JPS60245166A - Solid state image pick-up device - Google Patents

Solid state image pick-up device

Info

Publication number
JPS60245166A
JPS60245166A JP59100983A JP10098384A JPS60245166A JP S60245166 A JPS60245166 A JP S60245166A JP 59100983 A JP59100983 A JP 59100983A JP 10098384 A JP10098384 A JP 10098384A JP S60245166 A JPS60245166 A JP S60245166A
Authority
JP
Japan
Prior art keywords
light
photoconductor film
solid
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59100983A
Other languages
Japanese (ja)
Inventor
Masaru Yoshino
吉野 優
Mitsuo Nakayama
光雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59100983A priority Critical patent/JPS60245166A/en
Publication of JPS60245166A publication Critical patent/JPS60245166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To form an optical black portion without using special process by forming the optical black portion on a photoreceptor of one row of photoreceptor having two-dimensional photoconductive film and photoelectric conversion cell of a material separate from aluminum wirings. CONSTITUTION:A solid state image sensor has a semiconductor substrate 1, a photoconductive film 2, a transparent electrode 3, an insulating film 4, an output producing aluminum wiring 5, photoelectric conversion cells 11-15, signal transfer units 21 25, signal reading and transfer control electrodes 41-45 and signal reading gate regions 31-35. To connect between the film 2 and the cells 13-15, part 60 of electrode materials 63, 64, 65 of Mo, Ti, W is used to form an optical black portion. Accordingly, the optical black portion 60 is formed without using special process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置特に光導電体膜を走査回路上に積
層した構造の積層型固体撮像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device, and particularly to a stacked solid-state imaging device having a structure in which a photoconductor film is stacked on a scanning circuit.

従来例の構成とその問題点 従来型の固体撮像装置すなわち光電変換部としてPnダ
イオードやMOSキャパシタを用いた積層型でないタイ
プの固体撮像装置において、光電変換素子列のアレイ中
の定められた個数の光電変換素子列に入射する光を該固
体撮像装置のアルミニウムなどの配線材料の一部を用い
て遮光することによって、一定の直流レベル信号を取り
出して基準信号として用いることは知られている。この
遮光部の事を光学的黒領域(オプティカル・ブラック)
と呼ぶことも公知の事実である。
Structure of conventional example and its problems In a conventional solid-state imaging device, that is, a non-stack type solid-state imaging device that uses a Pn diode or MOS capacitor as a photoelectric conversion section, a fixed number of photoelectric conversion elements in an array are used. It is known that a certain DC level signal is extracted and used as a reference signal by blocking light incident on a photoelectric conversion element array using a part of the wiring material such as aluminum of the solid-state imaging device. This light-shielding area is called an optical black area.
It is also a well-known fact that it is called.

ところで、光導電体膜を走査回路上に積層した構造の積
層型固体撮像装置においては、上記のオプティカル・ブ
ラックを固体撮像装置の配線材料つまりアルミニウム電
極の一部を用いて遮光するという方法をとれば、アルミ
ニウム電極の表面段差により上記光導電体膜のリーク電
流を増大するため固体撮像装置の暗電流が増大するとい
う問題点を有しているという理由で、オプティカル・ブ
ラックは積層型固体撮像装置に接着するための接着カラ
ー・フィルタ上に形成されていた。
By the way, in a stacked solid-state imaging device having a structure in which a photoconductor film is stacked on a scanning circuit, it is possible to use a method of shielding the above optical black using a part of the wiring material of the solid-state imaging device, that is, an aluminum electrode. For example, optical black has the problem that the dark current of solid-state imaging devices increases due to the increase in leakage current of the photoconductor film due to the surface level difference of the aluminum electrode. Adhesive color filter was formed on it for adhesion.

しかるに、近年固体撮像装置の小型化・高精度化にとも
ないカラーフィルタの撮像装置への合わせズレが少ない
という理由から、カラーフィルタをオンチップ上に形成
するオンチップフィルタの6ベー7゛ 技術導入が盛んであり、上記のオプティカル・ブラック
を積層型の固体撮像装置自身に、しかも光導電体膜のリ
ーク電流を増大することなく形成する技術への要求は非
常に大きなものとなっている。
However, in recent years, as solid-state imaging devices have become smaller and more precise, the 6-by-7 technology of on-chip filters, in which color filters are formed on-chip, has been introduced because there is less misalignment of color filters with the imaging device. There is a great demand for a technique for forming the above-mentioned optical black on the layered solid-state imaging device itself without increasing the leakage current of the photoconductor film.

発明の目的 本発明は上記のような事情を考慮してなされたものであ
り、光導電体膜を走査回路上に積層した構造の積層型固
体撮像装置においても、信号処理上で必要な基準直流信
号を取り出すだめのいわゆるオプティカル・ブラック部
を特殊のプロセスを用いることなく具備した固体撮像装
置を提供することを目的とする。
Purpose of the Invention The present invention has been made in consideration of the above-mentioned circumstances, and even in a stacked solid-state imaging device having a structure in which a photoconductor film is stacked on a scanning circuit, the reference direct current required for signal processing is It is an object of the present invention to provide a solid-state imaging device that is equipped with a so-called optical black section for extracting signals without using any special process.

発明の構成 本発明は、2次元配列された光導電体膜と光電変換セル
とを有する受光部のうちのあらかじめ定められた少なく
とも一列の受光部を光に対して感度を持たないという構
造によりいわゆるオプティカル・ブラック部を形成し、
しかも固体撮像装置の出力取り出し用のアルミニウム配
線とは別の材料で形成することにより光導電体膜のリー
ク電流6ベー。
Structure of the Invention The present invention has a structure in which at least one predetermined row of light receiving parts of a light receiving part having a two-dimensionally arranged photoconductor film and photoelectric conversion cells is not sensitive to light. forming an optical black section,
Moreover, by forming the photoconductor film using a different material from the aluminum wiring for output extraction of the solid-state imaging device, the leakage current of the photoconductor film is reduced to 6 bases.

を増大することもなく、さらに特殊のプロセスを用いる
ことなく前記装置を簡単に製造可能とするものである。
The device can be easily manufactured without increasing the amount of energy and without using special processes.

実施例の説明 以下図面により本発明の詳細な説明する。第1図は本発
明に係る固体撮像装置の一実施例の構成を断面図で示し
たものである。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the configuration of an embodiment of a solid-state imaging device according to the present invention.

同図において、1は半導体基板、2はアモルファス・シ
リコンなどに代表される光導電体膜、3は透明電極、4
は二酸化シリコンなどの絶縁膜を示し、6は本固体撮像
装置の出力堆り出し用のアルミニウム配線の一部を示す
。ここで、アルミニウム材料の表面はグレインのサイズ
も大きく、さらにアルミニウムのシンタリングによって
上記グレインサイズの差が拡がるだめ図の様にアルミニ
ウム材料の表面段差は大きくなる。さらに配線に用いる
アルミニウム材料は配線抵抗が大きくならない様に1μ
m程度の厚さを用いるだめ、アルミニウム材料が有る部
分と存在しない部分の段差も1μm程度と々る。したが
って従来例の様にアル了へ− ミニラム配線と同一の材料でオプティカル・ブラック部
を形成した場合はその後に形成されるアモルファス・シ
リコンなどの光導電体膜2が段差に対して敏感にリーク
の増大という特性劣化の性質を持っていることと考え合
わせれば、不都合であることは容易に理解できることで
ある。
In the figure, 1 is a semiconductor substrate, 2 is a photoconductor film typified by amorphous silicon, 3 is a transparent electrode, and 4 is a photoconductor film typically made of amorphous silicon.
6 indicates an insulating film such as silicon dioxide, and 6 indicates a part of aluminum wiring for outputting the output of the solid-state imaging device. Here, the size of the grains on the surface of the aluminum material is large, and the difference in grain size increases due to the sintering of the aluminum, so that the step difference on the surface of the aluminum material becomes large as shown in the figure. Furthermore, the aluminum material used for wiring is
If a thickness of about 1.0 m is used, the difference in level between the part with the aluminum material and the part without it is also about 1 μm. Therefore, if the optical black part is formed of the same material as the miniram wiring as in the conventional example, the photoconductor film 2 formed afterwards, such as amorphous silicon, will be sensitive to steps and will not leak. It is easy to understand that this is an inconvenience if you consider that it has the property of deteriorating characteristics due to increase.

しだがって、本実施例では光導電体膜2と光電変換セル
13,14.15との間をつなぎ合わせるだめの光電変
換セル13,14.15とオーム性接触を実現するだめ
の1100n程度の厚みのモリブデン・チタン・タング
ステン・クロム等の電極材料63.64.65の一部6
oを用いてオプティカル・ブラック部を実現した例を示
しである。なお、第1部において、11〜15は光電変
換セル、21〜25は信号の転送部、41〜46は信号
読み込み及び転送制御用の多結晶シリコン等から々る電
極、31〜36は信号読み込みゲート領域を示し、63
〜56は光電変換セル13〜15と電極材料63〜66
との間をつなぎ合わせる多結晶シリコン等からなる電極
を示しである。
Therefore, in this embodiment, the distance between the photoconductor film 2 and the photoelectric conversion cells 13, 14.15 is approximately 1100 nm to realize ohmic contact with the photoelectric conversion cells 13, 14.15. Part 6 of electrode material 63.64.65 of molybdenum, titanium, tungsten, chromium, etc. with a thickness of
This figure shows an example in which an optical black portion is realized using o. In the first part, 11 to 15 are photoelectric conversion cells, 21 to 25 are signal transfer units, 41 to 46 are electrodes made of polycrystalline silicon, etc. for signal reading and transfer control, and 31 to 36 are signal reading units. showing the gate region, 63
-56 are photoelectric conversion cells 13-15 and electrode materials 63-66
This figure shows an electrode made of polycrystalline silicon or the like that connects the two.

なお、ここでは光電変換セルとしてP −nダイオード
、信号転送部としてCODを念頭において実施例を示す
が、他の構造の光電変換セルと信号転送部の組み合わせ
に対しても本発明の有効性は同一に発揮される。
Note that although an example will be described here with a P-n diode as the photoelectric conversion cell and a COD as the signal transfer section, the effectiveness of the present invention may also be demonstrated for combinations of photoelectric conversion cells and signal transfer sections with other structures. It is performed in the same way.

今、転送部23,24.25には光に対応した信号が集
められて紙面に垂直な方向に転送されるが、転送部21
.22の二列は光に対して感度を持た々いのでこの二列
より取り出しだ出力信号の直流レベルは黒の基準信号と
して出力用回路手段に供給される訳である。
Now, signals corresponding to light are collected in the transfer units 23, 24, and 25 and transferred in a direction perpendicular to the plane of the paper.
.. Since the two columns 22 have high sensitivity to light, the DC level of the output signal taken out from these two columns is supplied to the output circuit means as a black reference signal.

次に第2図に本発明に係る固体撮像装置の第1図とは別
の実施例の構成を断面図で示す。なお、第1図と共通の
番号は第1図と全く同じ構成であるので以下の説明では
省略するものとする。第2図において、73.了4.了
5は光導電体膜2と光電変換セル13,14.15との
間をつなぎ合わせるだめのモリブデン・チタン・タング
ステン・クロム等の電極材料63,64.65のすき間
から装置上にもれ込む光を遮光するだめの数百圃91\
−7 程度のモリブデン・チタン・タングステン・クロム等の
シールド材料を示し7、前記シールド材料の一部70を
用いてオプティカル・ブラック部が実現されている。
Next, FIG. 2 shows a cross-sectional view of the structure of another embodiment of the solid-state imaging device according to the present invention, which is different from that shown in FIG. Note that the same numbers as those in FIG. 1 have the same structure as in FIG. 1, so they will be omitted in the following explanation. In FIG. 2, 73. Completed 4. The liquid 5 leaks onto the device through gaps between electrode materials 63, 64, 65, such as molybdenum, titanium, tungsten, chromium, etc., which are used to connect the photoconductor film 2 and the photoelectric conversion cells 13, 14, 15. Hundreds of fields that block light 91\
The optical black part is realized by using a part 70 of the shielding material.

さらに第3図には本発明に係る固体撮像装置の別の実施
例の構成を断面図で示しである。第3図においては、光
導電体膜2上に設けられる透明電極3とアルミニウム配
線6との間にオーム性接触を有する配線材料80の一部
を用いてオプティカル・ブラック部が実現されている。
Further, FIG. 3 is a sectional view showing the structure of another embodiment of the solid-state imaging device according to the present invention. In FIG. 3, an optical black portion is realized using a portion of a wiring material 80 having ohmic contact between the transparent electrode 3 provided on the photoconductor film 2 and the aluminum wiring 6.

まだ第4図には本発明に係る固体撮像装置の別の実施例
の構成を断面図で示しである。同図において、光導電体
膜2上の透明電極3よりも上部に具備される光を遮蔽す
るだめのシールド材料93゜94の一部90を用いてオ
プティカル・ブラック部が実現されている。
FIG. 4 is a sectional view showing the structure of another embodiment of the solid-state imaging device according to the present invention. In the figure, an optical black portion is realized using a portion 90 of a shielding material 93° 94 provided above the transparent electrode 3 on the photoconductor film 2 and used to shield light.

第5図には本発明に係る固体撮像装置の別の実施例の構
成を断面図で示しである。第5図において、光導電体膜
2上にレジスト等のマスクパターン98を形成した後、
P+やB+などの荷電粒子9910べ−7 を60〜200 KeV程度の高電界で高速度に照射す
ると、該荷電粒子99が照射され注入された光導電体膜
2は部分的に光に対する感度が消滅する。
FIG. 5 is a sectional view showing the structure of another embodiment of the solid-state imaging device according to the present invention. In FIG. 5, after forming a mask pattern 98 such as a resist on the photoconductor film 2,
When charged particles 9910B, such as P+ and B+, are irradiated at high speed in a high electric field of about 60 to 200 KeV, the photoconductor film 2 in which the charged particles 99 are irradiated and injected becomes partially sensitive to light. Disappear.

したがって、前記の光に対する感度が消滅した部分をオ
プティカル・ブラック部として利用する訳である。
Therefore, the portion where the sensitivity to light has disappeared is used as an optical black portion.

発明の詳細 な説明したように、この発明によれば、積層型の固体撮
像装置においても、光導電体膜のIJ −り電流を増大
することなしに、さらには第1図〜第4図の様にプロセ
スを何ら増大することなしに、また第6図の様な簡単な
プロセスの追加によってオプティカル・ブラック部を形
成することができ、信号処理手段に基準直流信号を供給
することが可能となる。
As described in detail, according to the present invention, even in a stacked solid-state imaging device, the IJ current of the photoconductor film can be improved without increasing the IJ current as shown in FIGS. 1 to 4. As shown in FIG. 6, an optical black portion can be formed without increasing the process in any way and by adding a simple process as shown in FIG. 6, and it becomes possible to supply a reference DC signal to the signal processing means. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図はそれぞれ本発明に係る固体撮像装置の
実施例の断面図を示すものである。 1・・・・・半導体基板、2・・・・・光導電体膜、3
・・・透明電極、4・・・・・絶縁膜、6・・・・アル
ミニウム配11八−1 線の一部、11〜15・・・光電変換セル、21〜26
・・・・・信号転送部、31〜35・・・・・信号読み
込みゲート領域、41〜46・・・・信号制御電極、5
1〜56・・・・・・つなぎ合わせ電極、60.61〜
66゜80・・・−電極材料、70,73〜75 、9
0.93゜94・・・・・・シールド材料。
FIGS. 1 to 6 each show a cross-sectional view of an embodiment of a solid-state imaging device according to the present invention. 1... Semiconductor substrate, 2... Photoconductor film, 3
...Transparent electrode, 4...Insulating film, 6...Part of aluminum interconnection 118-1 wire, 11-15...Photoelectric conversion cell, 21-26
...Signal transfer section, 31-35...Signal reading gate region, 41-46...Signal control electrode, 5
1-56...Connecting electrode, 60.61-
66°80...-electrode material, 70, 73-75, 9
0.93°94... Shield material.

Claims (1)

【特許請求の範囲】 (1)半導体基板上に形成した光導電体膜とこの光導電
体膜の下部に形成され前記光導電体膜との間でオーム性
接触する光電変換セルとを有し、入射光量に対応する信
号電荷を蓄積する受光部と、前記半導体基板上の前記光
電変換セルに隣接して形成され駆動クロックの印加によ
り前記受光部の信号電荷を読み出し外部回路に転送出力
するゲート電極を有する転送部とからなる複数の絵素を
2次元配列し、前記2次元配列された複数の絵素のうち
のあらかじめ定められた少なくとも一列の受光部を光に
対して感度を持たない構造手段と、前記光に対して感度
を持たない受光部から取り出した出力信号の直流レベル
を該固体撮像装置における基準信号として用いる回路手
段とを具備し、出力取り出し用のアルミニウム配線とは
別の材料で上記の感度を持たない構造が形成されてなる
ことを2べ−7 特徴とする固体撮像装置。 (2)半導体基板上に形成した光導電体膜とこの光導電
体膜の下部に形成され該光導電体膜との間をつなぎ合わ
せるために光電変換セルとの間にオーム性接触を実現す
るだめのモリブデン・チタン・タングステン・クロム等
の電極材料の一部を用いて、感度を持たない受光部を実
現することを特徴とする特許請求の範囲第1項に記載の
固体撮像装置。 (3)光導電体膜と光電変換セルとの間をつなぎ合わせ
るためのモリブデン・チタン・タングステン・クロム等
の電極材料のすき間から装置上にもれ込む光を遮光する
だめのシールド材料の一部を用いて、感度を持たない受
光部を実現することを特徴とする特許請求の範囲第1項
に記載の固体撮像装置。 (4)光導電体膜上に設けられる透明電極とオーム性接
触を有する配線材料の一部を用いて、感度を持たない受
光部を実現することを特徴とする特許請求の範囲第1項
に記載の固体撮像装置。 3ベー/ (6)光導電体膜上に設けられる透明電極よりも上部に
具備される光を遮蔽するだめのシールド材料の1部を用
いて、感度を持たない受光部を実現することを特徴とす
る特許請求の範囲第1項に記載の固体撮像装置。 (6)光導電体膜のうちのあらかじめ定められた少なく
とも一列以上の受光部に対応する部分に対して高速度の
粒子を照射することにより感度を持たない受光部を実現
することを特徴とする特許請求の範囲第1項に記載の固
体撮像装置。
[Scope of Claims] (1) Comprising a photoconductor film formed on a semiconductor substrate and a photoelectric conversion cell formed under the photoconductor film and in ohmic contact with the photoconductor film. , a light receiving part that accumulates signal charges corresponding to the amount of incident light; and a gate formed adjacent to the photoelectric conversion cell on the semiconductor substrate and reading out the signal charges of the light receiving part by applying a drive clock and transferring and outputting them to an external circuit. A structure in which a plurality of picture elements consisting of a transfer part having an electrode are arranged two-dimensionally, and at least one predetermined row of light-receiving parts of the plurality of picture elements in the two-dimensional arrangement are not sensitive to light. and a circuit means for using the DC level of the output signal taken out from the light receiving section that is not sensitive to light as a reference signal in the solid-state imaging device, and is made of a material different from the aluminum wiring for output extraction. 2. A solid-state imaging device characterized in that a structure having no sensitivity as described above is formed. (2) Realizing ohmic contact between the photoconductor film formed on the semiconductor substrate and the photoelectric conversion cell formed below the photoconductor film to connect the photoconductor film. 2. The solid-state imaging device according to claim 1, wherein a light-receiving section having no sensitivity is realized by using a portion of an electrode material such as molybdenum, titanium, tungsten, or chromium. (3) Part of the shielding material used to block light from leaking onto the device through the gaps between the electrode materials such as molybdenum, titanium, tungsten, and chromium used to connect the photoconductor film and the photoelectric conversion cell. 2. The solid-state imaging device according to claim 1, wherein a light receiving section having no sensitivity is realized using the following. (4) Claim 1 is characterized in that a light receiving section having no sensitivity is realized by using a part of a wiring material having ohmic contact with a transparent electrode provided on a photoconductor film. The solid-state imaging device described. 3 base/(6) A light-receiving section with no sensitivity is realized by using a part of a shield material for blocking light provided above the transparent electrode provided on the photoconductor film. A solid-state imaging device according to claim 1. (6) A light receiving section without sensitivity is realized by irradiating high-velocity particles to a portion of the photoconductor film corresponding to at least one predetermined row of light receiving sections. A solid-state imaging device according to claim 1.
JP59100983A 1984-05-18 1984-05-18 Solid state image pick-up device Pending JPS60245166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100983A JPS60245166A (en) 1984-05-18 1984-05-18 Solid state image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100983A JPS60245166A (en) 1984-05-18 1984-05-18 Solid state image pick-up device

Publications (1)

Publication Number Publication Date
JPS60245166A true JPS60245166A (en) 1985-12-04

Family

ID=14288563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100983A Pending JPS60245166A (en) 1984-05-18 1984-05-18 Solid state image pick-up device

Country Status (1)

Country Link
JP (1) JPS60245166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631349U (en) * 1986-06-20 1988-01-07
US8816265B2 (en) 2010-03-31 2014-08-26 Fujifilm Corporation Solid-state image pickup device and image pickup apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104176A (en) * 1979-02-06 1980-08-09 Matsushita Electric Ind Co Ltd Solidstate pick up unit
JPS5861663A (en) * 1981-10-08 1983-04-12 Matsushita Electronics Corp Manufacture of solid-state image pickup device
JPS58154977A (en) * 1982-03-10 1983-09-14 Matsushita Electric Ind Co Ltd Solid-state image pickup element
JPS58223971A (en) * 1982-06-23 1983-12-26 Hitachi Ltd Solid-state image pickup element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104176A (en) * 1979-02-06 1980-08-09 Matsushita Electric Ind Co Ltd Solidstate pick up unit
JPS5861663A (en) * 1981-10-08 1983-04-12 Matsushita Electronics Corp Manufacture of solid-state image pickup device
JPS58154977A (en) * 1982-03-10 1983-09-14 Matsushita Electric Ind Co Ltd Solid-state image pickup element
JPS58223971A (en) * 1982-06-23 1983-12-26 Hitachi Ltd Solid-state image pickup element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631349U (en) * 1986-06-20 1988-01-07
JPH051081Y2 (en) * 1986-06-20 1993-01-12
US8816265B2 (en) 2010-03-31 2014-08-26 Fujifilm Corporation Solid-state image pickup device and image pickup apparatus

Similar Documents

Publication Publication Date Title
US6710370B2 (en) Image sensor with performance enhancing structures
US6259085B1 (en) Fully depleted back illuminated CCD
US7902512B1 (en) Coplanar high fill factor pixel architecture
US3826926A (en) Charge coupled device area imaging array
JPS60161664A (en) Tightly adhered two-dimensional image readout device
JPS58138187A (en) Solid-state image sensor
JP3180748B2 (en) Solid-state imaging device
JPH0455028B2 (en)
US6163030A (en) MOS imaging device
WO1991006124A1 (en) Solid-state image sensor
JPS60245166A (en) Solid state image pick-up device
KR950013197A (en) Solid state image pickup device having a low resistance gate electrode and method of manufacturing the same
JPS5928065B2 (en) Manufacturing method of solid-state image sensor
JPS5972164A (en) Solid-state image-pickup device
JPH06163864A (en) Solid-state image pickup device
JPH0237746B2 (en)
JPS61280659A (en) Contact type image sensor
KR20010011607A (en) Solid static pick-up device having microlens and method for manufacturing the same
US4727406A (en) Pre-multiplexed detector array
JPS63164270A (en) Laminated type solid-state image sensing device
KR100475134B1 (en) Solid state image sensor
JPH0437166A (en) Solid-state image pickup device
JPH03246971A (en) Charge-coupled device and solid-state image sensing device using same
JPS61253860A (en) Solid-state image pickup device
JPH0220036B2 (en)