Cに120分間恒温保持してNi自
溶性合金の溶融により液相焼結処理を施し焼結体Sを形
成する。この場合Ni自溶性合金の流動はMOの存在に
より妨げられ、したがって形状維持性が良い。
(C) Third heating zone (Fig. 3C) This heating zone C is located at the solidus line (1(l) of the Ni self-fusing alloy.
l O~1020'c) from just below the liquidus line (1075~
1085℃), i.e. 1000-1200℃
The Ni self-fusing alloy-MO pre-sintered body is maintained at a constant temperature of 1100 to 1180°C, preferably 1120°C, which is a temperature exceeding the liquidus line, for 120 minutes to melt the Ni self-fusing alloy. A liquid phase sintering process is performed to form a sintered body S. In this case, the flow of the Ni self-fusing alloy is hindered by the presence of MO, and therefore shape retention is good.

第2加熱ゾーンBからの昇温速度ば15〜20°C/分
であり、Ni自溶性合金−MO仮焼結体は第2加熱ゾー
ンBで既に高温加熱されているので、第3加熱ゾーンC
までの昇温時間は僅かである。
The temperature increase rate from the second heating zone B is 15 to 20°C/min, and since the Ni self-fusing alloy-MO pre-sintered body has already been heated to a high temperature in the second heating zone B, the third heating zone C
It takes only a short time to raise the temperature.

この第3加熱ゾーンCの保持時間が不充分であると焼結
が完全に行われず、焼結体Sに欠陥を生ずる。
If the holding time in the third heating zone C is insufficient, sintering will not be completed completely and defects will occur in the sintered body S.

上記のように焼結温度を1120°Cに選定する理由は
、その温度が鋳鉄よりなる金型本体1oの共晶温度以下
であるからである。金型本体1oが鋳鋼等の鋼糸であれ
ば焼結温度は1160°Cが良い。その理由は焼結温度
が1200°C程度となると、焼結体Sの寸法変化が大
きくなり、また炉温制御が容易でなく、その上炉内温度
がばらつくといった不具合があり、これらの不具合を除
去するための作業温度としては1160℃が適当である
からである。
The reason why the sintering temperature is selected to be 1120°C as described above is that this temperature is lower than the eutectic temperature of the mold body 1o made of cast iron. If the mold body 1o is made of steel thread such as cast steel, the sintering temperature is preferably 1160°C. The reason for this is that when the sintering temperature is around 1200°C, there are problems such as large dimensional changes in the sintered body S, it is not easy to control the furnace temperature, and the temperature inside the furnace fluctuates. This is because 1160° C. is appropriate as the working temperature for removal.

(D)冷却ゾーン(第3図D) この冷却ゾーンDは、前記焼結温度から略800°Cま
での1次冷却ゾーンD、と、略800℃から略400°
Cまでの2次冷却ゾーンD2と、略400℃から常温ま
での3次冷却ゾーンD3とに分けられる。
(D) Cooling zone (Figure 3 D) This cooling zone D includes a primary cooling zone D from the sintering temperature to about 800°C, and a cooling zone D from about 800°C to about 400°C.
It is divided into a secondary cooling zone D2 from approximately 400° C. to room temperature and a tertiary cooling zone D3 from approximately 400° C. to room temperature.

1次冷却ゾーンDIは、焼結体Sの高温下における安定
域であり、この冷却ゾーンDIではできるだけ熱的な刺
激を避け、同時に冷却効率を考慮して最高2℃/分程度
のゆっくりした速度で冷却する。この冷却ゾーンD、で
急冷が行われると焼結体Sにクランクが多発する。
The primary cooling zone DI is a stable region of the sintered body S at high temperatures, and in this cooling zone DI, thermal stimulation is avoided as much as possible, and at the same time, the cooling rate is slow at a maximum of about 2°C/min in consideration of cooling efficiency. Cool it down. When rapid cooling is performed in this cooling zone D, cranks occur frequently in the sintered body S.

2次冷却ゾーンD2では、金型本体lOの線膨張(12
,5x 10−6/℃)とAr1変態における寸法変化
を吸収し、また焼結体Sの急冷を避けるために最高3°
C/分程度のゆっくりした速度で冷却する。この場合焼
結体Sの線収縮は14.6 X 10−”7℃であるが
、多孔質であるため金型本体10の収縮に追随する。こ
の冷却ゾーンD2で急冷が行われると焼結体Sにクラン
クが多発する。
In the secondary cooling zone D2, linear expansion (12
, 5x 10-6/℃) and a maximum of 3° to absorb the dimensional change during Ar1 transformation and to avoid rapid cooling of the sintered body S.
Cool at a slow rate on the order of C/min. In this case, the linear shrinkage of the sintered body S is 14.6 x 10-"7°C, but since it is porous, it follows the shrinkage of the mold body 10. When rapidly cooled in this cooling zone D2, sintering There are many cranks on body S.

3次冷却ゾーンD3では、水、油等の液冷以外のガス冷
却(空冷を含む)により焼結体Sおよび金型本体10の
温度を常温まで冷却する。
In the tertiary cooling zone D3, the temperature of the sintered body S and the mold body 10 is cooled to room temperature by gas cooling (including air cooling) other than liquid cooling such as water or oil.

かくしてワーク成形部1aをNi自溶性合金−MOより
なる焼結体Sによって形成された金型1が得られる。
In this way, a mold 1 is obtained in which the workpiece molding portion 1a is formed of the sintered body S made of Ni self-fusing alloy-MO.

上記焼結体Sは、金型本体10との溶着性が良好で、均
一な気孔率を有し、クラック、腐食等の欠陥の発生がな
く、また寸法変化も±0〜+2i1以内と精度が良く、
形状維持性も良好であり、焼結強度も高い。したがって
簡単な仕上げ加工を施すことより直ちにプレス作業に使
用することができる。
The sintered body S has good weldability with the mold body 10, has a uniform porosity, is free from defects such as cracks and corrosion, and has a precision of dimensional change within ±0 to +2i1. well,
It has good shape retention and high sintering strength. Therefore, it can be used for press work immediately after simple finishing.

上記焼結体Sの表面硬度はロックウェル硬さBスケール
において20程度であり、この程度の硬度を持てば通常
のプレス作業では何等問題を生しないが、作業内容によ
っては焼結体Sに高圧が作用することがあり、この場合
焼結体Sが多孔質であるため座屈するおそれがある。
The surface hardness of the sintered body S is about 20 on the Rockwell hardness B scale, and if it has this hardness, it will not cause any problems in normal press work, but depending on the work, the sintered body S may be subjected to high pressure. In this case, since the sintered body S is porous, there is a risk of buckling.

このような不具合に対処するためには焼結体Sの高圧作
用部分にCu、Ni自溶性合金等の低融点金属を溶浸さ
せる、またはエポキシ樹脂等の合成樹脂を含浸−硬化さ
せて気孔を埋め、焼結体Sの硬度を著しく高くして座屈
強度を向上させることが必要である。
In order to deal with such problems, it is possible to infiltrate the high-pressure working part of the sintered body S with a low melting point metal such as a self-fusing alloy of Cu or Ni, or to impregnate and harden a synthetic resin such as an epoxy resin to close the pores. It is necessary to significantly increase the hardness of the sintered body S and improve its buckling strength.

自溶性合金粉としては、前記Ni自溶性合金粉の外にC
O自溶性合金、Fe自溶性合金等を用いることができる
。また高融点金属粉としては自溶性合金が溶着し易いも
のが良く、前記MOの外にW、WC,ステンレス鋼等を
用いることができる。
As the self-fusing alloy powder, in addition to the above-mentioned Ni self-fusing alloy powder, C
O self-fusing alloy, Fe self-fusing alloy, etc. can be used. Further, the high melting point metal powder should preferably be one to which a self-fluxing alloy can be easily welded, and W, WC, stainless steel, etc. can be used in addition to the above-mentioned MO.

なお、本発明は前記実施例のように金型本体をベース材
として、それに焼結体を積層する場合に限らず、ベース
材を用いずに焼結体のみを製造する場合にも当然に適用
し得る。
Note that the present invention is not limited to the case where the mold body is used as a base material and a sintered body is laminated thereon as in the above embodiment, but also applies to the case where only a sintered body is manufactured without using a base material. It is possible.

C6発明の効果 本発明によれば、焼結前に成形体を600℃〜650°
Cに保持することにより殆どの合成樹脂バインダを熱分
解により除去して分解ガスによる焼結体の腐食といった
不具合を回避することができる。
C6 Effect of the invention According to the invention, the molded body is heated at 600°C to 650° before sintering.
By maintaining the temperature at C, most of the synthetic resin binder can be removed by thermal decomposition and problems such as corrosion of the sintered body due to decomposition gas can be avoided.

また粉末体を900〜1000℃に保持して仮焼結する
ことにより気孔率のばらつきを防止して均一な気孔率を
有し、クラ・ツク等の欠陥のない焼結体を得ることがで
きる。
In addition, by holding the powder body at 900 to 1000°C and pre-sintering it, it is possible to prevent variations in porosity and obtain a sintered body that has uniform porosity and is free from defects such as cracks and cracks. .

さらに自溶性合金粉に高融点金属粉を混合することによ
り、自溶性合金の固相線直下から液相線を越える100
0〜1200℃の温度で焼結しても焼結体の形状維持性
および寸法精度を良好にすることができ、また焼結強度
の高い焼結体を得ることができる。
Furthermore, by mixing high melting point metal powder with self-fusing alloy powder, it is possible to
Even when sintered at a temperature of 0 to 1200°C, the shape retention and dimensional accuracy of the sintered body can be improved, and a sintered body with high sintering strength can be obtained.

さらにまた冷却工程を前記のように1次〜3次に分ける
ことにより、焼結体におけるクランク等の欠陥の発生を
防止することができる。
Furthermore, by dividing the cooling process into the primary to tertiary stages as described above, it is possible to prevent defects such as cranks from occurring in the sintered body.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図はプレス
用金型の断面図、第2図fat乃至(dlは金型の製造
工程説明図、第3図は焼結工程における温度と時間の関
係を示すグラフである。 P・・・可塑性物、S・・・焼結体、 1・・・プレス用金型、10・・・金型本体、1a・・
・ワーク成形部 特許出願人 本田技研工業株式会社
The drawings show one embodiment of the present invention, and FIG. 1 is a cross-sectional view of a press mold, FIG. 2 is an explanatory diagram of the manufacturing process of the mold, and FIG. It is a graph showing the relationship between time and P... plastic material, S... sintered compact, 1... press mold, 10... mold body, 1a...
・Workpiece forming section patent applicant Honda Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 自溶性合金粉と高融点金属粉と合成樹脂バインダとを混
練した可塑性物より成形体を得る工程と、前記成形体を
600〜650℃に保持することにより前記合成樹脂バ
インダを熱分解して前記自溶性合金粉と高融点金属粉よ
りなる粉末体を残置する工程と、前記粉末体を900〜
1000℃に保持して仮焼結体を得る工程と、前記仮焼
結体を1000〜1200℃に保持して焼結体を得る工
程と、1000〜1200℃から略800℃まで最高2
℃/分の冷却速度で前記焼結体を1次冷却する工程と、
略800℃から略400℃まで最高3℃/分の冷却速度
で前記焼結体を2次冷却する工程と、略400℃から常
温まで前記焼結体を3次冷却する工程と、よりなる金属
焼結体の製造方法。
A step of obtaining a molded body from a plastic material obtained by kneading a self-fusing alloy powder, a high melting point metal powder, and a synthetic resin binder, and a step of thermally decomposing the synthetic resin binder by maintaining the molded body at a temperature of 600 to 650°C. A step of leaving a powder body consisting of a self-fusing alloy powder and a high melting point metal powder, and
A step of holding the temporary sintered body at 1000-1200°C to obtain a sintered body, and a step of holding the temporary sintered body at 1000-1200°C to obtain a sintered body, and heating from 1000-1200°C to approximately 800°C at a maximum of 2
A step of primarily cooling the sintered body at a cooling rate of °C/min;
A metal comprising: secondarily cooling the sintered body from approximately 800°C to approximately 400°C at a maximum cooling rate of 3°C/min; and tertiary cooling the sintered body from approximately 400°C to room temperature. A method for producing a sintered body.
JP10193284A 1984-05-21 1984-05-21 Production of sintered metallic body Granted JPS60245701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10193284A JPS60245701A (en) 1984-05-21 1984-05-21 Production of sintered metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10193284A JPS60245701A (en) 1984-05-21 1984-05-21 Production of sintered metallic body

Publications (2)

Publication Number Publication Date
JPS60245701A true JPS60245701A (en) 1985-12-05
JPH0153326B2 JPH0153326B2 (en) 1989-11-14

Family

ID=14313682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10193284A Granted JPS60245701A (en) 1984-05-21 1984-05-21 Production of sintered metallic body

Country Status (1)

Country Link
JP (1) JPS60245701A (en)

Also Published As

Publication number Publication date
JPH0153326B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US2363337A (en) Mold and process of making it
US4435483A (en) Loose sintering of spherical ferritic-austenitic stainless steel powder and porous body
US3809553A (en) Metal foil-making process
US5190094A (en) Heteroporous form tool for manufacturing casting moulds and process for its manufacture
JPS60245701A (en) Production of sintered metallic body
JPS60221506A (en) Formation of sliding surface in machine tool
JPS60224701A (en) Production of female die
JPS60221502A (en) Production of metallic mold
JP2663190B2 (en) Manufacturing method of decorative plastics mold
JPS60230906A (en) Production of die
JPS613805A (en) Raw material sheet for sintered metallic body and its production
JPS60230908A (en) Production of die
JPS60224702A (en) Production of sintered metallic body
JPS60221503A (en) Production of metallic mold
US3552955A (en) Method of making tools from metal particles
JPS60245703A (en) Production of metallic laminated body
JPS60223627A (en) Formation of guide part in press machine
JPH0153323B2 (en)
JPS63223104A (en) Production of sintered hard alloy product
JPS613804A (en) Raw material sheet for sintered metallic body and its production
JPS60244499A (en) Production of die pair for press
JPS60230920A (en) Production of blank holder
JPS5837362B2 (en) Manufacturing method for glass molding molds
JPS5662763A (en) Grinder chip for cutting grinder and manufacture thereof
JPS60221505A (en) Production of metallic mold